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Appendix S1

We show in Appendix S1 that the unique optimal sex ratio of a mother in condition cm

is male-biased (resp., female-biased) if and only if she would prefer, in terms of fitness, to

have an all-male brood than an all-female brood (resp., all-female than all-male).

We first prove the reverse direction. Let the fitness sum of an all-male brood (given

optimal investment), a mixed brood (ditto), and an all-female brood (ditto) be M , X, and

F respectively. Suppose that the mother would prefer an all-male brood to an all-female

brood: M > F . Denoting by p the proportion of males in the sex ratio, the problem of an

optimal sex ratio is then

p∗ := arg max
p∈[0,1]

[
p2M + 2p(1− p)X + (1− p)2F

]
.

There are two possible cases: either the optimum is interior, i.e., p∗ ∈ (0, 1), or it is

boundary, i.e., p∗ = 0 or p∗ = 1. If it is boundary, then it must be male-biased (p∗ = 1),

since the alternative boundary solution (p = 0) is strictly inferior (M > F ). A necessary

condition for the optimum to be interior is X > M since if this condition does not hold, the

optimal sex ratio would be fully male-biased, p∗ = 1. If interior, the first order condition
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is

∂

∂p

(
p2M + 2p(1− p)X + (1− p)2F

)∣∣∣
p=p∗

= 0 ⇒ p∗M + (1− 2p∗)X − (1− p∗)F = 0

⇒ p∗ =
X − F

[X −M ] + [X − F ]
>

1

2
,

where the inequality is a consequence of X > M > F . So the optimal sex ratio when

M > F is male-biased.

To prove the forward direction, let p∗ > 1/2 be the unique optimal sex ratio for a

mother in condition cm. If F > M , then the alternative sex ratio 1−p∗ would yield higher

average brood fitness sum, since it would generate the same proportion of mixed broods

as does p∗, but a higher proportion of the fitter same-sex brood (all-female). If F = M

and X > M , then the optimal sex ratio is p∗ = 1/2, since this generates the highest

proportion of mixed broods. If, instead, F = M and X ≤ M , then the optimal sex ratio

is not unique. Thus, p∗ > 1/2⇒M > F .

By a symmetric argument, the unique optimal sex ratio is female-biased if and only if

F > M .

Appendix S2

Here we show that the single-crossing condition, where f♂(c) starts below f♀(c) for low

c, crosses f♀(c) at some unique value c∗, and lies above f♀(c) for all c > c∗, is in general

not sufficient to guarantee that the sex ratio version of the TWH holds. Our proof is

graphical, with a particular specification of f♂ and f♀ (Fig. A1).

Suppose, owing to convexity in the appropriate region of f♂, that there is some c1m

such that the optimal investment decision for a mother of condition c1m who has two sons is

to invest asymmetrically in them, resulting in adult conditions c1 and c3, and thus fitness

sum f1 +f3. Investing more in the son whose condition is c3 would be unproductive, since

fitness increases very little for adult conditions above this. Also for this reason, a mother

who is in condition c2m slightly larger than c1m, and who has two sons, invests such that one
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Figure A1: A graphical example of fitness functions satisfying the single-crossing condi-
tions (SC1) and (SC2), but for which the sex ratio version of the Trivers-Willard hypothesis
does not hold.

son achieves adult condition c3, while the other receives what is left of the mother’s initial

investment endowment I(c2m). With this investment, it achieves adult condition c2 > c1,

and the fitness sum of the brood is f2 + f3.

Since the female fitness curve is concave in investment (being linear in adult condition,

which in turn is concave in investment), the optimal investment decision for mothers

in condition c1m and c2m who each have two female offspring is to apportion investment

equitably within their respective broods. One can find functions c, consistent with the

general conditions imposed upon such functions in Section 2 in the main text, such that

this leaves the female offspring in conditions (c1 + c3)/2 for the mother in condition c1m,

and (c2 + c3)/2 for the mother in condition c2m. In the former case, the brood’s fitness

sum is lower than that of a same-condition mother’s male brood, since the female fitness
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profile passes below the leftmost dot marking average offspring fitness (f1 + f3)/2. But in

the latter case, the brood’s fitness sum is greater than that of a same-condition mother’s

male brood, since the female fitness profile passes above the rightmost dot marking average

offspring fitness (f2 +f3)/2. Thus, mothers in condition c1m are selected to exhibit a male-

biased sex ratio, while mothers in condition c2m > c1m are selected to exhibit a female-biased

sex ratio, in contravention of the sex ratio version of the TWH.

Appendix S3

Here, we provide a brief analysis of a simple two-period sequential brood model. We

assume that a mother has one offspring in each of the two periods, that her condition

cm does not change across the two periods, and that, starting with investment capability

I(cm), if she invests i ∈ [0, I(cm)] in first offspring, that she has investment capability

I(cm)−i left over for the second offspring (which, when optimizing, she of course exhausts).

There are two possibilities with regard to the mother’s sex ratio: First, that she can alter

her sex ratio across the two periods. Second, that she cannot, and must choose a sex ratio

that applies to both.

Case 1: Changeable sex ratio

In the first case, where her sex ratio can change from period to period, it is never strictly

preferable for a mother to have, in either period, a sex ratio that is not zero or one: instead,

she deterministically sets the sequence of her offspring’s sex. Here, the analysis is almost

identical to the single-brood model considered in the main part of this paper. It is shown

in Appendix S1 that, in the single-brood model, the optimal sex ratio is mixed (i.e., not

zero or one) if, and only if, the fitness sum of a mixed brood, given optimal investment

allocation, is greater than both the fitness sum of a male-only and a female-only brood (also

given optimal investment allocation). Otherwise, the optimal sex ratio is biased entirely

towards the sex with higher same-sex-brood fitness sum. Therefore, the links between

the one-period and two-period models are the following: When the optimal sex ratio in

4



the one-period model is completely male-biased (resp. female biased), then the optimal

sequence of offspring sex in the two-period model is male-male (resp. female-female). In

cases where the optimal sex ratio in the one-period model is mixed, the optimal sequence

of offspring in the two-period model is male-female, or, equivalently (same fitness sum),

female-male. The optimal pattern of investment is then the same as in the one-period

model.

Case 2: Unchangeable sex ratio

In the second case, where the sex ratio is constrained to be fixed across the two periods,

the difference between the one-period and two-period models is that, in the former, the

realization of the two offspring’s sex is simultaneous, and so the mother can condition her

allocation of investment perfectly on it. In the latter, if her sex ratio is not zero or one,

her investment decision must be made with knowledge only of the first offspring’s sex.

It is clear that, for maternal conditions for which the optimal sex ratio in the one-period

model is zero or one, the optimal sex ratio in the two-period model would be identical (as

would the investment decisions then be).

Consider then the case where the mother’s optimal sex ratio is between zero and one.

First, we shall show that, for examples such as that in Section 3 of the main text (the

‘classic’ Trivers-Willard fitness functions), the investment version still fails.

Take the linear fitness functions from Section 3, and consider a mother with a mixed

optimal sex ratio. In the one-period model, if the mother has a same-sex brood, she

apportions investment equitably among the two offspring, but if she has a mixed brood,

she invests more in the male offspring. In the two-period model, suppose now that the

mother first has a son. Should she give it half of her investment endowment (as would

be optimal if she knew that her next offspring would be a son), or should she give it the

amount – more than half – that she would if she knew her next offspring would be a

daughter? It seems clear that the answer will lie somewhere in between, and will depend

on the mother’s sex ratio.
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Formally, the optimization problem facing a mother of condition cm and with sex ratio

p ∈ (0, 1) who has had a son in the first period, and must now decide how much to invest

in him and how much to leave aside for her next offspring, is:

i∗s := arg max
i

f♂
(
c(cm, i)

)
+ pf♂

(
c(cm, I(cm)− i)

)
+ (1− p)f♀

(
c(cm, I(cm)− i)

)
= arg max

i

[
λc(cm, i)

]
+ p

[
λc(cm, I(cm)− i)

]
+ (1− p)

[
c(cm, I(cm)− i) + k

]
,

the first-order condition for which is:

∂

∂i

([
λc(cm, i)

]
+ p

[
λc(cm, I(cm)− i)

]
+ (1− p)

[
c(cm, I(cm)− i) + k

])∣∣∣
i=i∗s

= 0

⇒ λ∂2c(cm, i
∗
s)− pλ∂2c(cm, I(cm)− i∗s)− (1− p)∂2c(cm, I(cm)− i∗s) = 0

⇒ λ∂2c(cm, i
∗
s) =

[
λ− (1− p)(λ− 1)

]
∂2c(cm, I(cm)− i∗s)

⇒ ∂2c(cm, i
∗
s) < ∂2c(cm, I(cm)− i∗s) ⇒ i∗s > I(cm)− i∗s. (1)

Similarly, if a mother with a mixed sex ratio first has a female offspring, she will provide

it with less than half of her investment endowment. So, also in the two-period model, the

investment version of the TWH does not work for this set of fitness functions. Notice that

the factor on the right-hand side of the third-to-last line, λ− (1−p)(λ−1) = 1 +p(λ−1),

is greater than its counterpart, 1, from the first-order condition of the one-period model

(see Section 3 of main text), and so the optimal bias in investment is smaller here, in

accordance with the heuristic argument above.

Analysis of the sex ratio version is complicated by the fact that the optimal sex ratio

of a mother will depend on her optimal investment allocation across (sequential) broods,

and this in turn will depend on her sex ratio. That is, the fitness sums of the various

sequential broods that result from optimal investment, say MM,MF,FM,FF , are all

functions of the sex ratio p. So, the problem of optimizing the sex ratio is:

p∗ := arg max
p

p2MM(p) + p(1− p)MF (p) + p(1− p)FM(p) + (1− p)2FF (p),
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the first-order condition of which appears to be intractable (though note again that the

first-order condition is relevant only for interior solutions, and so applies only to maternal

conditions where, in the one-period model, the optimal sex ratio is mixed).

Nonetheless, we shall derive some preliminary results that suggest this to be the case.

We focus again on the linear case from Section 3 of the main text, assume that offspring

condition depends only on investment received (to simplify the notation), and specify a

functional form for this relationship: c(i) = ln(i) (which satisfies the restrictions imposed

in Section 2 of main text). Our strategy will be similar to that employed in Section 5

of the main text: we shall ask, starting from an even sex ratio, where selection ‘points’

for mothers of different conditions. In particular, we shall ask if selection points towards

a male-biased sex ratio for mothers above a particular condition, and towards a female-

biased sex ratio for mothers below that condition.

We noted above that the first-period investment decision of a mother depends both on

the sex of the first offspring and on her sex ratio. Let is(p, cm) be the optimal investment

in the first offspring of a mother in condition cm with sex ratio p who has a son in the

first period, and id(p, cm) the analogous quantity if she has a daughter instead. Then

is(p, cm) = arg max
i

(λ ln(i) + p [λ ln (I(cm)− i)] + (1− p) [ln (I(cm)− i)]) ,

id(p, cm) = arg max
i

(ln(i) + k + p [λ ln (I(cm)− i)] + (1− p) [ln (I(cm)− i)]) ,

the first-order conditions (with respect to i) for which are

0 ≡ λ

is(p, cm)
− p λ

I(cm)− is(p, cm)
− (1− p) 1

I(cm)− is(p, cm)

⇒ I(cm)− is(p, cm) ≡ pλ+ 1− p
λ

is(p, cm), (2)

0 ≡ 1

id(p, cm)
− p λ

I(cm)− id(p, cm)
− (1− p) 1

I(cm)− id(p, cm)

⇒ I(cm)− id(p, cm) ≡ (pλ+ 1− p)id(p, cm). (3)
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Since we are considering marginal deviations from an even sex ratio, we write p = 1
2 +ε,

and consider the case where ε is small in magnitude: |ε| � 1. The optimal investment

decision functions are continuous (because the optimization problem is smooth), and so,

as ε → 0, is(p, cm) → is(1/2, cm) and id(p, cm) → id(1/2, cm). In this case, the expected

fitness sum of a mother in condition cm with sex ratio p = 1
2 + ε, with ε small, and when

she is making optimal investment decisions, is approximately

F (ε, cm) =

(
1

2
+ ε

)2 [
λ ln[is(1/2, cm)] + λ ln[I(cm)− is(1/2, cm)]

]
+

(
1

2
+ ε

)(
1

2
− ε

)[
λ ln[is(1/2, cm)] + ln[I(cm)− is(1/2, cm)] + k

]
+

(
1

2
+ ε

)(
1

2
− ε

)[
ln[id(1/2, cm)] + λ ln[I(cm)− id(1/2, cm)]

]
+

(
1

2
− ε

)2 [
ln[id(1/2, cm)] + k + ln[I(cm)− id(1/2, cm)] + k

]
.

Ignoring terms of order ε2,

F (ε, cm) =

(
1

4
+ 2ε

)[
λ ln[is(1/2, cm)] + λ ln[I(cm)− is(1/2, cm)]

]
+

1

4

[
λ ln[is(1/2, cm)] + ln[I(cm)− is(1/2, cm)] + k

]
+

1

4

[
ln[id(1/2, cm)] + λ ln[I(cm)− id(1/2, cm)]

]
+

(
1

4
− 2ε

)[
ln[id(1/2, cm)] + k + ln[I(cm)− id(1/2, cm)] + k

]
,

so that

∂

∂ε
F (ε, cm) = 2

[
λ ln[is(1/2, cm)] + λ ln[I(cm)− is(1/2, cm)]

]
− 2

[
ln[id(1/2, cm)] + k + ln[I(cm)− id(1/2, cm)] + k

]
. (4)
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From Eqs. (2) and (3), evaluated at p = 1/2, this can be rewritten:

∂

∂ε
F (ε, cm) = 2

[
λ ln[is(1/2, cm)] + λ ln

(
λ+ 1

2λ
is(1/2, cm)

)]
− 2

[
ln[id(1/2, cm)] + k + ln

(
λ+ 1

2
id(1/2, cm)

)
+ k

]
= 4

(
λ ln[is(1/2, cm)]− ln[id(1/2, cm)]

)
+A, (5)

where A = 2[(λ− 1) ln(1/2) + (λ− 1) ln(λ+ 1)− λ ln(λ)]− 4k is a constant.

The sex ratio version of the TWH will hold, in terms of the direction of selection from

an initial even sex ratio, if there is a maternal condition c∗m such that: (i) ∂
∂εF (ε, c∗m) = 0,

(ii) ∂
∂εF (ε, cm) > 0 if cm > c∗m, and (iii) ∂

∂εF (ε, cm) < 0 if cm < c∗m. This in turn would

hold if there is a maternal condition c∗m such that ∂
∂εF (ε, c∗m) = 0, and ∂

∂cm
∂
∂εF (ε, cm) > 0

for all cm.

From Eq. (5),

1

4

∂

∂cm

∂

∂ε
F (ε, cm) =

λ

is(1/2, cm)
− 1

id(1/2, cm)
,

which is positive if, and only if, is(1/2,cm)
λid(1/2,cm) < 1. From Eqs. (2) and (3), evaluated at

p = 1/2, we have that

is(1/2, cm)

λid(1/2, cm)
=
I(cm)− is(1/2, cm)

I(cm)− id(1/2, cm)
,

and from our consideration of the general investment problem above (Eq. (1)), we know

that I(cm) − is(1/2, cm) < I(cm)/2 while I(cm) − id(1/2, cm) > I(cm)/2. Therefore,

I(cm)−is(1/2,cm)
I(cm)−id(1/2,cm) < 1, whence is(1/2,cm)

λid(1/2,cm) < 1, and so 1
4

∂
∂cm

∂
∂εF (ε, cm) > 0 for all cm.

So, conditional on there being a c∗m such that 4
(
λ ln[is(1/2, c

∗
m)]− ln[id(1/2, c

∗
m)]−k

)
+

A = 0, the sex ratio version of the TWH holds in this case.
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