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An introduction to the method 

 

1. Of the 179 patients, 132 had MRI examination results available for TLI evaluation after the 

completion of IMRT. The rest 47 cases had performed MRI only before the earliest time of TLI 

occurrence. Thus, we discard the 47 cases with 132 cases subjected to the model for analysis. All 

of the characteristics and results reported in the following sections are based upon N=132. This is 

a key point for this study. We will give several reasons for why we do this. 

 

All the 47 cases were censored before the earliest failure time of 19 months after the completion 

of IMRT. Just for this reason, removing the 47 cases censored before the earliest failure time has 

no effect on the results, not only for KM analysis, but also for Cox model and logistic model. Here 

are several examples which can give a justification of it. The data of this example below derive 

from a study of the remission times in weeks for a group of leukemia patients after treatment. 

 

Remission times (weeks) for a group of leukemia patients after treatment. (n=23) 

6, 6, 6, 7, 10, 13, 16, 22, 23,  

2+, 3+, 6+, 9+, 10+, 11+, 17+, 19+, 20+, 25+, 32+, 32+, 34+, 35+. (Note: +denotes censored, and 

two cases have been censored before the earliest failure time of 6 weeks.) 

 

The table below shows the estimated survival probabilities using the Kaplan-Meier formula for 

this group of patients. 

 

 

 

 

 

t(j) nj mj qj S(t(j)) 

0 23 0 2 1 

6 21 3 1 1×(18/21)=.8571 

7 17 1 1 .8571×(16/17)=.8067 

10 15 1 2 .8067×(14/15)=.7529 

13 12 1 0 .7529×(11/12)=.6902 

16 11 1 3 .6902×(10/11)=.6275 

22 7 1 0 .6275×(6/7)=.5378 

23 6 1 5 .5378×(5/6)=.4482 

^ 



 

t(j) denotes ordered failure times, nj gives the number of subjects in the risk set at the start of the 

interval [t(j) t(j+1)], mj gives the number of failures during the interval [t(j) t(j+1)], qj gives the 

number of censored cases in [t(j) t(j+1)]. 

 

Given that the risk set is defined as the collection of individuals who have survived at least to time 

t(j), it is assumed that nj includes those persons failing at time t(j). In other words, nj counts those 

subjects at risk for failing instantaneously prior to time t(j). 

 

Then, if we deleted the two cases censored before the earliest failure time of 6 weeks, what will 

happen? 

 

t(j) nj mj qj S(t(j)) 

0 21 0 0 1 

6 21 3 1 1×(18/21)=.8571 

7 17 1 1 .8571×(16/17)=.8067 

10 15 1 2 .8067×(14/15)=.7529 

13 12 1 0 .7529×(11/12)=.6902 

16 11 1 3 .6902×(10/11)=.6275 

22 7 1 0 .6275×(6/7)=.5378 

23 6 1 5 .5378×(5/6)=.4482 

 

Except for two underlined red figures in the first row of the table, there is practically no difference 

for the estimated survival probabilities. So we can derive a conclusion that removing the cases 

censored before the earliest failure time has no effect on the estimated survival probabilities for 

KM analysis. 

  It is also the case in the Cox model setting. To illustrate this connection, consider the dataset 

shown below. The data indicate that Barry got the event at TIME = 2 years. Gary got the event at 3 

years, Harry was censored at 5 years, and Larry got the event at 8 years. Furthermore, Barry and 

Larry were smokers whereas Gary and Harry were nonsmokers. 

   

 

 

 

ID TIME STATUS SMOKE 

Barry 2 1 1 

Gary 3 1 0 

Harry 5 0 0 

Larry 8 1 1 

  

Consider the Cox proportional hazards model with one predictor, SMOKE. Under this model the 

hazards for Barry, Gary, Harry, and Larry can be expressed as shown below. 

 

Cox PH model 

^ 



h(t)=h0(t)exp(β1SMOKE) 

ID Hazard 

Barry h0(t)exp(β1) 

Gary h0(t)exp(0) 

Harry h0(t)exp(0) 

Larry h0(t)exp(β1) 

 

The Cox likelihood for these data is shown below: 

Likelihood is product of 3 terms  

L=L1×L2×L3 

L1=h0(t)exp(β1)/[h0(t)exp(β1)+h0(t)exp(0) +h0(t)exp(0)+h0(t)exp(β1)] 

L2=h0(t)exp(0)/[h0(t)exp(0)+h0(t)exp(0)+h0(t)exp(β1)] 

L3=h0(t)exp(β1)/h0(t)exp(β1) 

Cox likelihood 

L={h0(t)exp(β1)/[h0(t)exp(β1)+h0(t)exp(0) +h0(t)exp(0)+h0(t)exp(β1)]}×

{h0(t)exp(0)/[h0(t)exp(0)+h0(t)exp(0)+h0(t)exp(β1)]}×{h0(t)exp(β1)/h0(t)exp(β1)} 

 

To summarize, the likelihood in our example consists of a product of three terms (L1, L2, and L3) 

corresponding to the ordered failure times (t1, t2, and t3). The denominator for the term 

corresponding to time tj (j=1, 2, 3) is the sum of the hazards for those subjects still at risk at time tj, 

and the numerator is the hazard for the subject who got the event at tj. 

 

When the dataset is added with a case named ‘Marry’ (see below), who censored at 1 year before 

the earliest failure time of 2 years, what will happen? 

 

ID TIME STATUS SMOKE 

Marry 1 0 1 

Barry 2 1 1 

Gary 3 1 0 

Harry 5 0 0 

Larry 8 1 1 

 

According to the way of how the Cox likelihood function was constructed aforementioned, the 

likelihood function for the new data is exactly same with the old one. So we can derive that the 

deletion of cases censored before the earliest failure time has no effect on the likelihood function 

for Cox model. 

 

When referring to the logistic model, we have defined that the injury-free TLs that followed-up for 

more than 50 months were regarded as normal and cases censored within 50 months were 

excluded because of the need of adequate follow-up to determine whether TLs would develop 

radiation injury. Thus, the 47 cases censored before the earliest failure time of 19 months were 

destined to be removed according to the definition. As a result, the deletion of cases censored 

before the earliest failure time has no effect on the logistic analysis. 

 



 

2. Reference 11 was mentioned in the manuscript (Results, Logistic model section) to make 

preparation for the following application of logistic model. The response variable in logistic model 

is binomial, which means a patient has to be defined alternatively as having TLI or normal. Then a 

problem is closely followed: a patient without TLI (injury-free, not experience the event) until the 

end of the study is virtually normal? It is easy to understand that TLI has certain latency and the 

patient with short follow-up may develop TLI later than the end point of the study. So an adequate 

follow-up is required to determine whether a patient is normal or not. Then, how long the 

follow-up is adequate? We utilized the data of reference 11 in combination with our data to 

raise an available criteria that following-up for more than 50 months is adequate to regard 

the injury-free temporal lobe as normal. In the practical situation, clinical follow-up data often 

includes censored cases, and some patients may not have adequate follow-up to determine the real 

outcome. The standard statistical method to address this problem is survival analysis, so we 

recommend using Cox model as a NTCP model. However, in the case of not using survival 

analysis, e.g. using logistic model, how to do? For the undefined outcome of the injury-free 

patients with short follow-up, it seems to be plausible to remove the injury-free cases with short 

follow-up and retain the injury-free cases with adequate follow-up as well as retain all the TLI 

cases (no matter the length of follow-up). This is the way to take in reference 4 and 5, but an 

underlying selection bias occurs. We have discussed this point briefly in the first paragraph, 

Discussion section. Here we give some details. 

In reference 4 and 5, the author presumed injury-free TLs that were followed-up for more than 60 

months were regarded as normal, while 18 out of 33 patients of unilateral TLI had a follow-up of 

less than 60 months. Thus, the authors concluded that the outcome of 18 contra-lateral uninjured 

TLs could not be determined, and the 18 uninjured TLs were excluded from the analysis. Indeed, 

if 18 contra-lateral uninjured TLs need to be excluded for a follow-up of less than 60 months, then 

the 18 injured TLs should also be excluded. To determine the actual incidence rate without using 

survival analysis (cox model), the sample of TLI cases and normal cases should be included 

according to the same length of follow-up (e.g., more than 50 months). The use of inconsistent 

inclusion criteria to select injured cases (no matter the length of follow-up, as long as it occurs) 

and normal cases (follow-up≥50 mo.) that were pooled to determine incidence can result in a 

non-ignorable selection bias, thereby affecting the TD calculation. It’s important that the inclusion 

criterion for normal and injured cases is identical, e.g. follow-up more than 50 months. Therefore, 

we recommend an actuarial-rate-based approach to estimate TD, which means the method of Cox 

model adjustment for the specified independent variable to calculate tolerance. 

 

3. Here we give more information of the software package and algorithm for LASSO and 

elastic-net. The original sources locate on the website: 

http://web.stanford.edu/~hastie/glmnet_matlab/index.html 

 

Glmnet is an algorithm package on Matlab platform which provides the extremely efficient 

procedures for fitting a generalized linear model via penalized maximum likelihood. The 

regularization path is computed for the lasso or elasticnet penalty at a grid of values for the 

regularization parameter lambda. Glmnet can deal with all shapes of data, including very large 

sparse data matrices. The generalized linear models fitted include linear, logistic and multinomial, 

http://web.stanford.edu/~hastie/glmnet_matlab/index.html


Poisson, and Cox regression models. In this study, we use Glmnet to fit Cox regression model. 

 

Here is a brief introduction of the package. 

Suppose X is the input matrix and Y the response vector. For the families except Gaussian, glmnet 

maximizes the appropriate penalized log-likelihood (partial likelihood for the cox model), or 

minimize the penalized negative one. Take the binomial model for example, it solves 

 

 

Where lambda≥0 is a complexity parameter and 0≤alpha≤1 is a compromise between ridge and 

lasso. Note that it becomes the lasso when alpha = 1 and the ridge regression when alpha = 0. We 

set alpha=0.5 to make LASSO provide elastic net regularization. The algorithm uses cyclical 

coordinate descent in a pathwise fashion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. s1.  Trace plot of coefficients fit by the elastic net. 

 

 

 

Fig. s2. Cross-validated MSE of the Elastic Net fit 


