

Figure S1. ECM protein composition of FCF matrix and XF medium. Western blotting was performed on FCF matrix using antibodies against Collagen IV (A), fibronectin (B) and laminin (C). Western blots of XF medium were probed with antibodies against fibronectin (D) and vitronectin (E). Collagen IV, fibronectin and laminin are purified proteins purchased from Sigma.

	2	11 3			4	5
6	¥ 5 7	8 8	3 & 9	1 0	\$ \$ 11	1 2
1 3	6 6 14	þ 🖷 15		» 8 16	3 1 17	4 8 18
8 8 19	1 1 20		2 1	8 A 22	8 ×	♦ Y

Figure S2. G-banding analysis of the hiPSCs generated. G-banding analysis confirmed that C1-OSN hiPSCs had a normal karyotype.

Figure S3. Confirmation of the integration of exogenous genes in C1-OSN hiPSCs. Genomic DNA was extracted and amplified with primers for lentiviral Oct4, Sox2 and Nanog.

Locus	HDF	hiPSCs	H7
Amel	Χ, Υ	Χ, Υ	X, X
D3S1358	15, 18	15, 18	15, 16
D13S317	8, 9	8, 9	11, 12
D7S820	11, 11	11, 11	10, 11
D16S539	9, 9	9, 9	12, 13
Penta E	15, 20	15, 20	11, 13
TPOX	8, 8	8, 8	8, 11
TH01	6, 9	6, 9	6, 6
D2S1338	19, 23	19, 23	20, 24
CSF1PO	9, 10	9, 10	12, 12
D19S433	13.2, 14	13.2, 14	13, 14.2
vWA	14, 17	14, 17	14, 15
D5S818	10, 12	10, 12	11, 13
FGA	22, 25	22, 25	21, 22
D6S1043	13, 14	13, 14	18, 18
D8S1179	15, 15	15, 15	13, 14
D21S11	29, 30	29, 30	30, 31.2
D18S51	14, 19	14, 19	12, 15

Table S1 STR profiles of H7 hESCs, parental HDFs and

C1-OSN	hiPSCs
--------	--------

Trace elements	ng/L
AgNO ₃	1.80E-04
$AICI_3 \cdot 6H_2O$	1.20E-03
(CH ₃ COO) ₂ Ba	2.00E-03
$CdSO_4 \cdot 2.67H_2O$	1.16E-02
$CoCl_2 \cdot 6H_2O$	2.00E-03
$Cr_2(SO_4)_3 \cdot xH_2O$	6.00E-04
GeO ₂	6.00E-04
Na ₂ SeO ₃	1.40E-03
H_2SeO_3	4.00E-03
KBr	1.20E-04
KI	1.80E-04
$MnCl_2 \cdot 4H_2O$	4.00E-04
NaF	4.00E-03
Na ₂ SiO ₃	8.60E-02
NaVO ₃	1.20E-03
(NH ₄) ₆ Mo ₇ O ₂₄ · 4H ₂ O	1.20E-02
$NiSO_4 \cdot 6H_2O$	2.00E-04
RbCl	1.40E-03
SnCl ₂	6.00E-05
ZrOCl ₂ ·xH ₂ O	4.00E-03
Amino acids	mg/L
Glycine	3.00E+01
L-Histidine	1.88E+02
L-Isoleucine	6.80E+02
L-Methionine	1.80E+01
L-Phenylalanine	3.60E+02
L-Proline	8.00E+02
L-Hydroxyproline	2.00E+01
L-Serine	1.60E+02
L-Threonine	4.40E+02
L-Tryptophan	8.80E+01
L-Tyrosine	1.54E+01
L-Valine	4.80E+02
Other components	mg/L
Thiamine	3.00E-01
Reduced glutathione	1.88E+00
L-Ascorbic acid-2-phosphate	
magnesium	6.80E+00
Sodium selenium	1.40E-02
insulin	2.00E+01

 Table S2
 Supplements for XF medium

Holo-transferrin	1.10E+01
L-glutamine	1.46E-01
bFGF	1.00E-01
TGFβ 1	6.00E-04
LiCl	4.24E+01
NaCl sedimentation plasma	
extract	1.66E+04

Table S3Primers used for PCR, RT-PCR and quantitative RT-PCR

Primers		Sequences (5' to 3')	Size (bp)	
For gRT-PCR				
Oct4 (Yang et al.,	F	AACCTGGAGTTTGTGCCAGGGTTT	123	
2008)	R	TGAACTTCACCTTCCCTCCAACCA	125	
Sox2 (Park et al.,	F	AGCTACAGCATGATGCAGGA	126	
2008)	R	GGTCATGGAGTTGTACTGCA		
Nanog	F	CCTATGCCTGTGATTTGTGGG	165	
(self-designed)	R	AGTGGGTTGTTTGCCTTTGG	100	
GAPDH (Zhang et	F	GAAATCCCATCACCATCTTCCAGG	120	
al., 2011)	R	GAGCCCCAGCCTTCTCCATG		
For RT-PCR				
hCG-β (Liu et al.,	F	CCCAGCATCCTATCACCTCC	216	
2006)	R	AGCCCTCCTTCTCCACAGC		
NFH (Liu et al.,	F	TGAACACAGACGCTATGCGCTCAG	400	
2006)	R	CACCTTTATGTGAGTGGACACAGAG	100	
Pax6 (Liu et al.,	F	TCAGGCTTCGCTAATGGG	269	
2006)	R	AAAAGGCCTCACACATCTG	200	
Thy1 (Liu et al.,	F	CATGAGAATACCAGCAGTTCACCCA	272	
2006)	R	CACTTGACCAGTTTGTCTCTGAGCA		
Cardiac-actin (Liu	F	TCTATGAGGGCTACGCTTTG	630	
et al., 2006)	R	CCTGACTGGAAGGTAGATGG		
AFP (Liu et al.,	F	AGAACCTGTCACAAGCTGTG	680	
2006)	R	GACAGCAAGCTGAGGATGTC		
GAPDH (Liu et al.,	F	AATCCCATCACCATCTTCC	382	

2006)	R	CATCACGCCACAGTTTCC	
Oct4 (Liu et al.,	F	ATTCAGCCAAACGACCAT	388
2006)	R	CCCTGAGAAAGGAGACCC	
Sox2 (Liu et al.,	F	CCCCCGGCGGCAATAGCA	488
2006)	R	TCGGCGCCGGGGAGATACA	
Nanog	F	TGCCTCACACGGAGACTG	353
	R	GCTATTCTTCGGCCAGTT	
For provirus integra	tion PCR		
Oct4 (Yu et al., 2007)	F	CAGTGCCCGAAACCCACAC	656
Nanog (Yu et al., 2007)	F	CAGAAGGCCTCAGCACCTAC	732
Sox2 (Yu et al., 2007)	F	TACCTCTTCCTCCCACTCCA	467
SP3 (Yu et al., 2007)	R	AGAGGAACTGCTTCCTTCACGACA	
For bisulfite-sequer	ncing PCR		
mOct4 (Li et al.,	meth F1	TTATTGTTATTATTATTAGGTAAATATTT	336
2011)	meth R1	AAAATCCCCCACACCTCAAAACCTAACC	
	meth F2	GGGGTTAGAGGTTAAGGTTAGTGGGTG	282
	meth R2	AAACCTTAAAAACTTAACCAAATC	
mNanog (Li et al.,	meth F1	TGGTTAGGTTGGTTTTAAATTTTTG	375
2011)	meth F2	TTAATTTATTGGGATTATAGGGGTG	282
	meth R	AACCCACCCTTATAAATTCTCAATTA	

REFERENCES

Li, W., Wang, X., Fan, W., Zhao, P., Chan, Y.C., Chen, S., Zhang, S., Guo, X., Zhang, Y., Li, Y., et al. Modeling abnormal early development with induced pluripotent stem cells from aneuploid syndromes. Hum Mol Genet. 2011 Sep 23.[Epub ahead of print].

Liu, Y., Song, Z., Zhao, Y., Qin, H., Cai, J., Zhang, H., Yu, T., Jiang, S., Wang, G., Ding, M., et al. (2006). A novel chemical-defined medium with bFGF and N2B27 supplements supports undifferentiated growth in human embryonic stem cells. Biochem Biophys Res Commun 346, 131–139.

Park, I.H., Zhao, R., West, J.A., Yabuuchi, A., Huo, H., Ince, T.A., Lerou, P.H., Lensch, M.W., and Daley, G.Q. (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146.

Yang, L., Soonpaa, M.H., Adler, E.D., Roepke, T.K., Kattman, S.J., Kennedy, M., Henckaerts, E., Bonham, K., Abbott, G.W., Linden, R.M., et al. (2008). Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453, 524–528.

Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920.

Zhang, Q., Jiang, J., Han, P., Yuan, Q., Zhang, J., Zhang, X., Xu, Y., Cao, H., Meng, Q., Chen, L., et al. (2011). Direct differentiation of atrial and ventricular myocytes from human embryonic stem cells by alternating retinoid signals. Cell Res 21, 579–587.