SUPPLEMENTARY INFORMATION

The evolution of anthropoid molar proportions

Katherine E Carter $^{1^{\ast \dagger }}$ and Steven Worthington $^{2\dagger }$

*Correspondence: carter@fas.harvard.edu, sworthington@iq.harvard.edu ¹Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, 02138 Cambridge, USA Full list of author information is available at the end of the article [†]Equal contributor

Supplementary Tables

Table S1 Anthropoid (n = 100) lower molar proportions, body mass, and diet summary data

Genus	Species	n	M_1 area	$M_2 {\rm area}$	$M_3\ {\rm area}$	M_2/M_1	M_3/M_1	${}^{\mathrm{BM}^*}$	PDC^*
Alouatta	belzebul	13	35.41	41.24	41.12	1.17	1.16	6.39	fruit
Alouatta	caraya	20	32.62	38.91	41.70	1.19	1.28	5.38	leaves
Alouatta	guariba	18	34.04	39.87	42.60	1.17	1.25	5.54	leaves
Alouatta	palliata	18	39.23	45.86	43.78	1.17	1.12	6.25	leaves
Alouatta	seniculus	34	39.36	45.11	44.69	1.15	1.14	5.92	leaves
Ateles	geoffroyi	25	25.14	25.10	20.76	1.00	0.83	7.54	fruit
Ateles	paniscus	22	25.17	24.47	19.94	0.97	0.79	8.78	fruit
Brachyteles	arachnoides	8	42.40	42.40	34.08	1.00	0.81	8.84	leaves
Lagothrix	lagotricha	19	27.37	30.81	25.57	1.13	0.93	7.15	fruit
Callithrix	jacchus	13	4.95	3.35	0.00	0.67	0.00	0.37	omnivore
Callithrix	pygmaea	33	2.37	1.81	0.00	0.77	0.00	0.12	insects
Leontopithecus	rosalia	8	8.29	6.45	0.00	0.78	0.00	0.64	insects
Saguinus	fuscicollis	33	4.69	3.41	0.00	0.73	0.00	0.35	fruit
Saguinus	midas	55	4.74	3.30	0.00	0.70	0.00	0.55	insects
Saguinus	oedipus	36	5.77	3.79	0.00	0.66	0.00	0.41	insects
Aotus	trivirgatus	46	8.75	8.75	6.95	1.00	0.80	0.77	fruit
Cebus	apella	34	21.37	18.51	11.65	0.87	0.55	3.08	fruit
Cebus	capucinus	47	20.60	17.49	13.14	0.85	0.64	3.11	fruit
Saimiri	oerstedii	29	6.45	5.22	3.31	0.81	0.51	0.79	fruit
Saimiri	sciureus	39	6.76	5.53	3.53	0.82	0.52	0.82	animals
Cacajao	calvus	14	18.58	17.91	13.46	0.96	0.72	3.17	fruit
Callicebus	moloch	17	10.33	10.45	8.29	1.02	0.81	0.99	fruit
Callicebus	torquatus	20	11.00	10.73	7.89	0.98	0.72	1.25	fruit
Chiropotes	satanas	28	12.92	11.71	8.93	0.91	0.69	2.74	fruit
Pithecia	pithecia	23	11.59	11.94	10.99	1.03	0.95	1.76	fruit
Allenopithecus	nigroviridis	14	24.61	33.43	27.45	1.36	1.11	4.68	fruit
Allochrocebus	lhoesti	25	26.78	34.12	28.61	1.28	1.07	4.71	leaves
Allochrocebus	preussi	14	23.11	30.60	25.59	1.32	1.11	4.50	fruit
Cercopithecus	ascanius	50	18.51	24.94	20.54	1.35	1.11	3.31	fruit
Cercopithecus	cephus	40	20.17	26.37	20.99	1.31	1.04	3.58	fruit
Cercopithecus	diana	34	23.98	30.77	25.40	1.29	1.06	4.55	fruit
Cercopithecus	erythrogaster	6	20.55	27.57	21.23	1.34	1.03	3.25	fruit
Cercopithecus	erythrotis	9	19.54	25.43	20.71	1.30	1.06	3.25	fruit
Cercopithecus	mitis	37	25.20	33.61	27.71	1.33	1.10	4.89	fruit
Cercopithecus	mona	27	20.68	28.56	23.81	1.38	1.15	3.80	fruit
Cercopithecus	neglectus	37	24.15	33.12	28.68	1.38	1.19	5.70	fruit
Cercopithecus	nictitans	45	22.97	31.78	26.20	1.39	1.14	5.46	fruit
Cercopithecus	petaurista	17	20.87	27.97	22.63	1.34	1.09	4.13	leaves
Cercopithecus	pogonias	50	20.32	28.46	22.41	1.40	1.11	3.58	fruit
Cercopithecus	wolfi	36	18.57	26.19	21.93	1.41	1.18	3.39	fruit
Chlorocebus	aethiops	114	25.47	34.81	29.46	1.37	1.16	4.14	fruit
Erythrocebus	patas	29	31.92	45.09	38.07	1.42	1.20	3.87	omnivore
Miopithecus	talapoin	42	10.88	13.97	11.20	1.28	1.03	2.25	fruit
Colobus	guereza	60	38.07	48.66	56.86	1.28	1.49	8.26	leaves
Colobus	polykomos	84	35.67	43.82	49.75	1.23	1.40	9.10	leaves
Colobus	satanas	44	35.87	41.34	46.40	1.15	1.30	4.23	seeds
Nasalis	larvatus	15	36.90	48.76	58.86	1.32	1.60	15.11	leaves
Piliocolobus	badius	40	34.64	41.67	48.66	1.20	1.41	10.28	leaves
Piliocolobus	kirkii	11	26.22	31.40	36.80	1.20	1.40	5.63	leaves
Presbytis	comata	15	26.30	30.10	28.92	1.15	1.10	6.70	leaves
Presbytis	melalophos	30	24.19	26.99	23.78	1.12	0.98	6.53	fruit
Presbytis	potenziani	20	33.75	40.30	39.11	1.19	1.16	6.36	leaves
Presbytis	rubicunda	33	24.00	24.57	24.91	1.02	1.04	6.18	leaves
Presbytis	thomasi	7	27.11	30.14	31.37	1.11	1.16	6.73	leaves
Procolobus	verus	45	20.25	24.41	28.76	1.21	1.42	4.45	leaves
Pygathrix	nemaeus	21	32.71	40.99	48.55	1.26	1.49	9.72	leaves
Rhinopithecus	roxellana	5	44.41	62.02	72.92	1.40	1.65	14.75	leaves

Continued on next page . . .

Genus	Species	n	M_1 area	$M_2{\rm area}$	$M_3{\rm area}$	M_2/M_1	M_3/M_1	${}^{\mathrm{BM}^*}$	PDC^*
Semnopithecus	entellus	100	42.05	54.40	62.26	1.29	1.47	10.21	leaves
Simias	concolor	15	29.99	39.33	46.98	1.31	1.57	7.97	leaves
Trachypithecus	cristatus	39	33.18	43.42	45.40	1.31	1.37	6.18	leaves
Trachypithecus	francoisi	8	30.72	36.24	40.63	1.18	1.32	7.88	leaves
Trachypithecus	obscurus	44	26.80	34.20	34.91	1.28	1.30	7.41	leaves
Trachypithecus	pileatus	13	34.35	42.09	43.61	1.23	1.27	11.34	leaves
Trachypithecus	vetulus	44	28.74	35.68	40.32	1.24	1.40	7.04	leaves
Cercocebus	agilis	21	41.03	56.50	51.47	1.38	1.26	7.38	omnivore
Cercocebus	torquatus	37	45.90	60.77	62.31	1.33	1.36	8.78	fruit
Lophocebus	albigena	69	32.88	44.70	40.85	1.36	1.25	6.57	fruit
Macaca	fascicularis	28	27.71	38.66	41.77	1.40	1.51	4.46	fruit
Macaca	fuscata	39	42.62	62.96	74.48	1.48	1.75	11.83	fruit
Macaca	hecki	24	38.92	52.71	55.11	1.36	1.42	9.00	fruit
Macaca	maura	7	37.37	55.38	66.30	1.49	1.78	7.88	fruit
Macaca	mulatta	61	34.04	49.00	58.21	1.44	1.71	6.61	fruit
Macaca	nemestrina	43	40.97	57.67	72.04	1.41	1.76	8.85	fruit
Macaca	nigra	40	36.34	52.78	60.63	1.46	1.67	7.68	fruit
Macaca	ochreata	9	35.78	48.82	57.88	1.36	1.62	3.95	fruit
Macaca	silenus	4	30.69	46.14	52.58	1.50	1.70	6.42	fruit
Macaca	sinica	39	28.18	38.71	41.16	1.37	1.46	4.44	fruit
Macaca	sylvanus	4	40.10	55.69	71.54	1.39	1.79	12.09	omnivore
Macaca	tonkeana	24	45.38	60.69	61.94	1.34	1.37	11.95	fruit
Mandrillus	leucophaeus	35	71.51	112.83	132.25	1.58	1.85	15.00	omnivore
Mandrillus	sphinx	10	66.50	108.27	124.72	1.65	1.89	23.60	omnivore
Papio	anubis	10	79.17	122.04	143.78	1.54	1.82	19.20	omnivore
Papio	cynocephalus	35	59.44	87.89	108.26	1.48	1.82	17.05	fruit
Papio	hamadryas	25	68.31	112.18	132.51	1.65	1.95	14.15	omnivore
Papio	ursinus	6	82.72	126.46	157.02	1.53	1.91	22.30	fruit
Theropithecus	gelada	25	66.05	103.18	132.48	1.56	2.01	15.35	leaves
Gorilla	gorilla gorilla	35	191.80	235.33	217.27	1.23	1.13	120.95	fruit
Ното	sapiens	20	107.16	108.92	109.52	1.02	1.02	67.10	omnivore
Pan	paniscus	25	79.32	85.83	70.11	1.08	0.89	39.10	fruit
Pan	trog. schwein.	26	101.22	114.49	101.23	1.13	1.00	38.20	fruit
Pan	trog. trog.	38	99.49	109.96	99.04	1.11	1.00	52.75	fruit
Pongo	abelii	7	131.40	154.23	143.31	1.17	1.09	56.75	fruit
Pongo	pygmaeus	38	140.16	157.27	144.31	1.12	1.03	57.15	fruit
Hoolock	hoolock	28	35.22	45.71	42.35	1.30	1.21	6.88	fruit
Hylobates	agilis	16	27.58	30.54	29.52	1.11	1.07	5.85	fruit
Hylobates	klossii	16	24.66	27.17	21.34	1.10	0.87	5.79	fruit
Hylobates	lar	32	28.63	33.76	32.61	1.18	1.14	5.64	fruit
Hylobates	pileatus	4	29.28	32.03	33.39	1.10	1.15	5.47	fruit
Nomascus	concolor	19	30.38	36.43	33.19	1.20	1.10	7.71	fruit
Symphalangus	syndactylus	26	44.42	55.00	51.40	1.24	1.16	11.24	fruit

 $^*{\rm BM}$ = body mass (kg), sources [1–7]. ${\rm PDC}$ = primary dietary category, sources: [8–35]

	Slope (Interspecific)					
Taxon	$\mathbb{P} \in [1.95, 2.05]$	$\mathbb{P} \in [1.90, 2.10]$	$\mathbb{P} \in [1.85, 2.15]$			
Anthropoidea	0.047	0.102	0.184			
Platyrrhini	0.132	0.264	0.395			
Platyrrhini [*]	0.082	0.168	0.259			
Catarrhini	0.024	0.056	0.098			
Hominoidea	0.001	0.003	0.005			
Cercopithecoidea	0.075	0.162	0.253			
Colobinae	0.015	0.034	0.054			
Cercopithecinae	0.167	0.329	0.480			
Cercopithecini	<0.001	<0.001	<0.001			
Papionini	0.123	0.243	0.353			
		Intercept				
Taxon	$\mathbb{P} \in [-0.95, -1.05]$	$\mathbb{P} \in [-0.90, -1.10]$	$\mathbb{P} \in [-0.85, -1.15]$			
Taxon Anthropoidea	$\mathbb{P} \in [-0.95, -1.05]$ 0.190	Intercept $\mathbb{P} \in [-0.90, -1.10]$ 0.366	$\mathbb{P} \in [-0.85, -1.15]$ 0.519			
Taxon Anthropoidea Platyrrhini	$\mathbb{P} \in [-0.95, -1.05] \\ 0.190 \\ 0.076$	$\begin{array}{c} {\color{black} {\rm Intercept}} \\ \mathbb{P} \in [-0.90, -1.10] \\ \\ 0.366 \\ 0.156 \end{array}$	$\frac{\mathbb{P} \in [-0.85, -1.15]}{0.519}$ 0.233			
Taxon Anthropoidea Platyrrhini Platyrrhini [*]	$\mathbb{P} \in [-0.95, -1.05]$ 0.190 0.076 0.186	$\begin{tabular}{ c c c c } \hline $\mathbb{P} \in [-0.90, -1.10]$ \\ \hline 0.366 \\ 0.156 \\ 0.352 \\ \hline \end{tabular}$	$\mathbb{P} \in [-0.85, -1.15]$ 0.519 0.233 0.502			
Taxon Anthropoidea Platyrrhini Platyrrhini* Catarrhini	$\mathbb{P} \in [-0.95, -1.05]$ 0.190 0.076 0.186 0.109	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} \mathbb{P} \in [-0.85, -1.15] \\ 0.519 \\ 0.233 \\ 0.502 \\ 0.330 \end{array}$			
Taxon Anthropoidea Platyrrhini Platyrrhini [*] Catarrhini Hominoidea	$\mathbb{P} \in [-0.95, -1.05]$ 0.190 0.076 0.186 0.109 0.006	$\begin{tabular}{ c c c c } \hline $\mathbb{P} \in [-0.90, -1.10]$ \\ \hline 0.366 \\ 0.156 \\ 0.352 \\ 0.223 \\ 0.011 \\ \hline \end{tabular}$	$\begin{array}{c} \mathbb{P} \in [-0.85, -1.15] \\ 0.519 \\ 0.233 \\ 0.502 \\ 0.330 \\ 0.018 \end{array}$			
Taxon Anthropoidea Platyrrhini Platyrrhini* Catarrhini Hominoidea Cercopithecoidea	$\begin{array}{c} \mathbb{P} \in [-0.95, -1.05] \\ 0.190 \\ 0.076 \\ 0.186 \\ 0.109 \\ 0.006 \\ 0.139 \end{array}$	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} \mathbb{P} \in [-0.85, -1.15] \\ 0.519 \\ 0.233 \\ 0.502 \\ 0.330 \\ 0.018 \\ 0.408 \end{array}$			
Taxon Anthropoidea Platyrrhini Platyrrhini* Catarrhini Hominoidea Cercopithecoidea Colobinae	$\begin{array}{c} \mathbb{P} \in [-0.95, -1.05] \\ 0.190 \\ 0.076 \\ 0.186 \\ 0.109 \\ 0.006 \\ 0.139 \\ 0.022 \end{array}$	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} \mathbb{P} \in [-0.85, -1.15] \\ 0.519 \\ 0.233 \\ 0.502 \\ 0.330 \\ 0.018 \\ 0.408 \\ 0.059 \end{array}$			
Taxon Anthropoidea Platyrrhini Platyrrhini* Catarrhini Hominoidea Cercopithecoidea Colobinae Cercopithecinae	$\mathbb{P} \in [-0.95, -1.05]$ 0.190 0.076 0.186 0.109 0.006 0.139 0.022 0.042	$\begin{tabular}{ c c c c } \hline \mathbb{P} \in [-0.90, -1.10] \\ \hline 0.366 \\ 0.156 \\ 0.352 \\ 0.223 \\ 0.011 \\ 0.272 \\ 0.040 \\ 0.089 \end{tabular}$	$\begin{array}{c} \mathbb{P} \in [-0.85, -1.15] \\ 0.519 \\ 0.233 \\ 0.502 \\ 0.330 \\ 0.018 \\ 0.408 \\ 0.059 \\ 0.135 \end{array}$			
Taxon Anthropoidea Platyrrhini Platyrrhini* Catarrhini Hominoidea Cercopithecoidea Colobinae Cercopithecinae Cercopithecinae	$\begin{array}{c} \mathbb{P} \in [-0.95, -1.05] \\ 0.190 \\ 0.076 \\ 0.186 \\ 0.109 \\ 0.006 \\ 0.139 \\ 0.022 \\ 0.042 \\ 0.003 \end{array}$	$\begin{tabular}{ c c c c } \hline \mathbb{P} \in [-0.90, -1.10] \\ \hline 0.366 \\ 0.156 \\ 0.352 \\ 0.223 \\ 0.011 \\ 0.272 \\ 0.040 \\ 0.089 \\ 0.006 \end{tabular}$	$\begin{array}{c} \mathbb{P} \in [-0.85, -1.15] \\ 0.519 \\ 0.233 \\ 0.502 \\ 0.330 \\ 0.018 \\ 0.408 \\ 0.059 \\ 0.135 \\ 0.010 \end{array}$			

Table S2 Molar area proportion ${\rm PGLMM}$ posterior probabilities.

 ${\mathbb P}$ posterior probability of parameter estimate being inside the ROPE

non-callitrichin platyrrhines

		Slope (Interspecific)	
Taxon	$\mathbb{P} \in [0.328, 0.338]$	$\mathbb{P} \in [0.323, 0.343]$	$\mathbb{P} \in [0.318, 0.348]$
Anthropoidea	< 0.001	<0.001	0.015
Platyrrhini	0.009	0.080	0.465
Platyrrhini [*]	0.009	0.061	0.270
Catarrhini	< 0.001	0.001	0.044
Hominoidea	0.003	0.010	0.030
Cercopithecoidea	0.151	0.602	0.942
Colobinae	0.193	0.414	0.645
Cercopithecinae	0.245	0.678	0.941
Cercopithecini	< 0.001	< 0.001	< 0.001
Papionini	0.259	0.554	0.811
		Intercept	
Taxon	$\mathbb{P} \in [-0.05, 0.05]$	$\mathbb{P} \in [-0.10, 0.10]$	$\mathbb{P} \in [-0.15, 0.15]$
Anthropoidea	0.028	0.054	0.080
Platyrrhini	0.062	0.125	0.198
Platyrrhini [*]	0.111	0.217	0.321
Catarrhini	0.024	0.047	0.071
Hominoidea	0.011	0.023	0.034
Cercopithecoidea	0.016	0.030	0.046
Colobinae	0.037	0.071	0.103
Cercopithecinae	< 0.001	0.001	0.002
Cercopithecini	0.068	0.141	0.211
Papionini	0.010	0.018	0.028

Table S3 Relative M_2 area PGLMM posterior probabilities.

 $^{\mathbb{P}}$ posterior probability of parameter estimate being inside the $_{\rm ROPE}$ * non-callitrichin platyrrhines

	pr_m (Interspecific)				
Taxon	$\mathbb{P} \in [0.9,1]$	$\mathbb{P} \in [0.8,1]$			
Anthropoidea	< 0.001	0.009			
Platyrrhini	< 0.001	0.004			
Platyrrhini [*]	0.003	0.014			
Catarrhini	0.001	0.049			
Hominoidea	0.141	0.294			
Cercopithecoidea	0.233	0.802			
Colobinae	0.274	0.607			
Cercopithecinae	0.190	0.667			
Cercopithecini	0.415	0.796			
Papionini	0.262	0.652			

Table S4	Proportion	mediated (pr_m)	\mathbf{PGLMM}
	posterior	probabilities.	

^P posterior probability of parameter estimate being inside the ROPE
 * non-callitrichin platyrrhines

Table S5 Modern human (n = 66) lower molar proportions.^{*}

Population	M_{2}/M_{1}	M_3/M_1	Population	M_2/M_1	M_{3}/M_{1}
Australia	0.88	0.85	USA (Ohio)	0.92	0.95
Australia	1.05	1.10	USA (Ohio)	0.90	0.81
Australia	1.17	1.04	USA (Ohio)	0.94	0.90
Australia	0.94	0.79	USA (Ohio)	0.87	0.89
Australia	1.01	0.77	USA (Ohio)	0.83	0.94
Egypt	1.00	0.00	USA (Ohio)	0.93	0.88
Egypt	0.86	0.00	USA (Ohio)	0.91	0.82
Egypt	1.01	0.00	USA (Ohio)	0.84	0.97
Egypt	0.89	0.95	USA (Ohio)	0.79	0.73
Egypt	1.04	0.92	USA (Ohio)	0.85	0.71
Egypt	1.03	0.88	USA (Ohio)	0.87	0.71
Egypt	1.00	0.97	USA (Ohio)	1.02	0.78
Egypt	0.90	0.88	USA (Ohio)	0.85	0.78
Egypt	0.87	1.00	Yugoslavia	0.95	0.93
Egypt	0.89	0.88	Yugoslavia	1.07	0.95
Egypt	0.94	0.93	Yugoslavia	0.96	0.98
Egypt	0.95	0.00	Yugoslavia	0.84	0.91
Egypt	0.94	0.91	Yugoslavia	1.00	1.02
Egypt	0.92	0.91	Yugoslavia	0.93	0.79
Egypt	0.90	0.80	Yugoslavia	0.96	0.87
Egypt	1.00	0.86	Yugoslavia	0.91	0.84
Egypt	0.94	0.87	Yugoslavia	0.93	0.80
Egypt	0.95	0.97	Yugoslavia	0.86	0.89
Egypt	1.00	0.88	Yugoslavia	0.89	0.00
Egypt	1.05	0.91	Yugoslavia	0.95	0.81
Iceland	0.96	0.98	Yugoslavia	0.96	0.92
USA (Ohio)	0.93	0.77	Yugoslavia	0.81	0.00
USA (Ohio)	0.86	0.95	Yugoslavia	0.96	0.90
USA (Ohio)	0.89	0.82	Yugoslavia	0.81	0.88
USA (Ohio)	0.99	0.81	Yugoslavia	0.98	0.91
USA (Ohio)	0.85	0.92	Yugoslavia	1.08	0.90
USA (Ohio)	0.81	0.73	Yugoslavia	0.94	0.82
USA (Ohio)	0.93	0.82	Yugoslavia	1.02	0.89

 * Data collected on specimens from the Museum of Comparative Zoology, Harvard.

Table S6 Strepsirrhine (n=1) lower molar proportions summary data

Genus	Species	n	M_1 area	M_2 area	M_3 area	M_2/M_1	M_{3}/M_{1}
Varecia	variegata	4	33.65	30.09	16.82	0.89	0.50
source	e: [36].						

Table S7 Primate molar crown formation time data

Genus	Species	M_1Et^*	M_2Et	M_3Et	Overlap*
Macaca	fascicularis	1.38	3.38	5.50	-0.11
Macaca	mulatta	1.35	3.15	5.60	-0.10
Papio	cynocephalus	1.64	3.79	6.21	0.37
Gorilla	gorilla	3.50	6.58	10.38	0.29
Homo	sapiens	6.23	11.75	20.10	-0.00
Pan	troglodytes	3.26	6.46	10.50	0.17
Pongo	pygmaeus	3.50	5.00	10.00	0.22
Hylobates	lar	1.90	2.88	6.70	0.12
Varecia	variegata	0.48	0.69	1.13	0.38

 * Et = eruption time, Overlap = temporal overlap, sources: [37–42].

Supplementary Figures

Figure S1 Molar area correction coefficients method. Illustration of the method for deriving molar area correction coefficients. Teeth of known area are inscribed in a rectangle ra (outer dashed line) and an ellipse ea (inner dashed line), then the coefficient x best fitting the data is derived using the formula: ca = ra(x) + ea(1 - x).

Figure S3 Anthropoid lower molar proportions of individual specimens (n=2,895). Lower molar proportions for 2,895 specimens of 100 anthropoid species. Points are individual specimens. Convex hulls denote the range of species values for each higher ranked taxon. Dashed line indicates DIC model's predicted relationship between molar proportion ratios: $M_3/M_1 = 2(M_2/M_1) - 1$. White regions are locations in molar proportion morphospace consistent with the DIC model: a high a/i region where $M_1 < M_2 < M_3$ and a low a/i region where $M_1 > M_2 > M_3$.

Figure S4 Posterior density of molar area proportion slope (interspecific). Black solid line depicts posterior density of molar area proportion interspecific slope. Red solid lines depict 95% HDI. Black dashed line depicts DIC model expectation. Colored polygons within posterior density depict different ROPE sizes: red = $\mathbb{P} \in [1.95, 2.05]$, blue = $\mathbb{P} \in [1.90, 2.10]$, orange = $\mathbb{P} \in [1.85, 2.15]$. *non-callitrichin platyrrhines.

Figure S5 Posterior density of molar area proportion intercept. Black solid line depicts posterior density of molar area proportion intercept. Red solid lines depict 95% HDI. Black dashed line depicts DIC model expectation. Colored polygons within posterior density depict different ROPE sizes: red = $\mathbb{P} \in [-0.95, -1.05]$, blue = $\mathbb{P} \in [-0.90, -1.10]$, orange = $\mathbb{P} \in [-0.85, -1.15]$. *non-callitrichin platyrrhines.

Figure S7 Posterior density of relative M_2 area intercept. Black solid line depicts posterior density of relative M_2 area intercept. Red solid lines depict 95% HDI. Black dashed line depicts DIC model expectation. Colored polygons within posterior density depict different ROPE sizes: red = $\mathbb{P} \in [-0.05, 0.05]$, blue = $\mathbb{P} \in [-0.10, 0.10]$, orange = $\mathbb{P} \in [-0.15, 0.15]$. *non-callitrichin platyrrhines.

dashed line depicts DIC model expectation. Colored polygons within posterior density depict different ROPE sizes: red = $\mathbb{P} \in [0.9, 1]$, blue = $\mathbb{P} \in [0.8, 1]$. *non-callitrichin platyrrhines.

Figure S9 Ln body mass as a function of fit/deviation from the DIC molar proportion model line. Species mean In body mass as a function of absolute perpendicular fit/deviation from the DIC model line. (a) Pooled regression for all anthropoid (n = 100) species. (b) Separate regression slopes and intercepts for callitrichins (red squares) and other anthropoids (green circles). (c) Separate regression slopes and intercepts for callitrichins (red squares), cercopithecins (blue triangles), and other anthropoids (green circles).

Figure S10 Anthropoid lower molar proportions intra-specific variation. (a) mean differences and 95% HDIs of the coefficient of variation for small sample sizes (\hat{cv}) for each lower molar type comparison. (b-d) Lower molar proportions for 100 anthropoid primates. Points are species mean values. Radii of points are scaled by \hat{cv} for M_{1-3} . Convex hulls denote the range of species values for each higher ranked taxon. Dashed line indicates DIC model's predicted relationship between molar proportion ratios: $M_3/M_1 = 2(M_2/M_1) - 1$. White regions are locations in molar proportion morphospace consistent with the DIC model: a high a/i region where $M_1 < M_2 < M_3$ and a low a/i region where $M_1 > M_2 > M_3$.

Figure S12 Molecular phylogeny of anthropoid primates (n = 100). Molecular-based consensus phylogeny for 100 anthropoid primates. Topology and branch lengths were extracted from version 3 of the 10K Trees database of primate phylogenetic relationships [43].

Figure S13 Anthropoid lower molar proportions intra-specific error. Lower molar proportions for 100 anthropoid primates. Points are species mean values. Lines are PGLMM estimates of slope and intercept for each species. Dashed line indicates DIC model's predicted relationship between molar proportion ratios: $M_3/M_1 = 2(M_2/M_1) - 1$. White regions are locations in molar proportion morphospace consistent with the DIC model: a high a/i region where $M_1 < M_2 < M_3$ and a low a/i region where $M_1 > M_2 > M_3$.

Author details

¹Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, 02138 Cambridge, USA.
²Institute for Quantitative Social Science, Harvard University, 1737 Cambridge Street, 02138 Cambridge, USA.

References

- Colyn, M.: Données pondérales sur les primates Cercopithecidae d'Afrique Centrale (Bassin du Zaïre/Congo). Mammamlia 58, 483–487 (1994)
- Delson, E., Terranova, C.J., Jungers, W.L., Sargis, E.J., Jablonski, N.G., Dechow, P.C.: Body mass in Cercopithecidae (Primates, Mammalia): estimation and scaling in extinct and extant taxa. Am Mus Nat Hist, Anthropol Papers 83, 1–159 (2000)
- Geissmann, T.: Evolution of Communication in Gibbons (Hylobatidae). Ph.D. Dissertation. PhD thesis, University of Zürich, Switzerland (1993)
- Gordon, A.D.: Scaling of size and dimorphism in Primates II: macroevolution. Int J Primatol 27(1), 63–105 (2006)
- Holloway, R.L.: Within-species brain-body weight variability: a reexamination of the Danish data and other primate species). Am J Phys Anthropol 53, 109–121 (1980)
- 6. Peres, C.A.: Which are the largest New World monkeys? J Hum Evol 26, 245-249 (1994)
- 7. Smith, R.J., Jungers, W.L.: Body mass in comparative primatology. J Hum Evol 32, 523-559 (1997)
- 8. Bartlett, T.Q.: The hylobatidae: small apes of asia. In: Campbell, C.J., Fuentes, A., MacKinnin, K.C., Panger,
- M., Bearder, S.K. (eds.) Primates in Perspective, pp. 274–289. Oxford University Press, New York (2007)
 Beeson, M., Tame, S., Keeming, E., Lea, S.E.G.: Food habits of guenons (*Cercopithecus* spp.) in Afro-montane forest. Afr J Ecol 34, 202–210 (1996)
- Bowler, M., Bodmer, R.E.: Diet and food choice in Peruvian red uakaris (*Cacajao calvus ucayalii*): selective or opportunistic seed predation? Int J Primatol 32, 1109–1120 (2011)
- Buzzard, P.J.: Ecological partitioning of *Cercopithecus campbelli, C. petaurista* and *C. diana* in the Taï Forest. Int J Primatol 27, 529–558 (2006)
- Chapman, C.A., Chapman, L.J., Cords, M., Gathua, J.M., Gautier-Hion, A., Lambert, J.E., Rode, K., Tutin, C.E.G., White, L.J.T.: Variation in the diets of emphCercopithecus species: differences within forests, among forests, and across species. In: Glenn, M.E., Cords, M. (eds.) The Guenons: Diversity and Adaptation in African Monkeys, pp. 325–350. Kluwer Academic/Plenum Publishers, New York (2002)
- Chiarello, A.G.: Diet of the brown howler monkey Alouatta fusca in a semi-deciduous forest fragment of Southeastern Brazil. Primates 35(1), 25–34 (1994)
- 14. Chivers, D.: The Siamang in Malaya: A Field Study of a Primate in Tropical Rain Forest. Karger, Basel (1974)
- de Castro, C.S.S., Araujo: Diet and feeding behavior of marmoset, *Callithrix Jacchus*. Rev Brasil Ecol 7, 14–19 (1996)
- Enstam, K.L., Isbell, L.A.: The guenons (genus *Cercopithecus*) and their allies. In: Campbell, C.J., Fuentes, A., MacKinnin, K.C., Panger, M., Bearder, S.K. (eds.) Primates in Perspective, pp. 252–274. Oxford University Press, New York (2007)
- Kane, E.E., Bitty, E.A., McGraw, W.S.: Influence of association with red colobus (*Procolobus badius*) on the feeding ecology of Diana monkeys (*Cercopithecus diana*) in the Ivory Coast's Taï Forest. Am J Phys Anthropol S54, 177–177 (2012)
- Kaplin, B.: Ranging behaviors of two species of guenons (*Cercopithecus lhoesti* and *C. mitis doggetti*) in the Nyungwe forest reserve, Rwanda. International Journal of Primatology 22(4), 521–548 (2001)
- Koenig, A., Borries, C.: Socioecology of Hanuman langurs: the story of their success. Evol Anthropol 10, 122–137 (2001)
- Pavelka, M.S.M., Knopff, K.H.: Diet and activity in black howler monkeys (*Alouatta pigra*) in southern Belize: does degree of frugivory influence activity level? Primates 45, 105–111 (2004)
- 21. Peres, C.A.: Diet and feeding ecology of gray woolly monkeys (*Lagothrix lagothricha cana*) in Central Amazonia: comparisons with other atelines. Int J Primatol **15**(3), 333–372 (1994)
- Pinto, L.P., Setz, E.Z.: Diet of Alouatta belzebul discolor in an Amazonian rain forest of Northern Mato Grosso State, Brazil. Int J Primatol 25(6), 1197–1211 (2004)
- Porter, L.M.: Dietary differences among sympatric callitrichines in northern Bolivia: Callimico goeldii, Saguinus fuscicollis and Saguinus labiatus. Int J Primatol 22(6), 961–992 (2001)
- Prates, H.M., Bicca-Marques, J.C.: Age-sex analysis of activity budget, diet, and positional behavior in Alouatta caraya in an orchard forest. Int J Primatol 29, 703–715 (2008)
- Preece, G.: Factors influencing variation in the population densities of *Colobus guereza*, within selectively logged forest at the Budongo Forest Reserve. In: Newton Fisher, N.E., Norman, H., Paterson, J.D., Reynolds, V. (eds.) Primates of Western Uganda, pp. 23–43. Springer, New York (2006)
- 26. Priston, N.E.C.: Crop-raiding by *Macaca ochreata brunnescens* in sulawesi: Reality, perceptions and outcomes for conservation. PhD thesis, University of Cambridge, Cambridge (2005)
- Quyet, L.K., Duc, N.A., Tai, V.A., Wright, B.W., Covert, H.H.: Diet of the Tonkin snub-nosed monkey (*Rhinopithecus avuncular*) in the Khau Ca area, Ha Giang Province, Northeastern Vietnam. Vietnamese J Primatol 1, 75–83 (2007)
- 28. Raemaekers, J.J.: Ecology of sympatric gibbons. Folia Primatol 31, 227-245 (1979)
- Robinson, J.G., Redford, K.H.: Body size, diet, and population density of Neotropical forest mammals. Am Nat 128, 665–680 (1986)
- Rosenberger, A.L.: Evolution of feeding niches in New World monkeys. Am J Phys Anthropol 88, 525–562 (1992)
- Sarmiento, E.E., Kingdon, J.: Cercopithecus denti Dent's Monkey. In: Butynski, T.M., Kingdon, J., Kalina, J. (eds.) Mammals of Africa. Volume II: Primates, pp. 330–333. Bloomsbury Publishing, London (2013)
- Silver, S.C., Ostro, L.E.T., Yeager, C.P., Horwich, R.: Feeding ecology of the black howler monkey (*Alouatta pigra*) in Northern Belize. Am J Primatol 45, 263–279 (1998)

- Tsuji, Y., Fujita, S., Sugiura, H., Saito, C., Takatsuki, S.: Long-term variation in fruiting and the food habits of wild Japanese macaques on Kinkazan Island, northern Japan. Am J Primatol 68, 1068–1080 (2006)
- Zeeve, S.R.: Swamp monkeys of the Lomako Forest, Central Zaire. Primate Conservation 5, 32–33 (1985)
 Zhou, Q., Wei, F., Li, M., Huang, C., Luo, B.: Diet and food choice of (*Trachypithecus francoisi*) in the
- Nonggang Nature Reserve, China. Int J Primatol **27**(5), 1441–1460 (2006) 36. Swindler, D.R.: Primate Dentition: An Introduction to the Teeth of Non-human Primates. Cambridge
- University Press, Cambridge (2002)
- Beynon, A.D., Dean, M.C., Reid, D.J.: Histological study on the chronology of the developing dentition in Gorilla and Orangutan. Am J Phys Anthropol 86, 189–203 (1991)
- Reid, D.J., Beynon, A.D., Ramirez Rozzi, F.V.: Histological reconstruction of dental development in four individuals from a medieval site in Picardie, France. J Hum Evol 35, 463–477 (1998)
- Schwartz, G.T., Mahoney, P., Godfrey, L.R., Cuozzo, F.P., Jungers, W.L., Randria, G.F.N.: Dental development in *Megaladapis edwardsi* (Primates, Lemuriformes): implications for understanding life history variation in subfossil lemurs. J Hum Evol 49, 702–721 (2005)
- Schwartz, G.T., Reid, D.J., Dean, M.C., Zihlman, A.L.: A faithful record of stressful life events preserved in the dental developmental record of a juvenile *Gorilla*. Int J Primatol 27(4), 1201–1219 (2006)
- Dirks, W., Bowman, J.E.: Life history theory and dental development in four species of catarrhine primates. J Hum Evol 53, 309–320 (2007)
- Smith, T.M., Reid, D.J., Dean, M.C., Olejniczak, A.J., Martin, L.B.: Molar development in common chimpanzees (*Pan troglodytes*). J Hum Evol 52(2), 201–216 (2007)
- Arnold, C., Matthews, L.J., Nunn, C.L.: The 10kTrees website: a new online resource for primate phylogeny. Evol Anthropol 19(3), 114–118 (2010)