Primer s	5'-3' Sequence				
lgtG_F	CTATCTGTACGACGTTTTGAAAATTGC				
lgtG_R	CCCCGTATTTAAAGGATAAAGGCAAAA				
lgtG530	CGCATTACCCTACCCCTCACGCAC				
lgtG1729	TCTGTACGACGTTTTGAAAATTGC				
Lal-6	GCGACAGGGACGGGTTGTAGTTCAG				
Lal-7	GGCACGGAACGCTACACATTGGAT				
IgtA Fwd-Ext	AGGCAATTTCCAAACTGCTTTGTCCGA				
lgtA Rev-Ext	v-Ext GTTTGGCGGTATTCTAGGCTGTCGAAC				
lgtC Fwd-Ext	TATTTGAGCGGAGTGGAAAAAGCCTGC				
lgtC Rev-Ext	ATCCAAGTTGCGCCAAGTCTGATTCAC				
lgtD Fwd-Ext	TCAAAATGTCCTGCGAATGGGTGGAAC				
lgtD Rev-Ext	AGCCAAGCTGATAACGTGGTTTTGCAT				
lgtA-On Fwd ^A	ATTGGCAAAGTCGGG C GG A GG T GGATATATTGCGCGC				
lgtA-On Rev ^A	GCGCGCAATATATCC A CC T CC G CCCGACTTTGCCAAT				
lgtC-On Fwd ^A	CGCCAATTTGCGGGGG G GG A G <u>GT</u> AATATCCGCTTT				
lgtC-On Rev ^A	AAAGCGGATATT <u>AC</u> C T CC G CCCCGCAAATTGGCG				
lgtC-Off Fwd ^A	CCGCCAATTTGCGG T G A GGGGGGGGGGGGAATA				
lgtC-Off Rev ^A	TATTACCCCCCCC T C A CCGCAAATTGGCGG				
lgtD-On Fwd ^A	GAATTGGCAAAGTCGGG C GG A GG T GAATATATTGCGCGCAC				
lgtD-On Rev ^A	GTGCGCGCAATATAT <u>TCA</u> CC <u>T</u> CC <u>G</u> CCCGACTTTGCCAATTC				
lgtA Fwd-Int ^B	AAAAGCGGGACAGCCGTATCAAAATCCCCGGGATTGAGAAAATCGTGGGCGAGATGG				
lgtA Rev-Int ^B	CCATCTCGCCCACGATTTTCTCAAT <u>CCCCGGG</u> ATTTTGATACGGCTGTCCCGCTTTT				
lgtC Fwd-Int ^B	$GAGATGGACATCGTATTTGCGGCAGAC \underline{CCCGGG} \underline{CCTTATGGGATACCGATTTGGGCGGTA}$				
lgtC Rev-Int ^B	$TACCGCCCAAATCGGTATCCCATAAGG\underline{CCCGGG} \textbf{GTCTGCCGCAAATACGATGTCCATCTC}$				
lgtD Fwd-Int ^B	$GTGAATCAGACTTGGCGCAACTTGGAT\underline{CCCGGG} {\bf CATGAAGACATTGTCGCCGTTTTCCCT}$				
lgtD Rev-Int ^B	AGGGAAAACGGCGACAATGTCTTCATGCCCCGGGATCCAAGTTGCGCCAAGTCTGATTCAC				

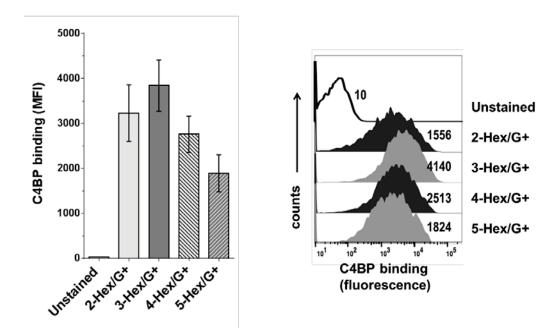
Supplemental Table S1: Primers used in this study

^A Indicates primers for mutagenesis; Single base substitutions are **<u>underlined in bold</u>**, consecutive bases *underlined in italics* span short deletions that render the sequence in frame for full length protein translation

^BSmal site – <u>CCCGGG</u>; Primer regions corresponding to the indicated *Igt* are indicated in **bold**, overlap regions are indicated in *italics*

Supplementary Table S2: Plasmids used in this study

Plasmids	Relevant characteristics and construction details	Ref. (1)				
pFLOB4270 ²	Two-step mutagenesis system used to construct unmarked deletions or mutations. Contains an Erm^{K} -Sm ^S cassette that encodes resistance to Erm and sensitivity to Sm (<i>rpsL</i> _{F62})					
	Used to construct unmarked mutations in <i>lgtG, C, A and D</i>					
IgtG constructs	J J J J J J J J J J					
pRYGW2	Contains wildtype <i>lgtG</i> from Ng strain 398079 amplified with primers lgtG530 and lgtG1729 in pCR2.1-TOPO (Invitrogen, Carlsbad, CA). Analogous to pRYGW1, described previously (2)					
	Used to create pRYGW2ES1					
pRYGW2ES1	pRYGW2 with the Erm ^R -Sm ^S cassette that encodes resistance to Erm (<i>ErmC</i>) and sensitivity to Sm (<i>rpsL</i> _{F62}) from pFLOB4300 ² . The Erm ^R -Sm ^S cassette was liberated with <i>Pvull</i> and cloned into the <i>Stul</i> site of pRYGW2.					
	Used to construct MS11 4/3/1 lgtG locked ON	This				
plgtG+	Contains lgtG locked ON ($C_{11} \rightarrow CCCCTCCGCCA$); <i>lgtG</i> + was amplified from Ng F62 dlgtA lgtG+ (3) with primers lal6 and lal7 and cloned into in to pCR2.1 TOPO (Invitrogen).					
	Used to create lgtG locked ON					
IgtA constructs		This				
plgtA	Contains wildtype MS11 4/3/1 lgtA amplified with lgtA Fwd-Ext and lgtA Rev-Ext and cloned into pCR2.1 TOPO TOPO (Life Technologies, USA)					
	Used as a template to construct lgtA locked on by site directed mutagenesis with primers lgtA-ON FWD and lgtA-ON REV					
plgtA-ES	Contains lgtA with Erm ^R -Sm ^S from pFLOB4300 inserted into an engineered Smal site in the homopolymeric tract					
	Used to construct unmarked lgtA mutations (ON and OFF)	This				
plgtA-ON	Contains IgtA with homopolymeric tract locked ON (G ₁₂ → GGGCGGAGGTGG) by SDM (Quick change Lightening Multi SDM kit; Agilent Tech) with primers IgtA-ON FWD and IgtA-ON REV Used to generate IgtA locked ON					
plgtA-del	Contains WT IgtA with 417 bp deletion corresponding to bp 50-467 of the coding sequence. The deletion was created by double digesting plgtA with BbsI and SspI and ligating the larger fragment. Used to generate IgtA locked OFF (deletion)					
IgtC constructs		This				
plgtC	Contains wildtype MS11 4/3/1 lgtC amplified with lgtC Fwd-Ext and lgtC Rev-Ext and cloned into pCR2.1 TOPO TOPO (Life Technologies, USA).					
	Used to construct plgtC-ON and plgtC-OFF					
plgtC-ES	Contains lgtC with ErmR-SmS from pFLOB4300 inserted into an engineered Smal site in the homopolymeric tract					
plgtC-ON	Used to construct unmarked lgtC mutations (ON and OFF) Contains lgtC with homopolymeric tract locked ON (G ₁₄ → GGGGCGGAGG) (by SDM (Quick change Lightening Multi SDM kit; Agilent Tech) with primers lgtC-ON FWD and lgtC-ON REV Used to generate lgtC locked ON					
plgtC-OFF	Contains lgtC with homopolymeric tract locked OFF (G ₁₄ → GGTGAGGGGGGGGG) by SDM (Quick change Lightening Multi SDM kit; Agilent Tech) with primers lgtC-OFF FWD and lgtC-OFF REV Used to generate lgtC locked OFF					
IgtD constructs						
plgtD	Contains wildtype MS11 4/3/1 lgtD amplified with lgtD Fwd-Ext and lgtD Rev-Ext and cloned into pCR2.1 TOPO (Life Technologies, USA)	This study				
	Used to construct plgtD-del and plgtD-ON					
plgtD-ES	D-ES Contains lgtD with ErmR-SmS from pFLOB4300 inserted into an engineered Smal site in the homopolymeric tra					
plgtD-ON	Used to construct unmarked lgtD mutations (ON and OFF) Contains lgtD with homopolymeric tract locked ON ($G_{13} \rightarrow GGGCGGAGGTG$) by SDM (Quick change Lightening Multi SDM kit; Agilent Tech) with primers lgtD-ON FWD and lgtD-ON REV					
plgtD-del	Used to generate lgtD locked ON Contains lgtD with 744 bp deletion corresponding to bp 64-808 of the coding sequence. The deletion was created by digesting plgtD with <i>PfI</i> MI and <i>Nde</i> I and ligating the larger fragment. Used to generate lgtD locked OFF (deletion)					


¹ All primer sequences are provided in Supplementary Table S2
² pFLOB4300 kindly provided by Dr. Janne Cannon, University of North Carolina, Chapel Hill

REFERENCES

- Johnston, D. M., and J. G. Cannon. 1999. Construction of mutant strains of Neisseria gonorrhoeae lacking new antibiotic resistance 1.
- markers using a two gene cassette with positive and negative selection. *Gene* 236: 179-184. Gulati, S., B. Zheng, G. W. Reed, X. Su, A. D. Cox, F. St Michael, J. Stupak, L. A. Lewis, S. Ram, and P. A. Rice. 2013. Immunization against a Saccharide Epitope Accelerates Clearance of Experimental Gonococcal Infection. *PLoS Pathog* 9: e1003559. Tong, Y., V. Reinhold, B. Reinhold, B. Brandt, and D. C. Stein. 2001. Structural and immunochemical characterization of the 2.
- 3. lipooligosaccharides expressed by Neisseria subflava 44. J Bacteriol 183: 942-950.

Supplemental Table S3: Negative ion MS data and proposed compositions of *O*-deacylated LPS from *N. gonorrhea* strains. Average mass units were used for calculation of molecular weight based on proposed composition as follows: Hex, 162.15; Hep, 192.17; HexNAc, 203.19; PEtn, 123.05; Kdo, 220.18; Lipid A-OH, 952.00. ¹The relative intensity is expressed as relative to the most populous glycoform / phosphoform.

Strain	Observed Ions (m/z) $(M-3H)^{3-}$	Observed Ions (m/z) $(M-2H)^{2-}$		Mass (Da) Calculated	Rel. Int. ¹	Proposed Composition	
5-Hex/G+	997.2	/	1497.6	2995.9	2993.8	1.0	5Hex, 2HexNAc, 2Hep, 2Kdo, Lipid A-OH
	1065.0	-	3198.0	3197.0	0.4	5Hex, 3HexNAc, 2Hep, 2Kdo, Lipid A-OH	
5-Hex/G-	888.9	1333.8	2669.7	2669.6	0.1	3Hex, 2HexNAc, 2Hep, 2Kdo, Lipid A-OH	
	930.0	1395.3	2792.8	2792.6	1.0	3Hex, 2HexNAc, 2Hep, 2Kdo, PEtn, Lipid A-OH	
	970.8	-	2915.4	2915.6	0.3	3Hex, 2HexNAc, 2Hep, 2Kdo, 2PEtn, Lipid A-OH	
	997.8	1496.7	2995.9	2995.7	0.7	3Hex, 3HexNAc, 2Hep, 2Kdo, PEtn, Lipid A-OH	
	1039.2	1558.5	3119.8	3118.8	0.2	3Hex, 3HexNAc, 2Hep, 2Kdo, 2PEtn, Lipid A-OH	
4-Hex/G+	997.2	1495.8	2994.1	2993.8	1.0	5Hex, 2HexNAc, 2Hep, 2Kdo, Lipid A-OH	
4-Hex/G-	888.9	1333.8	2669.7	2669.6	0.1	3Hex, 2HexNAc, 2Hep, 2Kdo, Lipid A-OH	
	930.0	1395.3	2792.8	2792.6	1.0	3Hex, 2HexNAc, 2Hep, 2Kdo, PEtn, Lipid A-OH	
3-Hex/G+	875.5	1313.5	2629.3	2630.5	0.4	4Hex, HexNAc, 2Hep, 2Kdo, Lipid A-OH	
	930.0	1394.7	2792.2	2792.6	1.0	5Hex, HexNAc, 2Hep, 2Kdo, Lipid A-OH	
	983.7	1475.7	2953.8	2954.8	1.0	6Hex, HexNAc, 2Hep, 2Kdo, Lipid A-OH	
		1496.5	2995.0	2995.8	0.2	5Hex, 2HexNAc, 2Hep, 2Kdo, Lipid A-OH	
	1051.5		3157.5	3157.9	0.1	6Hex, 2HexNAc, 2Hep, 2Kdo, Lipid A-OH	
3-Hex/G-	-	1233.6	2469.2	2468.3	0.5	3Hex, HexNAc, 2Hep, 2Kdo, Lipid A-OH	
	864.3	1295.4	2594.4	2591.3	1.0	3Hex, HexNAc, 2Hep, 2Kdo, PEtn, Lipid A-OH	
2-Hex/G+	874.8	1313.4	2628.1	2630.4	1.0	4Hex, HexNAc, 2Hep, 2Kdo, Lipid A-OH	
2-Hex/G-	808.4	1212.8	2427.9	2429.1	1.0	2Hex, HexNAc, 2Hep, 2Kdo, PEtn, Lipid A-OH	

Supplemental Figure S1. C4BP binding to the MS11 lgt 'ON' (G+) mutants. Bacteria were incubated with heat inactivated human complement for 30 min at 37 °C and bound C4BP was detected with anti-human C4BP mAb 67, followed by the biotinylated goat anti-mouse IgG (Molecular Probes), followed by Neuravidin conjugated DyLight 633 (ThermoFisher Scientific). Fluorescence was measured using a BD LSRII. Representative histograms from one of five separate experiments are shown. The number alongside each histogram indicates the median fluorescence intensity of the entire bacterial population.