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Supplementary Figure 1| The effective medium approaches. (a) Mapping the 

labyrinthine metamaterials into an effective high-indexed medium with an extra rigid 

background. (b) Mapping the helical-structured metamaterials into an effective 

high-indexed medium as a whole without introducing extra rigid parts. It is clearly 

shown that the designed structure in (b) provides a higher space utilization in the 

folding process. 
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Supplementary Figure 2| The effective acoustic impedances (unit: kg·m2·s−1) 

between (a) the labyrinthine and (b) the helical-structured metamaterials. As 

shown in Supplementary Fig. 1, the labyrinthine metamaterials can be mapped into an 

effective high-indexed medium inserted into a rigid block. Even though the 

high-indexed medium is effectively non-dispersive, the existing rigid background in 

the labyrinthine metamaterial still leads to dispersive acoustic impedance 

(Supplementary Ref. 1), given by a numerical demonstration in (a). The geometric 

parameters D=16 mm, L=28 mm, l=100 mm, and d=3 mm. In (b), the 

helical-structured metamaterials, which can be mapped into an effective high-indexed 

medium as a whole, render non-dispersive acoustic impedance in the studied 

frequency range. The geometric parameters D=28 mm, L=22.51 mm, and P=13.4 mm. 
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Supplementary Figure 3| Schematic diagram of the acoustic paths in the 

helical-structured metamaterials and the free-space. The acoustic path in the 

metamaterials is helical (the red arrow), while the path in free-space is straight (the 

blue arrow). 
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Supplementary Figure 4| Schematic of the lab-made acoustic impedance tube. 
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Supplementary Figure 5| Theoretical versus simulation results. (a) and (b) are the 

transmission spectra and phase delays, respectively.  
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Supplementary Figure 6| The effective refractive index neff and dynamic mass 

density ρeff change with the frequency. We study the sample with L=12.15 mm and 

P=7.0 mm. When the wavelength is decreasing down to the scale comparable to the 

sample size (~20 mm), the helical-structured metamaterials can no longer be regarded 

as a homogenous medium for the incident waves. If we keep on using Eqs. (S18) and 

(S19) to calculate neff and ρeff, we will find out that both neff and ρeff increase at high 

frequency region from 6000 Hz to 10000 Hz and the dispersion-free feature breaks 

down. 
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Supplementary Figure 6| The transmission spectra and pressure field 

distributions. (a) The transmission spectra of metamaterials at sound hard boundary 

condition and acoustic-solid interaction condition. The material parameters of 

photopolymer are ρp=1190 kg·m−3 for the mass density, Ep=3.2 GPa for the Young's 

modulus, and σ=0.35 for the Poisson ratio. (b) The pressure field distributions at 4170 

Hz for those two different boundary conditions. The consistent results suggest that the 

photopolymer can be regarded as a rigid material for airborne sound. 
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Supplementary Figure 8| The thermo-viscous loss of the helical-structured 

metamaterials. (a) Numerically simulated and experimentally measured transmission 

spectra for helical-structured metamaterial unit cell with L=12.15 mm, P=7.0 mm. (b) 

Numerically simulated and experimentally measured transmission spectra for 

helical-structured metamaterial unit cell with L=13.49 mm, P=7.8 mm. In (a), the loss 

factor due to thermo-viscous effect γ=0.0028, where the complex sound speed takes 

the form of c0(1+γi). In (b), the loss factor due to thermo-viscous effect γ=0.0025.  
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Supplementary Figure 9| The structure of the assembled meta-lens. The 

helical-structured metamaterial unit cells are numbered and inserted into the sample 

holder in order. The spacing between neighboring unit cells is 6 cm. 
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Supplementary Figure 10| The schematic view of the experimental measurement 

system. Due to the limitations of the translation stage, only the main lobe part of the 

field is scanned (see the darken region). 
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Supplementary Figure 11| The pressure fields of acoustic self-accelerating beams 

generated directly by a line source with designed phase distributions and formed 

after the incident plane waves are passing through the acoustic meta-lens (or 

metasurface). The closely consistent pressure fields for the two different cases 

demonstrate that the generation of acoustic self-accelerating beam is barely affected 

by the coupling between adjacent unit cells in the meta-lens.  
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Supplementary Table 1| Structure parameters and material effective parameters of 

the unit cells. 

Unit cell number Lead 

(mm) 

Length 

(mm) 

Refractive 

index 

Dynamic mass density 

(kg·m−3) 

1 37.80 28.50 1.544 3.466 

2 7.00 12.14 6.821 89.024 

3 7.00 6.50 6.402 83.708 

4 1000.00 41.10 ～1 ～1.205 

5 26.70 38.72 2.078 6.099 

6 200.00 23.10 ～1 ～1.205 

7 10.00 9.23 4.518 36.477 

8 12.80 21.59 3.844 23.188 

9 70.40 31.20 1.099 1.749 

10 21.00 18.08 2.353 8.533 

11 26.00 37.96 2.120 6.364 

12 18.50 29.95 2.786 11.436 

13 11.20 19.09 4.344 30.521 

14 7.60 13.15 6.288 72.754 

15 7.00 12.12 6.821 89.017 

16 7.80 13.49 6.125 68.360 

17 10.60 18.12 4.572 34.402 

18 17.00 27.83 2.994 13.354 

19 25.20 38.60 2.175 6.703 

20 9.60 8.87 4.694 39.892 

21 36.80 27.90 1.569 3.590 

22 150.00 23.00 ～1 ～1.205 

23 12.70 21.45 3.872 23.563 

24 29.00 41.05 1.955 5.362 

25 41.40 30.30 1.464 3.090 
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26 7.00 12.15 6.821 89.012 

27 23.90 35.70 2.261 7.297 

28 41.20 30.20 1.467 3.108 

29 9.10 15.67 5.282 47.960 

30 7.00 6.49 6.401 83.692 

31 88.00 32.00 1.019 1.502 

32 21.70 34.23 2.445 8.620 

33 44.50 31.70 1.403 2.829 

34 13.40 22.51 3.689 21.144 

35 24.40 20.44 2.093 6.630 

36 9.30 16.00 5.173 45.698 

37 17.80 15.68 2.695 11.464 

38 7.50 12.98 6.371 75.091 

39 15.00 13.47 3.121 15.822 

40 7.70 13.32 6.206 70.512 
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Supplementary Note 1. Deduction of the Eqs. (1) and (3) in the manuscript. 

 The refractive index n of the helical structured metamaterials in Eq. (1) equals to 

the ratio of the acoustic path in the helical-structured metamaterials over the path in 

free-space for the same displacement. In Fig. 1a, the sound is propagating helically 

within the region (d/2<r<D/2), where d and D (d<<D) are the inner diameter and the 

outer diameter of the cylindrical metamaterials. Therefore, the equivalent diameter De 

of the helical path of sound is supposed to be smaller than D. Figure 2a shows that the 

equivalent diameter De is related to D through De≈0.56D after the numerical fitting 

between Eq. (1) and Eq. (3). 

 As shown in Supplementary Fig. 3, the lengths of the helical acoustic path in 

metamaterials ml  and the straight path in free-space al  are  

	
2 2

e( ) ,ml D Pπ= +  

.al P= 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (1) 

where De is the equivalent diameter of the helical path of sound and P is the thread 

lead with P<<De in the case of high helicity. According to the definition of the 

refractive index, n can be expressed as follows 

e

2 2
e e( )

.P DD P Dn
P P

ππ π<<+
= ⎯⎯⎯⎯→

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
(2) 

It needs to be mentioned that the term helicity H used in the manuscript can be 

defined by  

2 2( )
.P DD P DH

P P
ππ π<<+

= ⎯⎯⎯→
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

(3) 

According to Eq. (3), the helicity H is larger when the thread lead P is smaller.  
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 According to the textbook in Supplementary Ref. (2), transmission through a 

homogeneous medium of length L is  

( ) ( )
2

2 20 11
0 1 0 1

0 1 1

4 ,

4cos sin

T
nk n L k n L

n
ρρ

ρ ρ

=
⎛ ⎞

+ +⎜ ⎟
⎝ ⎠ 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

(4) 

where k0 is the wave vector of sound in air, ρ0 is the mass density of air, n1 and ρ1 are 

the effective refractive index and dynamic mass density of the homogeneous medium. 

We will show that n1 and ρ1 can be retrieved from the transmission spectrum T. In the 

transmission spectrum, the Fabry-Pérot resonances will lead to periodic peaks and 

dips at the conditions of 0 1k n L Nπ=  and 0 1 (2 1) / 2k n L N π= − , respectively, with 

N being a positive integer. At the frequency Λ of the first resonant peak in the 

transmission spectrum, we have  

0 1 ,k n L π= 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (5) 

which can be further formulated into 

0
1 .
2
cn
LΛ

=
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

(6) 

At the minimum transmittance (or dips) in the transmission spectrum, we have  

min 2

0 11

0 1 1

4 .T
n

n
ρρ

ρ ρ

=
⎛ ⎞

+⎜ ⎟
⎝ ⎠ 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

(7) 

From Eq. (7), we finally obtain  

0 1
1 0 1

minmin

1 1n n
TT

ρ
ρ ρ= + − .                                           (8) 

 

 



16 
	

Supplementary Note 2. Complex transmission coefficients measurement in 

acoustic impedance tube. 

A. Transfer matrix method. 

 In order to obtain the transmission and phase delay of different metamaterial unit 

cells, we employ the two-load four-microphone method here, which is well known for 

measuring complex transmission coefficients in an acoustic impedance tube 

(Supplementary Ref. 3).  

 The schematic of an acoustic impedance tube is shown in Supplementary Fig. 4. 

The measured metamaterial unit cell is positioned at the middle of the tube (0<x<L). A 

loudspeaker is mounted at one closed end of the tube, while the other end is open or 

sealed with a rubber plug (two different loads). It is known that acoustic waves in the 

impedance tube are simply confined plane waves under the cut-off frequency. 

Therefore, the complex sound pressures at four different positions (x1, x2, x3, x4) can 

be written as 

1 1

2 2

3 3

4 4

1
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3

4

,

ikx ikx

ikx ikx

ikx ikx

ikx ikx

P Ae Be
P Ae Be

P Ce De

P Ce De

−

−

−

−

= +⎧
⎪
⎪
⎨

= +

= +

= +

⎪
⎪
⎩ 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

(9) 

where k represents the wave number in air. A and C are complex amplitudes of the 

forward propagating plane waves; B and D the complex amplitudes of the backward 

propagating plane waves. We set the origin of coordinate system at the left facet of the 

measured unit cell, as shown in Supplementary Fig. 4. The four complex amplitudes 

of sound pressures can be expressed in terms of the four measured data 
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(10) 

The transfer matrix of the metamaterial unit cell is shown as follows 

0 11 12

0 21 22

= ,L

L

P t t P
V t t V
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦                                               
(11) 

where L is the overall length of the unit cell, and P0, PL, V0, VL are the total sound 

pressures and particle velocities at the two facets of the unit cell, obeying the 

following relations 

0

0
0 0

0 0

,ikL ikL
L

ikL ikL

L

P A B
A BV
c

P Ce De
Ce DeV

c

ρ

ρ

−

−

⎧
⎪
⎪
⎪

= +

−
=

= +
⎪
⎨
⎪

⎩
=

⎪
⎪
⎪

−

                                               

(12) 

where c0=343.2 m·s−1 and ρ0=1.2 kg·m−3. In Eq. (11), there are four unknown 

variables, but only two equations. By employing two different loads at the right end, 

we can obtain two additional equations for solving the unknown transfer matrix 

components (tij). Therefore, the Eq. (11) takes a new form as 

0, 0, , ,11 12

0, 0, , ,21 22

,a b L a L b

a b L a L b

P P P Pt t
V V V Vt t
⎡ ⎤ ⎡ ⎤⎡ ⎤

=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦                                    

(13) 

where subscripts a and b denotes two different load conditions (basically the other 

end is open or sealed with a rubber plug). From Eq. (13), the transfer matrix 
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components can be obtained through 

0, , 0, , 0, , 0, ,11 12

0, , 0, , , 0, , 0,21 22 , , , ,

1 .a L b b L a b L a a L b

a L b b L a L a b L b aL a L b L b L a

P V P V P P P Pt t
V V V V P V P Vt t P V P V

− −⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥ − −−⎣ ⎦ ⎣ ⎦            

(14) 

	

B. Complex transmission coefficients. 

 As shown in Supplementary Fig. 4, the transmission and reflection coefficients 

are defined by /t C A= 	 and /r B A= 	 for normally incident plane waves. So the Eq. 

(12) can be reformulated into 

0

0
0 0

0 0

(1 )
(

.

1 )

ikL
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c
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=
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

(15) 

 Substituting Eq. (15) into Eq. (11), we obtain the complex transmission 

coefficients  

12
11 0 0 21 22

0 0

2 .
ikLet tt c t t

c
ρ

ρ

=
+ + +

                                          

(16) 

	

 In order to verify Eq. (16), we conduct numerical calculations based on the finite 

elements method, where the two loads are perfectly matched layer and hard boundary, 

respectively. The tested sample is a metamaterial layer with a thickness of 41.1 mm. 

The sound speed and mass density of the sample are set to be 81.17+0.2i m·s−1 and 

27.49+0.3i kg·m−3. The field measurement positions in the left and right parts of the 

tube are separated by a distance of 7 cm. The theoretically calculated transmission and 

phase from Eq. (16) are plotted in solid lines in Fig. 5, while the numerical simulation 
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results are plotted in circles. The good agreement between the theoretical and 

numerical results validates the feasibility of the two-load four-microphone method for 

measuring the transmission and phase delay of our designed acoustic metamaterials. 
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Supplementary Note 3. Deduction of the Eq. (4) in the manuscript based on 

two-load four-microphone method. 

 For a homogeneous and isotropic acoustic material with a finite thickness, the 2

☓2 transfer matrix can be given by (Ref. 2) 

eff eff eff eff11 12

eff eff eff eff21 22

cos sin
,

sin / cos
k L j c k Lt t

j k L c k Lt t
ρ

ρ
⎡ ⎤⎡ ⎤

= ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦                        

(17) 

where keff is the complex wave vector of sound in metamaterials, effρ  and effc  are 

the effective mass density and speed of sound in metamaterials. Inferred from Eq. 

(17), the elements of the transfer matrix are related to the material properties. To be 

specific, the speed of sound in metamaterials can be evaluated as 

eff 1
12 21

,
sin ( )

Lc
t t
ω

−
=

−                                                 
(18) 

where ω  is the round frequency of the sound. And the mass density of metamaterials 

can be calculated by 

12
eff

21 eff

1 .t
t c

ρ =
                                                   

(19) 
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