
Supplementary Material: comets (Constrained
Optimization of Multistate Energies by Tree

Search): A provable and efficient protein design
algorithm to optimize binding affinity and

specificity with respect to sequence

Mark A. Hallen1,3 and Bruce R. Donald1,2,3,∗

Departments of 1 Computer Science 2 Chemistry, Duke University, Durham, NC
27708 3 Department of Biochemistry, Duke University Medical Center, Durham, NC

27710 *Corresponding author, brd+jcb15@cs.duke.edu

The following is supplementary material for the following paper:

M.A. Hallen and B.R. Donald. comets (Constrained Optimization of Multi-
state Energies by Tree Search): A provable and efficient protein design algorithm
to optimize binding affinity and specificity with respect to sequence.

Section A provides a highly simplified, “toy” example of a multistate protein
design calculation to demonstrate the operation of comets. Section B provides
details of the methods used to compute lower bounds for LMEs over sequence
spaces. Section C provides details on the protein design runs described in Section
3 of the main text.

A Toy example
Let us introduce a highly simplified, “toy” example to explain the algorithm.
Say we are designing a peptide inhibitor for a protein, “targetin,” involved in
some disease. We want our peptide to not bind a related protein, “offtargetin,”
because this binding would cause toxicity. However, we do have a peptide (say,
a natural product) that binds both targetin and offtargetin, and we have crystal
structures of this peptide with both targetin (structure T) and offtargetin (struc-
ture O). Thus, we set up a multistate design as follows. There will be four states:
peptide bound to targetin (structure T), unbound peptide in targetin-binding
conformation (peptide from structure T), peptide bound to offtargetin (struc-
ture O), and unbound peptide in offtargetin-binding conformation (peptide from
structure O). These states will be called T-bound, T-unbound, O-bound, and
O-unbound respectively. We will optimize the binding energy for the peptide-
targetin interaction, which is the difference between the T-bound and T-unbound
state energies. We will constrain binding energy for the peptide-offtargetin in-
teraction to be worse than a threshold Eu: say, 10 kcal/mol worse than the
wild-type binding energy. We will also constrain the unbound state to be stable,
by demanding that the average of the T-unbound and O-unbound state energies
be at most 10 kcal/mol worse than wild type. All of these constraints, and the
objective function, are simple LMEs.



For simplicity, our toy peptide will only have one mutable residue position
(residue 1), to which we may assign either the amino acid type alanine (1 ro-
tamer) or valine (3 rotamers). We will also model only one residue as flexible in
each of our proteins: Phe 75 of targetin (4 rotamers) and Leu 75 of offtargetin (5
rotamers). Fig. S1 illustrates the conformational search in comets on this prob-
lem subject to these modeling assumptions. We also present empirical results
for much larger, realistic designs with similar objective function and constraint
setups in Section 3 of the main text.

Types of nodes. In this toy example, we create only one node with a partially
defined sequence. The sequence space for it is {A,V}, since these are the two
sequences available to the peptide. Two nodes with fully defined sequence are
created: one for each of the two sequences A and V. For the V node, the con-
formational tree for each state will have the same structure as a single-state
A* tree5,6, 10 for a single-sequence conformational search in which residue 1 is a
valine (Fig. S1).

Expansion of nodes. The expansion step for the starting node (sequence space
{A,V}) splits the sequence space to create a node for each amino-acid type at
residue 1: thus the two nodes will have sequences spaces {A} and {V}. For the
node {V}, because the sequence space is fully defined, the expansion step expands
nodes in the conformational trees, in the same way that nodes are expanded in
single-state A* calculations5,6, 10 (Fig. S1).

B Computing lower bounds for LMEs

Previous A*-based protein design algorithms include methods to compute a lower
bound on the energy of a single protein state over a sequence space.5,6, 8 These
methods can be modified to provide a lower bound on an LME over a sequence
space, with complexity as follows:

Theorem 1. For any sequence space S defined by specifying the allowed set of
amino acid types S(i) at each mutable residue i, the lower bound on the LME
Eq. (1) can be computed in time O(n2r2s), where n is the number of flexible or
mutable residues in the system, s is the number of states, and r is the maximum
number of RCs available at a given residue.

We use a different procedure to compute lower bounds for LMEs (linear
multistate energies) depending on whether the sequence is fully defined. If it is,
a simpler algorithm that often yields a tighter bound is used. If not, we have
a generic algorithm, whose running time is bounded as described in Theorem 1
(proven in Section B.3 below).

B.1 Lower-bound algorithm for fully defined nodes

If the sequence is fully defined, then we can bound the LME

c0 +
∑
a∈A

caEa(s) (1)



Fig. S1. Expansion of the state conformational trees for the node with sequence V in
the toy example. (A) Each state conformational tree starts with a single node, in which
all conformational degrees of freedom are undefined. (B) When the sequence tree node
is fully processed, the lowest-scoring node in each conformational tree fully defines a
conformation. (Only the lowest-scoring node in each tree is shown here: each tree will
also have higher-scoring nodes, with varying numbers of unrestricted conformational
degrees of freedom). (C) The expansion of the conformational tree for the T-bound
state. As in single-state A*, nodes are chosen for expansion based on their scores, which
are lower bounds on the energies of conformations in their conformational spaces.



using upper bounds ua(s) and lower bounds la(s) on the optimal conformational
energy for our sequence s in each state a ∈ A. Because we have ua(s) ≥ Ea(s)
and la(s) ≤ Ea(s), we have

c0 +
∑

a∈A, ca<0

caua(s) +
∑

a∈A, ca>0

cala(s) (2)

as a lower bound on Eq. (1). The single-state lower bounds la(s) are computed
as described in previous work on single-state design.5,6, 8 These methods yield
a lower bound that converges to Ea(s) as the conformation trees are fully ex-
panded. Upper bounds ua(s) are straightforward because any conformation of
a given state is an upper bound on the optimal conformational energy for that
state. Each time we expand a node in the conformation tree for state a and se-
quence s, we compute an upper bound un on the minimum energy of that node’s
conformation space by a quick heuristic procedure based on the faster algo-
rithm.2 If un is lower than our current estimate of ua(s), then we set ua(s) = un.
As the conformation trees are fully expanded, we must eventually encounter a
node in each state’s tree whose conformational space is only the optimal con-
formation (or in the continuous case, only the RC assignment that yields the
optimal conformation upon local minimization). At this point, the upper bound
becomes tight: ua(s) = Ea(s). So we have a method to provide lower bounds
for LMEs that converges to the exact value of the LME when a node is fully
processed. This is what we need both for constraint enforcement and for mini-
mization of the objective function.
B.2 Lower-bound algorithm for other nodes
If the sequence is not fully defined, then we use an alternate algorithm, which is
a direct adaptation of the lower-bounding method used in single-state A* calcu-
lations.10 Nodes without the sequence fully defined cannot be fully processed, so
we do not need this algorithm to converge to the exact value of the LME. How-
ever, we still prefer a reasonably tight bound in this case for efficiency purposes
(to avoid having to generate too many nodes with fully defined sequences).

Let us first consider the rigid case. For the purposes of this algorithm, we will
assume a pairwise energy function: an energy function that is a sum of terms
dependent on at most two residues’ conformations, and can thus be expressed
in the form ∑

i

E(ir) +
∑
j<i

E(ir, jr) (3)

where ir denotes the RC for our current conformation r at residue i, E(·, ·) is a
pairwise interaction energy between RCs, and the one-body terms E(·) measure
the internal energy of each RC plus its interactions with non-flexible parts of
the system. Let us use Ea to denote a pairwise or 1-body energy for residues in
state a. Now, to derive a lower bound, we start with the true minimum value of
the LME over our sequence space S, which is (using Eq. 1)

c0 + min
s∈S

∑
a∈A

caEa(s). (4)



Letting Ra(s) be the conformation space available to a sequence s in state a,
and plugging in Eq. (3), Eq. (4) can be expanded to

c0 + min
s∈S

∑
a∈A

ca min
r∈Ra(s)

∑
i

Ea(ir) +
∑
j<i

Ea(ir, jr)

 . (5)

To obtain a tractable bound, we relax Eq. (5) by moving the minima inside the
sums. This operation can only decrease the value of the expression (this is a
general property of interchanging summation and minimization), resulting in a
valid lower bound. Let S(i) be the set of amino acid types available at residue i,
let Ra(b, i) be the set of unpruned RCs available to amino acid type b at residue
i in state a, and let us use the notation ir for an RC at residue i, following
previous work.1,4–6 The relaxation yields

c0 +
∑
i

min
b∈S(i)

∑
a∈A

min
ir∈Ra(b,i)

caEa(ir) +
∑
j<i

min
b′∈S(j)

min
js∈Ra(b′,j)

caEa(ir, js)

 .

(6)

So Eq. (6) is a lower bound on Eq. (4), i.e., for the LME we are bounding.
Each state may have flexible residues besides the mutable residues; for the

purposes of Eq. (6), these are all considered separately. Hence, the sum over i
runs over all mutable residues, which are shared between all states, and also
over other flexible residues, which may differ between states and are treated as
different residues in the sum (with ca being nonzero only for the state to which
the residue belongs).

This bound, Eq. (6), can also be used with continuous flexibility, with only
a change in definitions for the pairwise and 1-body energies Ea. Each of these
energies is associated with an RC or a pair of RCs, so when we introduce contin-
uous flexibility, Ea is no longer associated with a single conformation but with
a set of conformations defined by bounds on the continuous degrees of freedom
of the residues whose energy is being measured. Within these bounds there is
a set of “ideal values” for all the degrees of freedom. So, for the terms caEa in
Eq. (6), we let Ea denote the pairwise or 1-body energy at the ideal values of all
continuous degrees of freedom if ca < 0, but we let Ea denote the minimum value
of the 1- or 2-body energy over the allowed ranges for all continuous degrees of
freedom if ca > 0. Using these definitions, Eq. (5) is a valid lower bound for
the LME Eq. (4) over our node’s sequence space, and so Eq. (6) is a valid lower
bound, using the same reasoning as in the rigid case.

Regardless of which definition is used, the pairwise and 1-body energies Ea

can be precomputed for an RC or a pair of RCs, before comets begins. This
precomputation is described in previous work on single-state design.4–6 A tighter
bound can be achieved by using a larger rotamer library for the terms with
negative coefficients.
B.3 Complexity analysis and proof of Theorem 1
Because the algorithm described in Section B.2 can be used for any sequence
tree node, it provides a constructive proof of Theorem 1.



Proof. The bound can be computed using Eq. (6), as described in Section B.2.
For each state a and each RC ir at each residue i, the term caEa(ir) can be com-
puted in constant time, because Ea(ir) is simply looked up from the precomputed
single-residue energies. Then for each residue j, the term min

b′∈S(j)
min

js∈Ra(b′,j)
caEa(ir, js)

can be computed in O(r) time, because the minimum is over O(r) precomputed
pairwise interaction energies that can be looked up and multiplied by ca in con-
stant time. So the

∑
j<i

sum has O(n) terms that can each be computed in O(r)

time, meaning the sum can be computed in O(nr) time. Thus, the quantity in
large parentheses can be computed in O(nr) time. For each residue i, this quan-
tity needs to be computed O(rs) times. So the cost for each term of the

∑
i is

O(nr2s). Therefore, the cost to evaluate the entire
∑

i, and thus to compute our
lower bound, is O(n2r2s).

C Computational Experiments
Protein design calculations were performed in order to measure the efficiency of
comets and its ability to design proteins with properties undesignable by single-
state methods (Section 3 of the main text). In this section, we provide details of
these test cases: the types of systems used (Section C.1) and the results of each
test case in table format (Section C.2).

C.1 Types of systems

Systems of four types were used: designs for specificity on a protein that can
form two or more different complexes; optimization of the binding energy for a
single complex; stabilization of a single protein robust to choice of force field;
and stabilization of the reduced form of angiotensinogen relative to the oxidized
form or vice versa.

Systems of the first type involve a protein that can form two different com-
plexes whose structures are known. This type can be viewed as a realistic version
of the toy example above (Section A). Proteins were redesigned in four different
ways: either to prefer one complex over the other or to stabilize both, and with
either rigid or continuous flexibility modeling. For designs to favor one complex,
the objective function was the binding energy for that complex (the energy of the
bound state minus that of the unbound state), and for designs to favor both com-
plexes, the objective function was the sum of the complexes’ binding energies.
In each case, constraints were placed on all binding energies and on unbound
state energies. Desired binding energies were constrained to be better than the
wild-type binding energy for the same complex, while undesired binding ener-
gies were constrained to be worse than wild-type. To ensure protein stability, the
average of the unbound state energies was constrained to be no more than 10
kcal/mol worse than the wild-type average. The pairs of complex structures for
these designs were obtained from random entries in the INstruct database.11 The
pairs’ PDB ids were 2a40/2a41, 2a5y/3lqr (the angiotensinogen run in Fig. 1),
2gzd/2gzh, 2ngr/1grn, 3egd/3egx, 3efo/3eg9, 3k75/3lqc, 3ktp/3ktr, 3n1f/3n1q,
and 3n1g/3n1m. These complexes were drawn from both protein-protein and
protein-peptide interactions. In addition to these two-complex systems, a set of



larger designs was performed on a set of ten complexes of bovine trypsin crystal-
lized with ten different variants of bovine pancreatic trypsin inhibitor (BPTI).9

Designs were performed either to maintain binding by the wild-type BPTI while
blocking binding to the nine mutant variants, or to enhance binding to all vari-
ants. Protein design to identify enzyme variants resistant to certain inhibitors
has been used in the study of bacterial resistance to antibiotics, and has appli-
cations to the selection of inhibitors more robust to resistance.3

The second type of system was optimization of the binding energy for a single
complex, with constraints handled as in the specificity calculations. Treating
affinity calculation as a multistate design allows accounting for variations in the
unbound state energy, both to ensure the stability of the unbound state and
to compute its effect on binding affinity. Structures for these designs were also
drawn from the INstruct database:11 1b6c, 1nez, 1stf, 1vyh, 2b4s, 2h0d, and
2nqa.

Fig. S2. For the design run optimizing the difference in energy between the reduced
and oxidized states of angiotensinogen (PDB ids 2wxy and 2wxx, respectively), the
single mutation Y12I (blue to green) was found to fit well into the reduced state, but
to cause steric clashes (pink) in the oxidized state. The selection of this single mutant as
optimal required explicit multistate design to destabilize the undesired oxidized state,
while maintaining the stability of the reduced state: optimization of either the reduced
or oxidized state alone yielded aromatic residues at position 12.

The third type of system was stabilization of a single protein, but in a way
meant to produce stabilizing mutations that are robust to the choice of force field.
This strategy may be useful for obtaining mutations that are more likely to work
in practice. For these calculations, the protein’s energy was optimized using the
amber force field, but the energies using both the amber and charmm force
fields were constrained to improve relative to the wild type. The proteins used
here were drawn from the test set of protein energy optimizations in Gainza,
Roberts, and Donald.4 The structures’ PDB ids were 2o9s, 2qsk, 2ril, 3a38, and
3g36.



Finally, the fourth type of system was the stabilization of the reduced form
of angiotensinogen relative to the oxidized form (Fig. S2) or vice versa. This was
treated as an unconstrained optimization of the difference between the states,
which have been crystallized (PDB ids 2wxy and 2wxx respectively13). This type
of setup arises in experimental studies of protein function, when one wishes to
design a mutant to “freeze” a protein in one of two or more conformational states
in order to study the functional role of the chosen state. For example, the N600K
mutation in the motor protein Ncd12 induces Ncd to adopt a conformational state
typically only induced by ATP binding; studies of this mutant helped to establish
the temporal and mechanistic relationship between the nucleotide binding and
force generation of this motor.7



C.2 Details of protein design runs

Table 1. Protein design test cases with continuous flexibility, as described in Section
3 of the main text. Type is “aff” for designs for affinity, “stab” for designs for stability
robust to force field choice, “spec” for designs to be specific to one complex, “multi”
for designs to be multispecific to more than one, and “red” or “ox” for designs to favor
either a reduced or oxidized state (each type is described further in Section C.1). As
described in Section 3 of the main text, s is the number of states, N is the number of
sequences in the designed states, m is the number of sequence tree nodes created, and
g is the number of state GMECs computed. Subscripts 1 and 5 denote calculation of
the best sequence or enumeration of the best 5 sequences respectively. Ne denotes the
number of sequences enumerated (all runs were set to enumerate the five best sequences,
but Ne < 5 if less than five sequences in the design space satisfy the constraints). Table
continues on next page.

Protein
redesigned

Mutable
residues

PDB id(s) Type s N Ne m1 m5 g1 g5

Beta-2-
micro-
globulin

52, 54, 56, 57, 63 1nez aff 2 5488 5 2386 2386 84 110

Papain 18, 19, 21, 159,
177, 181

1stf aff 2 9408 5 5784 5784 7 15

Trypsin 189, 190, 192,
195, 213

BPTI set* multi 20 896 0

Trypsin 189, 190, 192,
195, 214

BPTI set* spec 20 896 0

Scytovirin 1, 6, 10, 13, 28,
43, 48, 58, 61, 76

2qsk stab 2 896 1 35 2

Putative
monooxyge-
nase

5, 13, 21, 55, 57,
59, 61, 70

2ril stab 2 9604 0

High-
potential
iron-sulfur
protein

6, 7, 14, 19, 23,
26, 41, 60, 64,
69, 73, 74, 78

3a38 stab 2 1882384 5 25708 40141 2 10

dpy-30-like
protein

64, 68, 87, 91 3g36 stab 2 196 0

Actin 24, 25, 26, 28,
345, 349

2a40/2a41 multi 4 392 1 248 97

CED-4 1, 5, 227, 229,
259, 265, 279,
282

2a5y/3lqr multi 4 288 5 221 221 85 96

CED-5 1, 5, 227, 229,
259, 265, 279,
283

2a5y/3lqr spec 4 288 1 217 78

Rab-11A 44, 46, 47, 48, 50 2gzd/2gzh multi 4 2744 0

*BPTI set: 3btd, 3bte, 3btf, 3btg, 3bth, 3btk, 3btm, 3btq, 3btt, 3btw



Protein re-
designed

Mutable
residues

PDB id(s) Type s N Nem1 m5 g1 g5

Rab-11A 44, 46, 47, 48,
51

2gzd/2gzh spec 4 2744 5 601 601 28 40

DNA poly-
merase
beta

291, 309, 311,
322, 324

3k75/3lqc multi 4 2744 0

DNA poly-
merase
beta

291, 309, 311,
322, 325

3k75/3lqc spec 4 2744 3 1388 556

Poly-
adenylate-
binding
protein 1

564, 571, 580,
582, 584

3ktp/3ktr multi 4 448 1 352 16

Poly-
adenylate-
binding
protein 1

564, 571, 580,
582, 585

3ktp/3ktr spec 4 448 0

CDO 867, 872, 874,
901, 918

3n1f/3n1q multi 4 112 0

CDO 867, 872, 874,
901, 919

3n1f/3n1q spec 4 112 1 112 7

Brother of
CDO

753, 756, 758,
760, 789, 804

3n1g/3n1m multi 4 224 5 205 224 4 25

Brother of
CDO

753, 756, 758,
760, 789, 805

3n1g/3n1m spec 4 224 1 224 6

Type I
TGFbeta
receptor

199, 203, 267,
268, 269

1b6c aff 2 64 5 64 64 2 13

Leupeptin
inhibitor

356, 357 2nqa aff 2 361 5 91 145 5 13

Ponsin 824, 826, 828,
834, 840, 842,
848, 849, 850,
859, 861, 863,
872, 877

2o9s stab 2 4374 1 665 2

Angio-
tensinogen

12, 15, 136,
138, 140

2wxy/2wxx red 2 224 5 153 180 38 54

Angio-
tensinogen

12, 15, 136,
138, 141

2wxx/2wxy ox 2 224 5 203 207 10 22

Sec24d 833, 834, 835,
836, 1025

3efo/3eg9 spec 4 4116 2 1830 565



Table 2. Protein design test cases without continuous flexibility. Columns as in Table 1.
Table continues on next page.

Protein
redesigned

Mutable
residues

PDB id(s) Type s N Ne m1 m5 g1 g5

Leupeptin
inhibitor

356, 357 2nqa aff 2 361 5 37 73 2 10

Trypsin 189, 190, 192,
195, 213

BPTI set* spec 20 2476099 5 14707 14707 20 100

Scytovirin 1, 6, 10, 13, 28,
43, 48, 58, 61, 76

2qsk stab 2 4.7x107 1 109 2

Scytovirin 1, 6, 10, 13, 28,
43, 48, 58, 61, 76

2ril stab 2 1.7x1010 0

dpy-30-like
protein

64, 68, 87, 91 3g36 stab 2 6859 2 73 2

CED-4 1, 5, 227, 229,
259, 265, 279,
282

2a5y/3lqr multi 4 87808 5 39 151 4 20

CED-4 1, 5, 227, 229,
259, 265, 279,
282

2a5y/3lqr spec 4 87808 5 30 87 4 20

Rab-11A 44, 46, 47, 48, 50 2gzd/2gzh multi 4 2476099 5 42193 45883 4 20

Rab-11A 44, 46, 47, 48, 50 2gzd/2gzh spec 4 2476099 5 59077 61525 4 20

Cdc42 62, 63, 64 2ngr/1grn multi 4 6859 0

Cdc43 62, 63, 65 2ngr/1grn spec 4 6859 0

Sec24a 430, 435, 496,
748, 750, 752,
808

3egd/3egx multi 4 5488 5 1480 1480 18 46

Sec24a 430, 435, 496,
748, 750, 752,
809

3egd/3egx spec 4 5488 5 1480 1480 4 20

DNA poly-
merase beta

291, 309, 311,
322, 324

3k75/3lqc multi 4 2744 0

DNA poly-
merase beta

291, 309, 311,
322, 324

3k75/3lqc spec 4 2744 0



Protein re-
designed

Mutable
residues

PDB id(s) Type s N Nem1 m5 g1 g5

Poly-
adenylate-
binding
protein 1

564, 571, 580,
582, 584

3ktp/3ktr multi 4 2476099 5 4249 5059 4 20

Poly-
adenylate-
binding
protein 1

564, 571, 580,
582, 584

3ktp/3ktr spec 4 2476099 5 1315 2593 4 20

CDO 867, 872, 874,
901, 918

3n1f/3n1q multi 4 2476099 5 50851 514274 20

CDO 867, 872, 874,
901, 918

3n1f/3n1q spec 4 2476099 5 60661 638474 20

PAF-
acetyl-
hydrolase

194, 212, 235,
236, 238, 254,
316

1vyh aff 2 1792 5 1275 1309 2 10

Protein
tyrosine
phos-
phatase
1B

7, 11, 12, 268,
269, 272

2b4s aff 2 2744 5 647 647 2 10

RING2 22, 26, 29, 32,
36

2h0d aff 2 2744 5 206 236 2 10

Angio-
tensinogen

12, 15, 136,
138, 141

2wxx/2wxy ox 2 224 5 27 31 2 10

Sec24d 833, 834, 835,
836, 1025

3efo/3eg9 multi 4 4116 5 634 640 12 36

Sec24d 833, 834, 835,
836, 1025

3efo/3eg9 spec 4 4116 4 704 6

References

1. Johan Desmet, Marc de Maeyer, Bart Hazes, and Ignace Lasters. The dead-end
elimination theorem and its use in protein side-chain positioning. Nature, 356:539–
542, 1992.

2. Johan Desmet, Jan Spriet, and Ignace Lasters. Fast and accurate side-chain topol-
ogy and energy refinement (FASTER) as a new method for protein structure op-
timization. Proteins: Structure, Function, and Bioinformatics, 48(1):31–43, 2002.

3. Kathleen M. Frey, Ivelin Georgiev, Bruce R. Donald, and Amy C. Anderson. Pre-
dicting resistance mutations using protein design algorithms. Proceedings of the
National Academy of Sciences of the USA, 107(31):13707–13712, 2010.

4. Pablo Gainza, Kyle Roberts, and Bruce R. Donald. Protein design using continuous
rotamers. PLoS Computational Biology, 8(1):e1002335, 2012.

5. Ivelin Georgiev, Ryan H. Lilien, and Bruce R. Donald. The minimized dead-end
elimination criterion and its application to protein redesign in a hybrid scoring



and search algorithm for computing partition functions over molecular ensembles.
Journal of Computational Chemistry, 29(10):1527–1542, 2008.

6. Mark A. Hallen, Daniel A. Keedy, and Bruce R. Donald. Dead-end elimination
with perturbations (DEEPer): A provable protein design algorithm with continuous
sidechain and backbone flexibility. Proteins: Structure, Function and Bioinformat-
ics, 81(1):18–39, 2013.

7. Mark A. Hallen, Zhang-Yi Liang, and Sharyn A. Endow. Two-state displacement
by the kinesin-14 Ncd stalk. Biophysical Chemistry, 154(2-3):56–65, 2011.

8. Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2):100–107, 1968.

9. Ronny Helland, Jacek Otlewski, Ottar Sundheim, Michal Dadlez, and Arne O.
Smal̊as. The crystal structures of the complexes between bovine β-trypsin and ten
P1 variants of BPTI. Journal of Molecular Biology, 287(5):923–942, 1999.

10. Andrew R. Leach and Andrew P. Lemon. Exploring the conformational space of
protein side chains using dead-end elimination and the A* algorithm. Proteins:
Structure, Function, and Bioinformatics, 33(2):227–239, 1998.

11. Michael J. Meyer, Jishnu Das, Xiujuan Wang, and Haiyuan Yu. INstruct: a
database of high-quality 3D structurally resolved protein interactome networks.
Bioinformatics, 29(12):1577–1579, 2013.

12. Hebok Song and Sharyn A. Endow. Decoupling of nucleotide- and microtubule-
binding sites in a kinesin mutant. Nature, 396:587–590, 1998.

13. Aiwu Zhou, Robin W. Carrell, Michael P. Murphy, Zhenquan Wei, Yahui Yan,
Peter L. D. Stanley, Penelope E. Stein, Fiona Broughton Pipkin, and Randy J.
Read. A redox switch in angiotensinogen modulates angiotensin release. Nature,
468:108–111, 2010.


