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Supplementary methods 

 

NMR experimental parameters 

 

A 1D-NOESY presat sequence was performed initially [(RD)-90°-t1-90°-tm-90°-

acquire Free Induction Decay (FID)].  The 90o pulse length was adjusted to 

approximately 15 µs and 64 transients were acquired into 32K data points. In addition 

a 1D Carr-Purcell-Meiboom-Gill (CPMG, [RD-90°-(τ-180°-τ)n -acquire FID]) sequence 

to attenuate the NMR signal of large macromolecules was performed and used for 

survival analysis. A spin relaxation delay of 64ms was used with water suppression 

during the relaxation decay. 256 transients were summed over 32K data points. For 

both sequences, an exponential function was applied to the FID prior to transformation 

resulting in a Lorentzian line broadening of 0.3 Hz. 

 

NMR experimental parameters in the validation experiment 

Plasma samples were thawed, vortexed for a period of 15 seconds and allowed to 

stand for 10 minutes. The samples were then mixed with phosphate buffer (1:1, 600 

μL total volume; 20 % D2O, 0.142 M NaHPO4, 2 mM NaN3, 4 mM TSP) and were 

centrifuged for 15 minutes at 16,000 g at 4oC. The resulting supernatants were then 

transferred to 5 mm NMR tubes (SampleJet Tube Z105684; Bruker) for NMR spectral 

acquisition. A standard one-dimensional solvent suppression pulse sequence and 

CPMG spin-echo pulse sequence were used to acquire the FID.  

For the CPMG 128 scans were performed into 74K data points using a 4s relaxation 

delay 3.06 s acquisition time and 0.3line broadening. 

For the second validation cohort CPMG 128 scans were performed into 32K data 

points using a 4s relaxation delay 3.06 s acquisition time and 0.3line broadening. 

 

Preprocessing 

All spectra were phased and baseline corrected within TopSpin (version 2.1, Bruker 

Biospin GmbH, Rheinstetten, Germany) and the chemical shifts referenced to the α-

glucose anomeric resonance at δ 5.23. Data were transferred into MATLAB (version 
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7, The Mathworks, Inc.; Natwick, MA, USA) for alignment (using recursive wave peak 

method) and normalised (using probabilistic quotient method) using routines 

developed in-house (K. Veselkov). The region between δ 4.5 and δ 5.1 containing the 

water peak was removed. The resulting full resolution data matrices were further 

analyzed using SIMCA-P (version 12.0.1 UMETRICS AB, Umeå, Sweden). Pareto-

scaling and mean centering were performed prior to multivariate analysis. 

 

UPLC-MS experimental parameters 

Starting with an eluent composed of 99.9% water (Ultra Purity Solvent Water, Romil 

Ltd, Cambridge, UK) plus 0.1% formic acid (Sigma-Aldrich, Gillingham, UK), and 0.1% 

methanol (Ultra Purity Solvent Methanol, Romil Ltd, Cambridge, UK) plus 0.1% formic 

acid, gradually reversing over 26 min prior to a 4 min return to original conditions. The 

temperature was maintained at 50oC on a Waters Acquity UPLC HSS T3 column (1.8 

μm, 2.1 × 100 mm) during chromatography. Tandem time of flight (TOF) mass 

spectrometry (MS) was performed using an electrospray injection (ESI) ionisation 

operating in both positive and negative modes. ESI conditions were source 

temperature 120oC, desolvation temperature 400oC, cone gas flow 25L/h, desolvation 

gas 800L/h, capillary voltage for ESI- 2400V, for ESI +ve 3000 V, cone voltage 25 V. 

Each injection was of 3µL. At the start of acquisition ten conditioning QC injections 

were performed and after every 10th subsequent injection. Data were collected in 

centroid mode. Regular injections of leucine enkephalin (555.2692 Da calculated 

monoisotopic molecular weight, 200pg/uL in acetonitrile:water 50:50) were performed 

to ensure optimum mass accuracy with an analyte-to-reference scan ratio of 10:1. 

Instrument calibration was with sodium formate (10ng/uL in 90:10 propan-2-ol:water) 

solution prior to each ESI mode. 

Identification strategies for NMR and UPLC-MS data 

 In NMR, corroborative experiments on an 800MHz Bruker spectrometer using 1D 

NOESY and CPMG sequences were performed together with 2D 1H-1H J-resolved 

and 2D 1H-13C Heteronuclear Single-Quantum Correlation (HSQC) experiments. 

Statistical Total Correlation  Spectroscopy (STOCSY)) [1]was used to explore high 

multi-co linearity amongst spectral intensities for both metabolite identification and 

exploration of potential biochemical pathways involved in class discrimination. A QC 
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sample from the UPLC-MS well plate was also analysed under identical UPLC 

gradient conditions in a quadruple time-of-flight (QTOF) MS-MS instrument (Waters 

Corporation, Milford, MA, USA) to aid confident identification of metabolites from the 

fragmentation pattern, in conjunction with the use of online databases and standards. 

. Lastly, purified standards of selected lipids were obtained from Avanti (Alabaster, 

Alabama) and analysed under identical UPLC-MS conditions to further aid 

identification. 

 

Data processing for UPLC-MS 

Data were processed prior to multivariate analysis using the XCMS software suite in 

the R programming language (http://www.bioconductor.org/biocLite.R). Following 

conversion to CDF format, MS data underwent peak picking, grouping, and retention 

time correction. Peaks identified (by retention time and mass) were compared back to 

the original data during processing. Samples were grouped by clinical class with QC 

samples treated as a separate group. 

M30 Immunostaining and histochemistry 

 

FFPE tissue was cut at 4 μm using a Leica RM2235 rotary microtome (Leica 

Biosystems, UK) and picked up on poly-l-lysine coated slides which were dewaxed in 

xylene, rehydrated, subjected to heat-induced epitope retrieval (HIER) using sodium 

citrate buffer, pH 6, for 20 minutes, and allowed to cool down to room temperature. 

Endogenous avidin and biotin blocking steps were performed for 15 minutes each 

using an avidin/biotin blocking kit (catalog number SP-2001, Vector Laboratories, UK), 

followed by the incubation with the primary antibody for 2 hours at room temperature, 

a 40 minutes incubation with the biotinilated secondary antibody (product number 

RE7103, Leica Biosystems, UK), and another 40 minutes incubation with horseradish 

peroxidase-conjugated streptavidin (product number RE7104, Leica Biosystems, UK). 

The Peroxidase Substrate Kit (Vector® VIP) was used to visualize the signal (catalog 

number SK-4600, Vector Laboratories, UK). All slides were counter-stained with 

Carazzi’s haematoxylin for 10 seconds, then dehydrated with alcohol, cleared with 

xylene and mounted with DPX (Leica Biosystems, UK). 

Slides were imaged using an Olympus BX53 microscope equipped with an 

Olympus DP26 digital camera, using the cellSens Entry 1.9 software (Olympus, UK). 

http://www.bioconductor.org/biocLite.R
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Immunostains were analyzed by a liver histopathologist (A. Q.) who was blinded 

to the clinical data. Cell counts of M30+ cells as well as acidophilic bodies on H & E 

stains were carried out using the ImageJ software (Bethesda, Maryland, USA) on 10 

high power fields (HPF) from hepatic plates. 

No present M65 immunostaining methods are available for histochemistry for 

total cytokeratin-18. 

 

Other statistical methods 

Continuous data were expressed as mean(standard deviation) or median (range) 

contingent on results of normality testing by the Agostino-Pearson method. Student's 

t-test/one way ANOVA or MannWhitney U test/Kruskall Wallis test was then performed 

as appropriate. Categorical data were analysed by χ2 test. Data were analysed in 

MedCalc (MedCalc Software, Mariakerke, Belgium) and GraphPad Prism v 6 

(Graphpad  software, La Jolla CA USA) in addition to MATLAB v8 (Mathworks, Natick, 

MA, USA), R and SIMCA v13 (Umetrics, Umea, Sweden).  
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Supplementary results 

 

 

Supplementary Fig. 1: 1H 600 MHz water suppressed CPMG (Carr Purcell Meiboom 
Gill) nuclear magnetic resonance plasma spectra from the investigated cohort (A) 
Healthy control (B) Non-surviving patient with cirrhosis (DC-D) (C) Surviving patient 
with cirrhosis (DC-S) Metabolites 1-20 described in the main article as per the 
annotation in the first column of Table 2. 

 

Results of comparison of NMR profiling between HC, CLD and DC with permutation 

analysis   
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Supplementary Fig. 2: Results of 1H NMR profiling of plasma. Principal components 

analysis (PCA) and orthogonal projection least squares discriminant analysis 

(OPLSDA) Scores plots for the following comparisons: 1) Healthy controls (HC) v 

patients with cirrhosis (Cirr) A1)PCA R2X=0.75 Q2=0.54 A2) OPLSDA R2X=0.67 

R2Y=0.75 Q2=0.59 A3) associated permutation test 2) Patients compensated chronic 

liver disease (CLD) versus patients with decompensated cirrhosis (DC) (B1) PCA 

R2X=0.62 Q2=0.56 (B2) OPSLDA R2X=0.56 R2Y=0.50 Q2=0.19, (B3) associated 

permutation test and 3) Patients with decompensated cirrhosis who died (DC-D) or 

survived (DC-S) (C1) PCA R2X=0.75 Q2=0.54 (C2) OPSLDA R2X=0.57 R2Y=0.46 

Q2=0.25, (C3) associated permutation test. 

Comparison of 1H NMR profile of patients with and without ACLF  

In the patients with cirrhosis it was possible to make a valid model discriminating 

patients with and without ACLF. An OPLSDA model had the following statistics 

(R2X=0.25, R2Y=0.49, Q2Y=0.38, CV-ANOVA 10-9, sensitivity 83%, specificity 90%). 

Permutation testing demonstrated that the model was valid in that cutoffs for R2 and 

Q2 were lower in the randomly permutated model (999 permutations). 

 Discriminant metabolites were GPC, LDL and VLDL which were lower in the ACLF 

group and lactate and valine elevated in patients with ACLF. 

These data are shown in Supplementary Fig. 3. 
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Supplementary Fig. 3 A) PCA plot demonstrating clustering by presence or absence 

of ACLF in the plasma 1H NMR spectra. B) OPLSDA (1+1+0) demonstrating clear 

discrimination between ACLF and no ACLF patents 1H NMR spectra. C) Permutation 

testing for a PLSDA model with the same components as B). D) S loading plot 

demonstrating metabolite perturbation in patients with and without ACLF.  

 

It was not possible to discriminate patients with varying grades of ACLF due to small 

numbers in the individual subgroups. 

 

Results of comparison of UPLC-MS analysis of HC, CLD and DC – positive mode 

ionisation 

 

The results of comparison by PCA and OPLSDA for the dataset from positive mode 

ionisation are shown in Supplementary Fig. 3 as described in the main document. 
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Supplementary Fig. 4: Ultra performance liquid chromatography mass spectrometry 

positive mode ionisation multivariate analysis: Principal components analysis (PCA) 

and orthogonal projection least squares discriminant analysis (OPLSDA) Scores plots 

for the following comparisons: A) Healthy controls (HC) v patients with cirrhosis (Cirr) 

A1)PCA R2X=0.53 Q2=0.51 A2) OPLSDA R2X=0.52 R2Y=0.69 Q2=0.60, A3) 

Permutation analysis B) Patients compensated chronic liver disease (CLD) versus 

patients with decompensated cirrhosis (DC) B1) PCA R2X=0.57 Q2=0.47 B2) OPSLDA 

R2X=0.53 R2Y=0.61 Q2=0.26) B3 Permutation analysis C) Patients with 

decompensated cirrhosis who died (DC-D) or survived (DC-S) C1) PCA R2X=0.54 

Q2=0.42 C2) OPSLDA R2X=0.52 R2Y=0.67 Q2=0.42 C3) Permutation analysis   

 

Confirmation of discriminatory metabolites in negative mode ionisation 

In the dataset produced by negative ion formation (examples in Fig. 3), a three 

component PCA model only described 47% of the variation in X (R2X =0.47) with a 

Q2Y of 0.42. In terms of modelling ability with supervised techniques, ESI-ve data gave 
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a similar performance to the dataset from positive ion information from OPLS-DA 

models, comparing healthy controls and cirrhosis patients (R2X=0.42, R2Y=0.69, 

Q2Y=0.55, AUROC 0.97, sensitivity 100%, specificity 97%, CV-ANOVA p=10-15) and 

between survivors and non-survivors (R2X=0.30, R2Y=0.58, Q2Y=0.41, AUROC 0.94, 

sensitivity 90%, specificity 100%, CV-ANOVA p=10-8). Permutation testing further 

confirmed the validity of these models. Details on putative metabolite identification are 

given in Table 3 in the main article. Several discriminant phosphocholine moieties 

detected in the positive ion dataset were confirmed in negative mode data. Omparison 

of from accurate mass and fragmentation pattern of all published mass databases and 

remains unknown at this stage.  A mass consistent with the glucuronide conjugate of 

the anaesthetic medication, propofol, was identified by accurate mass and MS/MS. 

Adducts related to this molecule were removed from all reported models. 
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Supplementary Fig. 5: Ultra performance liquid chromatography mass spectrometry 

negative mode ionisation multivariate analysis: Principal components analysis (PCA) 

and orthogonal projection least squares discriminant analysis (OPLSDA) Scores plots 

for the following comparisons: A) Healthy controls (HC) v patients with cirrhosis (Cirr) 

A1)PCA R2X=0.47 Q2=0.43 A2) OPLSDA R2X=0.42 R2Y=0.69 Q2=0.55, A3) 

Permutation analysis B) Patients compensated chronic liver disease (CLD) versus 

patients with decompensated cirrhosis (DC) B1) PCA R2X=0.45 Q2=0.39 B2) OPSLDA 

R2X=0.39 R2Y=0.55 Q2=0.19), B3) Permutation analysis C) Patients with 

decompensated cirrhosis who died (DC-D) or survived (DC-S) C1) PCA R2X=0.48 

Q2=0.38 C2) OPSLDA R2X=0.37 R2Y=0.71 Q2=0.34, C3) Permutation analysis. The 

PCA plots show evidence of batch effect due to a change in chromatographic 

conditions during the run. 
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Supplementary Fig. 6. S loading plots for OPLSDA models for discrimination of 

patients with DC who survived or did not survive in A) positive mode ionisation and B) 

negative mode ionisation. 
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Supplementary Fig. 7: B)UPLCMS positive mode ions profile (ESI +ve Y PREDICTED 

- AUROC 0.94(0.89-0.98), sensitivity 100%, specificity 85%, p<0.001); UPLCMS 

negative mode ions profile (ESI -ve Y PREDICTED - AUROC 0.94(0.88-0.98) 

sensitivity 100%, specificity 85%, p<0.001); CLIF-SOFA - AUROC 0.87(0.77-0.93) 

sensitivity 78%, specificity 91%, p<0.001); MELD - AUROC 0.81(0.66-0.96), sensitivity 

78%, specificity 86%, p<0.001); Child-Pugh Score - AUROC 0.87 (0.76-0.98), 

sensitivity 83%, specificity 78%, p<0.001. 
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Validation cohort results∆ 

Supplementary Table 1: Demographic, biochemical and physiological details 
from the validation study population ∆ primary validation cohort. p-values - χ2 
test for categorical variables, Mann Whitney U test for continuous variables. 
Continuous data given as median (range). Abbreviations HE (Hepatic 
Encephalopathy), INR (International Normalised Ratio), WCC (White Cell Count), 
CPS (Child Pugh Score), MELD (Model for End Stage Liver Disease), CLIF-SOFA 
(Chronic Liver Failure Sequential Organ Failure Assessment) UKELD (United 
Kingdom End Stage Liver Disease) 

Variable All 
patients 

Survivors Non-survivors p-value 

 59 40 19  
Age 50(13) 49(13) 52(8.6) 0.354 
Sex 
(Male:Female) 

39:20 25:15 14:5 0.579 

Aetiology 
 
Alcohol 
Viral hepatitis 
Autoimmune 
Non-alcoholic 
steatohepatitis 
Other 
 
 

 
 
31 
0 
9 
11 
 
8 

 
 
23 
0 
5 
6 
 
7 

 
 
8 
0 
4 
5 
 
1 

 
 
0.463 

     
Serum Na 
(mmol/L) 

137(5) 136(5) 137(6) 0.346 

K (mmol/L) 4.3(0.6) 4.2(0.6) 4.5(0.7) 0.103 
Ct (µmol/L) 115(20-

693) 
88(20-693) 162(82-331) <0.001 

     
AST (iU/L) 88(23-

8896) 
59(23-1670) 137(28-8896) 0.065 

GGT (U/L) 63(13-
2423) 

79(18-2423) 47(13-1114) 0.412 

Bilirubin (µmol/L) 98(12-603) 70(10-714) 209(20-603) 0.001 
Albumin (g/L) 28(7) 30(6) 24(8) 0.014 
INR 1.7(1.1-7.7) 1.5(1.1-3.7) 2.1(1.3-7.7) <0.001 
     
Haemoglobin 
(g/L) 

10.1(1.9) 10.4(2.1) 9.5(1.5) 0.113 

WCC (x 109/L) 7.7(1.6-
26.8) 

8.1(1.6-26.8) 11.2(1.6-25) 0.008 

Platelets (x 
109/L) 

100(19-
479) 

102(33-479) 81(19-229) 0.178 

     
HE Grade 2(0-4) 1(0-4) 3(1-4) <0.001 
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Ammonia 
(µmol/L) 

66(18-300) 67(18-300) 64(5-133)) 0.567 

Mechanically 
ventilated(Y:N) 

21:38 6:34 15:4 <0.001 

Vasopressor 
use(Y:N) 

23:36 8:32 15:4 <0.001 

     
CPS 11(6-14) 10(6-13) 13(10-14) <0.001 
CLIF-SOFA 12(3-22) 8(3-23) 17(12-25) <0.001 
MELD 23(6-40) 13(6-40) 37(11-40) <0.001 
UKELD 58(6) 56(6) 61(5) 0.002 

 

 

 

 

Supplementary Fig. 8: Principal component analysis (PCA) comparing 1H NMR 
spectra of plasma in patients with A) (ALD) or without (nonALD) alcohol as the 
underlying aetiology of cirrhosis in the 1st validation cohort ( R2X=0.61, Q2Y=0.55) 
and B) comparing abstinent (ALD-A) versus non abstinent (ALD-D) patients, 
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R2X=0.65 Q2Y=0.53). The visual impression is these groups are not discriminated 
and this is borne out in supervised modelling where no valid models could be built.  

 

Second validation cohort 

 

A second metabonomics validation analysis was performed using previously stored 
samples. These were taken, stored and analysed by 1H NMR as per the derivation 
cohort. They were comprised of 27 healthy controls and 42 patients with cirrhosis. 
The patients with cirrhosis had a median age of 43 (27-86) years and 27(64%) were 
men. The aetiology of cirrhosis was alcohol in 25, viral hepatitis in 4, NASH 
(metabolic) in 6 and unknown in the remainder.  14 died within the 90 day follow up 
period and patients undergoing transplantation were excluded. The median MELD 
score was 19(6-40). The metabonomics analysis is presented in Supplementary Fig. 
9.  

Supplementary Fig. 9: 1H NMR multivariate analysis of second validation cohort: 

Principal components analysis (PCA) and orthogonal projection least squares 

discriminant analysis (OPLSDA) Scores plots for the following comparisons: A) 

Healthy controls (HC) v patients with cirrhosis (Cirr) A1) PCA R2X=0.61 Q2=0.50 A2) 

OPLSDA R2X=0.56 R2Y=0.64 Q2=0.56, A3) Permutation analysis B) Patients with 

decompensated cirrhosis who died (DC-D) or survived (DC-S) B1) PCA R2X=0.61 

Q2=0.47 B2) OPSLDA R2X=0.51 R2Y=0.79 Q2=0.48, B3) Permutation analysis.  
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The ability of the CPMG 1H NMR profile to predict mortality was high with an 
AUROC of 0.95(0.88-0.99, sensitivity 100(75-100)%, specificity 91(75-98)%, LR+ 
11(3.7-32), LR- 0) in comparison with MELD, AUROC 0.85(0.74-0.93), sensitivity 
100(77-67)%, specificity 67(47-82), LR+ 3.0(1.8-5), LR- 0)) and CLIF C AD (AURIC 
0.90(0.79-1.00), sensitivity 69(38-91), 100(79-100), LR- 0.31 (0.1-.0.7)) 

 

Supplementary Discussion 

 

 

Role of cytokeratin-18 breakdown products 

 

Plasma concentrations levels of cytokeratin-18 act as a circulating biomarker of the 

mechanism of cell death. Cytokeratin-18 is a cytoskeletal intermediate filament protein 

found in simple epithelial cells, and together with keratin-8 are the only keratin 

intermediate filaments in hepatocytes. Cytokeratin-18 fragments in peripheral blood 

are generated by apoptosis and full-length cytokeratin-18 generated by necrosis, and 

while detectable in serum of non-liver disease controls[2], are elevated in a variety of 

liver diseases including NASH and viral hepatitis [3-5]. The commonly used M30 

antibody identifies a fragmented form of cytokeratin-18 which is an apoptosis-specific 

neo-epitope at the cytokeratin-18 aspartic acid residue 396, generated by caspase-6, 

caspase-3 and caspase-7 cleavage. The M65 antibody allows for measurement of all 

cytokeratin-18 fragments because of loss of cell membrane integrity from necrosis 

and/or apoptosis[6]. Thus, concurrent measurement using the M30 and M65 assays 

allows for the quantification of the relative contributions of apoptosis and necrosis to 

cell death [6]. The M30/M65 ratio is therefore an indicator of the contribution of 

apoptosis to the total cell death activity. M65 levels do not reflect pure necrosis but 

cell death as a whole.  

 

Our results suggest that both apoptosis and necrosis are occurring at the hepatocyte 

level in patients with DC. The closer correlation with M65 and lipids measured by 

metabolic profiling suggests that the necrosis element of cell death has more in 

common mechanistically with the metabolic profiling data and to the clinical outcome. 

Nevertheless, there is evidence for ongoing hepatocyte apoptosis both from the M30 
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levels and apoptotic specific staining therefore both processes contribute to critical 

loss of hepatic function in DC. 

 

LPC and cell death 

LPCs are implicated in the death of a number of endothelial cell types but in particular 

of the hepatocyte in NASH. In lipoaptosis[7] LPC may be produced from diacylglycerol 

in preference to trglyceride production if saturated fatty acid concentrations are higher 

than unsaturated fatty acids. LPC may then generate apoptosis via mitochondrial 

induced caspase activation or activation of G-protein coupled receptors.  

Exogenous LPC has been reported to induce apoptosis [7, 8] of endothelial cells and 

stimulate inflammatory cells [9] in experimental models of sepsis. Plasma 

concentrations of other phospholipids, such as phosphatidylethanolamine, 

phosphatidylglycerol, phosphatidylinositol, and phosphatidylserine, are less than one-

tenth of that of PC[10]. Much higher in vivo concentrations and much stronger 

apoptotic activity of LPC compared with LPE, LPG, LPI, or LPS reduces the possibility 

that other lysophospholipids play significant roles in lipoapoptosis. While previous 

studies report on the apoptotic activity of LPC, that of other lysophospholipids has not 

been clearly demonstrated [8]. Following apoptotic signaling diacylglycerols (DAG)s 

may preferentially form triacylglycerols (TAG) within the cell cytoplasm and do not 

participate in further LPC production further reducing the levels of LPCs. 

We are not suggesting that cell death mechanisms alone are implicated in the 

reduction of serum LPC we see here. ACLF is also associated with high levels of pro-

inflammatory cytokines and failure of CARS response in patients who do not survive. 

Levels of short chain fatty acid LPC (eg 16:0 and 18:0) have been shown to decrease 

under pro-inflammatory conditions[11] when mesenchymal stromal cells are exposed 

to TNF-a and IFN-g. LPC pre-treatment in animal models of sepsis reduced pro-

inflammatory cytokine production, positive blood culture rates and mouse 

mortality[12]. Furthermore in human ACLF circulating gDNA act as a DAMP inducing 

pro-inflammatory genes and promoting further apoptosis[13]. 

Finally enhanced faecal excretion of major LPC have been demonstrated in patients 

with cirrhosis [14] enhancing the possible role of gut microbes in this core phenotypic 

change seen in chronic liver disease. 
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Therefore, inflammation and the role of gut host-microbe interactions are further 

important co-factors in these patients which requires further study. 

 

 

Application of metabotyping to predicting survival 

 

The general approach we recommend would be to determine a metabotype of 

mortality from a large body of samples with known outcomes. Then the position of the 

profile of an individual patient on the principal component or latent variable can be 

assessed to determine the probability of which class (alive or died) the new patient 

would lie. The profile used could be that of the entire spectrum or of the combinations 

of a smaller set of metabolites as we propose. The former has the benefit of including 

all metabolites including those which may only be of interest in the minority of patients 

whereas the limited profile approach has the benefit of being easier to understand and 

only requires the concentrations of the metabolites of interest. The former may be 

more suited to an NMR based application and the latter to a UPLCMS methodology. 

We would recommend using an OPLSDA model to determine the “position” of the 

patient of interest on the metabotype cross validated Y prediction score against the 

bank of previous samples.  

The potential weakness in this approach could be the different measurement platforms 

utilised by different medical centres for these metabolites as well as differing medical 

management affecting the profile itself. We use Bruker NMR spectrometers and 

Waters mass spectrometers and therefore reapplication of our techniques on these 

commonly used instruments would be straightforward. Were a limited set of 

metabolites validated for use based on absolute quantification it may be that these 

measures could become platform independent as long as agreed quality assurance 

methods were undertaken.  

Furthermore, when this list of metabolites is known or further refined standard logistic 

regression modelling could be performed to assess if these are comparable to 

PCA/OPLSDA methods. In such a scheme the multivariate methods we use here 

become more useful for the discovery of biomarkers of interest rather than the 

predictive tools themselves. Applications such as the “Intelligent Knife” at Imperial 
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College use both spectroscopic data and PCA/OPLSDA analysis for prediction in real 

time so this is already being used in clinical studies.[15]  

Clinicians may be less conversant with these multivariate methods compared to 

logistic regression and require PCA/PLSDA to be performed in the background with 

the summary result presented.  It is possible to perform PCA on handheld apps and 

so the opportunity to develop a web or mobile based metabotyping app exists. For 

example, the XCMS mobile app allows a large part of the functionality of PCA of mass 

spectrometry data to be performed on a mobile device. Similar front end technology 

would need to be developed to allow profiling data or metabolite concentrations to be 

entered and a risk of death calculated. We are developing such technology and hope 

to assess it using both spectroscopic and non-spectroscopic data in the future.   

 

 

 

 

Supplementary Fig. 10: Postulated mechanisms for metabolite derangement in 
decompensated cirrhosis. Following the precipitation for decompensation three main 
mechanisms are invoked. Hyperammonaemia causes partial failure of the urea cycle 
and preferential production of aromatic amino acids causes higher peripheral blood 
levels while branch chain amino acid levels fall. Hepatic ischaemia and glycolysis 
causes both overproduction of lactate and failure of clearance and peripheral blood 
lactate and pyruvate levels rise.  The hepatocyte undergoes apoptosis/necrosis 
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resulting in induction of caspases and cleavage of cytokeratin-18. Free fatty acids 
(FFA) are preferentially converted into diacylglycerols (DAG) which in the presence 
of cell death signalling preferentially form TAG (triacylglycerides) which accumulate 
in the hepatocyte cytoplasm and do not form LPC/PC. Intrahepatic lipid accumulates 
but do not pass into peripheral blood possibly under the influence of low ATP levels. 
Peripheral levels of LPC and PC therefore reduce when hepatocytes undergo the 
above stressors and apoptosis/necrosis. 
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