### Supplementary Experiment Procedures

#### Protein production and crystallization

The genomic region that codes for New SARS-Like Coronavirus 3C-like Protease was chemical synthesized following the sequence of Human betacoronavirus 2c EMC/2012 (HCoV-EMC). BamH and Xhol restriction sites were attached to the 5' and 3' ends separately by PCR, and the PCR product was inserted into the pET-28b-SUMO vector. The recombinant plasmids were transformed into Escherichia coli strain BL21 (DE3) (TransGen Biotech). kanamycin-resistant colonies were grown in Luria–Bertani medium at 37 °C until the OD<sub>600</sub> reached 0.8. Isopropyl  $\beta$ -D-1-thiogalactopyranoside was added to a final concentration of 0.1 mM, and the cultures were grown for an additional 20 h at 16 °C. Cells were harvested by centrifugation, resuspended, and homogenized in lysis buffer containing 20 mM Tris-HCI (pH 8.0), 150 mM NaCI, 4 mM MgCl<sub>2</sub> using a low-temperature ultra-high pressure cell disrupter (JNBIO, Guangzhou, China). The lysate was centrifuged at 20 000 g for 30 min to remove cell debris. The supernatant was loaded onto a Ni<sup>2+</sup>-NTA agarose column (Qiagen). After washed with 20 mM Tris-HCI (pH 8.0), 150 mM NaCI, 4 mM MgCl<sub>2</sub> and 20 mM imidazole, the SUMO moiety was cleaved by His-tagged SUMO protease(Ulp) at 16°C overnight. The elution was concentrated, and then changed into a buffer containing 20 mM Tris-HCI (pH 8.0), 40 mM NaCI, and 4mM MgCl<sub>2</sub>. The sample was further purified using a Hitrap Q column (GE Healthcare) with a linear gradient from 40mM to 150 mM NaCl with 20 mM Tris-HCl (pH 8.0), and 4mM

MgCl<sub>2</sub>. The target proteins were concentrated to 10 mg/mL in a buffer with 20 mM Tris-HCl (pH 8.0), 100 mM NaCl, and 4mM MgCl<sub>2</sub> for storage.

The N3 inhibitor was synthesized by solid-phase peptide synthesis, and then purified to >98% by HPLC. The purified HCoV-EMC 3CL<sup>pro</sup> and N3 inhibitor were mixed at 1:2 molar ratio and pretreated at 16 °C for 2 h before crystallization. Crystallization of the complex was performed at 16 °C using the hanging-drop vapor-diffusion method. Crystals appeared and reached their final size within 1 day in a well solution containing 200 mM Trimethylamine N-oxide dihydrate, 0.02 M cadmium chloride hydrate, 100 mM Tris-HCl (pH 8.5), and 16% w/v polyethylene glycol monomethyl ether 2000. Crystals were transferred to a 4.0 M sodium formate solution for 30 s prior to flash freezing, and then stored in liquid nitrogen for data collection.

#### X-ray diffraction data collection, processing, and structure determination

The diffraction data of the HCoV-EMC  $3CL^{pro}$ -N3 complex were collected to 2.27 Å resolution at 100 K using an ADSC Q270 CCD detector on the beamline BL17A of Photon Factory (PF, Japan) with a wavelength of 1.0000 Å. Data were processed and scaled using the HKL2000 package [1]. The crystal belonged to the space group  $P2_12_12_1$ , with one HCoV-EMC  $3CL^{pro}$  dimer per asymmetric unit, corresponding to a solvent content of 47% [2]. The complex structure was determined using PHASER [3] with the crystal structure of SARS-CoV  $3CL^{pro}$  (PDB code: 2AMQ) as the initial searching model. The presence of bound N3 molecules was initially revealed by the difference in the density map. Manual model construction and refinement were performed with COOT [4] and PHENIX

[5] following rigid body refinement, energy minimization, and individual B-factor refinement. The quality of the final refined model was verified using the program PROCHECK [6]. The final refinement statistics are summarized in Table S1. Structural figures were drawn using the program PyMOL [7].

#### In vitro inhibitory assay

The activity of HCoV-EMC 3CL<sup>pro</sup> was measured by continuous kinetic assays, using an identical fluorogenic substrate MCA-AVLQSGFR-Lys(Dnp)-Lys-NH2 (GL Biochem, China). The fluorescence intensity was monitored with a Fluoroskan Ascent instrument (ThermoLabsystems, Finland) using wavelengths of 320 and 405 nm for excitation and emission, respectively. The experiments were performed with a buffer consisting of 50 mM Tris-HCI (pH 7.3) with 1 mM EDTA. The reaction was initiated by adding protease (final concentration of 1  $\mu$ M) to a solution containing the substrate. Fluorescence was monitored at 1 point per 2 s. The curves were fitted and IC<sub>50</sub> was calculated in GraphPad Prism software.

## **Supplementary Figures**



**Figure S1. Structural comparison of CoV 3CL**<sup>pro</sup> from different groups. The crystal structures 3CL<sup>pro</sup> from HCoV-EMC, SARS-CoV (group II), IBV (group III) and HCoV-229E (group I) are aligned and shown as blue, red, yellow and green ribbons. Domain I, II and III for a conserved 3CL<sup>pro</sup> architecture are labeled in the left panel.



Figure S2 Anti-3CL<sup>pro</sup> activities of two reported peptidomimetic TG-0204998 (A) and TG-0203770 (B).

# Supplementary Tables

| Parameters                                  | HCoV-EMC 3CL <sup>pro</sup> -N3 complex       |
|---------------------------------------------|-----------------------------------------------|
| Data collection statistics                  |                                               |
| Cell parameters                             |                                               |
| <i>a</i> (Å)                                | 79.6                                          |
| b (Å)                                       | 93.2                                          |
| <i>c</i> (Å)                                | 103.1                                         |
| α, β, γ (°)                                 | 90.0, 90.0, 90.0                              |
| Space group                                 | P2 <sub>1</sub> 2 <sub>1</sub> 2 <sub>1</sub> |
| Wavelength used (Å)                         | 1.0000                                        |
| Resolution (Å)                              | 50.00–2.27 (2.39-2.27) °                      |
| No. of all reflections                      | 240,588 (33,884)                              |
| No. of unique reflections                   | 37,548 (5,134)                                |
| Completeness (%)                            | 100.0 (100.0)                                 |
| Average I/σ(I)                              | 13.5 (6.0)                                    |
| R <sub>merge</sub> <sup>a</sup> (%)         | 10.2 (53.4)                                   |
| Refinement statistics                       |                                               |
| No. of reflections used ( $\sigma(F) > 0$ ) | 33,516                                        |
| R <sub>work</sub> <sup>b</sup> (%)          | 22.1                                          |
| R <sub>free</sub> <sup>b</sup> (%)          | 27.8                                          |
| r.m.s.d. bond distance (Å)                  | 0.008                                         |
| r.m.s.d. bond angle (°)                     | 1.309                                         |
| Average B-value (Å <sup>2</sup> )           | 45.4                                          |
| No. of protein atoms                        | 4,586                                         |
| No. of ligand atoms                         | 98                                            |
| No. of solvent atoms                        | 257                                           |
| Ramachandran plot                           |                                               |
| Res. in allowed regions (%)                 | 95.0                                          |
| Res. in generously allowed regions (%)      | 5.0                                           |
| Res. in disallowed regions (%)              | 0.0                                           |

Table S1. Data collection and refinement statistics.

<sup>a</sup>  $R_{merge} = \Sigma_h \Sigma_l | I_{ih} - \langle I_h \rangle | / \Sigma_h \Sigma_l \langle I_h \rangle$ , where  $\langle I_h \rangle$  is the mean of the observations  $I_{ih}$  of reflection h.

<sup>b</sup>  $R_{work} = \Sigma(||F_p(obs)|-|F_p(calc)||) / \Sigma|F_p(obs)|; R_{free}$  is an R factor for a pre-selected subset (5%) of reflections that was not included in refinement.

<sup>c</sup>Numbers in parentheses are corresponding values for the highest resolution shell.

## **Supplementary References**

1. Otwinowski, Z. and W. Minor, *Processing of X-ray diffraction data collected in oscillation mode*, in *Macromolecular Crystallography, part A*, C.W. Carter Jr. and R.M. Sweet, Editors. 1997, Academic Press. p. 307-326.

2. Matthews, B.W., *Solvent content of protein crystals.* J. Mol. Biol., 1968. **33**: p. 491-497.

3. McCoy, A., et al., *Phaser crystallographic software*. J. Appl. Cryst., 2007. **40**: p. 658-674.

4. Emsley, P. and K. Cowtan, *Coot: model-building tools for molecular graphics.* Acta Crystallogr D Biol Crystallogr, 2004. **60**(Pt 12 Pt 1): p. 2126-32.

5. Adams, P.D., et al., *PHENIX: building new software for automated crystallographic structure determination.* Acta Crystallogr D Biol Crystallogr, 2002. **58**(Pt 11): p. 1948-54.

6. Laskowski, R., et al., *PROCHECK: a program to check the stereochemical quality of protein structures.* J. Appl. Cryst., 1993. **26**: p. 283-291.

7. DeLano, W., *The PyMOL Molecular Graphics System* 2002.