Binuclear Cu_A Formation in Biosynthetic Models of Cu_A in Azurin Proceeds via a Novel Cu(Cys)₂His Mononuclear Copper Intermediate

Saumen Chakraborty,^{†,§} Michael J. Polen,^{†,±} Kelly N. Chacón,[‡] Tiffany D. Wilson,[†] Yang Yu,^{†,≠} Julian Reed,[†] Mark J. Nilges,[†] Ninian J. Blackburn,^{‡,*} Yi Lu^{†,*}

[†] Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
[‡] Institute of Environmental Health, Oregon Health & Sciences University, Portland, OR 97239, USA

Email: yi-lu@illinois.edu; blackbni@ohsu.edu

Cu _A Variant	Kinetic Model	Rate Constants O ₂ -rich
Glu114GlyCu _A Az		$ \begin{aligned} &k_1 = 10.75 \pm 0.37 \ s^{-1} \\ &k_2 = 2.20 \pm 0.03 \ s^{-1} \\ &k_3 = (1.13 \pm 0.03) \times 10^{-3} \ s^{-1} \end{aligned} $
Glu114AlaCu _A Az	CuSO₄ → T2 Cu T2 Cu → I _x I _x → T1 Cu	
Glu114LeuCu _A Az		
Glu114GlnCu _A Az		$ \begin{aligned} &k_1 = 6.77 \pm 0.41 \text{ s}^{-1} \\ &k_2 = 0.33 \pm 0.01 \text{ s}^{-1} \\ &k_3 = (3.41 \pm 0.06) \times 10^{-3} \text{ s}^{-1} \end{aligned} $

Table S1: Rates derived from analysis of the O₂-rich stopped-flow data of all Glu114XCu_AAz variants.

Table S2: Parameters extracted from fitting of the EPR data of Glu114XCu_AAz variants obtained at various time points after mixing apo proteins with 0.4 eq. CuSO₄. Parameters corresponding to the earliest time points are shown in Table 2.

Cu _A Variant	Parameters					Populations (%)						
		I _{x1}	I _{x2}	T1	T2	Cu _A	Time (min)	I _{x1}	I _{x2}	T1	T2	Cu _A
Glu114GlyCu _A Az	$\begin{array}{c} g_x \\ g_y \\ g_z \\ A_x x 10^{-4} \ \mathrm{cm}^{-1} \\ A_y x 10^{-4} \ \mathrm{cm}^{-1} \\ A_z x 10^{-4} \ \mathrm{cm}^{-1} \end{array}$	2.034 2.036 2.152 10 6 101	2.027 2.020 2.185 23 22 87	1.989 2.048 2.242 22 6 69	N/A	2.010 2.026 2.169 21,19 29,4 63,57	0.83 35 135 285 430 1440	38 35 30 17 7 3	46 44 31 16 5 3	0 12 29 45 59 39	N/A	16 9 10 22 29 56
Glu114AlaCu _A Az	g_x g_y g_z $ A_x x10^{-4} \text{ cm}^{-1}$ $ A_y x10^{-4} \text{ cm}^{-1}$ $ A_z x10^{-4} \text{ cm}^{-1}$	2.036 2.022 2.163 7 14 100	2.039 2.022 2.187 12 24 75	2.035 2.045 2.269 9 6 45	2.043 2.095 2.255 31 37 142	2.016 2.026 2.167 19,23 30,3 62,57	0.83 5 20 60 180 270 1320	41 36 36 20 8 7 4	45 40 31 14 3 2 0	0 5 10 24 33 31 29	0 3 7 19 25 28 25	14 15 15 22 31 32 42
Glu114LeuCu₄Az	$g_x \ g_y \ g_z \ A_x x 10^{-4} \ { m cm}^{-1} \ A_y x 10^{-4} \ { m cm}^{-1} \ A_z x 10^{-4} \ { m cm}^{-1}$	2.009 2.035 2.163 14 12 73	2.005 2.032 2.240 27 13 74	2.040 2.047 2.259 2 27 46	N/A	2.014 2.026 2.168 15,19 31,6 61,57	0.75 1 5 45 210	55 61 54 34 3	22 28 24 16 2	0 1 6 38 80	N/A	23 10 15 12 14
Glu114GlnCu _A Az	g _x g _y g _z A _x x10 ⁻⁴ cm ⁻¹ A _y x10 ⁻⁴ cm ⁻¹ A _z x10 ⁻⁴ cm ⁻¹	2.011 2.035 2.151 20 14 82	1.991 2.092 2.249 8 41 133	2.031 2.060 2.289 1 23 38	N/A	2.018 2.024 2.171 25,23 31,7 61,55	0.83 5 20 55 225	68 52 35 17 11	18 13 9 2 2	3 25 33 51 47	N/A	10 10 23 30 40

Table S3: EPR Parameters of holo Cu_A for all variants prepared by mixing apo proteins with a mixture of 0.8eq Cu(II)/0.8 eq. Cu(I), shown in Figure S3. The experimental data were simulated as two types of Cu_A , one with symmetric, and another with asymmetric geometry. The parameters and relative population of the asymmetric Cu_A type are shown as italics in blue.

Cu _A Variant	Parameters		Po	Populations (%)				
Glu114GlyCu _A Az	g _x	2.014	2.003	57,	43			
	g_y	2.019	2.028					
	<i>g</i> _z	2.167	2.212					
	<i>A_x</i> x10 ⁻⁴ cm ⁻¹	24, 16	32, 13					
	$ A_y \times 10^{-4} \text{ cm}^{-1}$	19, 6	18, 23					
	$ A_z $ x10 ⁻⁴ cm ⁻¹	63, 60	64, 18					
Glu114AlaCu _A Az	g _×	2.016,	2.008	70,	30			
	g_y	2.027,	2.035					
	<i>g</i> _z	2.168,	2.219					
	<i>A_x</i> x10 ⁻⁴ cm ⁻¹	19, 23,	26, 15					
	$ A_y \times 10^{-4} \text{ cm}^{-1}$	30, 4	18, 24					
	$ A_z \times 10^{-4} \text{ cm}^{-1}$	61, 57	60, 18					
Glu114LeuCu₄Az	a,	2.019.	2.013	90.	10			
	g_{ν}	2.024.	2.045	,				
	Q _z	2.172,	2.216					
	$ A_x \times 10^{-4} \text{ cm}^{-1}$	25, 23	21, 8					
	$ A_v x 10^{-4} \text{ cm}^{-1}$	31, 7	14, 18					
	$ A_z \times 10^{-4} \text{ cm}^{-1}$	61, 54	65, 15					
Glu114GlnCu _A Az	g _x	2.015,	2.007	71,	29			
	g_{y}	2.027,	2.034					
	gz	2.169.	2.218					
	$ A_x \times 10^{-4} \text{ cm}^{-1}$	15,19	26, 15					
	$ A_{y} \times 10^{-4} \text{ cm}^{-1}$	30, 6	18, 24					
	A _z x10 ⁻⁴ cm ⁻¹	61, 57	60, 18					

Sample/Fit	F	Cu-S (Cys)			Cu-N (His)			Cu-Cu			F.
		N	R(Å)	DW(Ų)	N	R(Ų)	DW(Å)	N	R(Å)	DW(Ų)	. —0
Glu114GlyCu _A Az	0.41	2	2.22	0.018	1	1.92	0.015	0.8	2.44	0.005	0.097
Glu114AlaCu _A Az	0.52	2	2.22	0.023	1	1.92	0.012	0.7	2.41	0.008	-0.06
Glu114LeuCu _A Az	0.49	2	2.19	0.02	1	1.84	0.021	0.7	2.44	0.012	3.95
Glu114GInCu _A Az	0.55	2	2.16	0.014	1	1.87	0.015	0.6	2.40	0.011	7.92

Table S4: Parameters extracted from fitting of the EXAFS data of holo Cu_A samples shown in Figure S4.

Figure S1. Specfit-derived spectra of different intermediates obtained from global analysis of the stopped-flow data of Glu114GlyCu_AAz (**A**), Glu114AlaCu_AAz (**B**), Glu114LeuCu_AAz (**C**), and Glu14GlnCu_AAz (**D**) shown in Figure 2. Concentrations of the species as a function of time are shown as insets. As CuSO₄ is consumed quickly, this reactant cannot be seen in the insets.

Figure S2: O₂-rich (A) and anaerobic (B) stopped flow data for all variants at pH 7. a) Glu114GlyCu_AAz, b) Glu114AlaCu_AAz, c) Glu114LeuCu_AAz, d) Glu114GlnCu_AAz.

Figure. S3. EPR spectra of holo a) Glu114GlyCu_AAz, b) Glu114AlaCu_AAz, c) Glu114LeuCu_AAz, d) Glu114GlnCu_AAz prepared by mixing apo proteins with a mixture of 0.8 eq. Cu(II) and 0.8 eq. Cu(I), recorded at pH 7. Fit to the experimental data are shown as black lines. Experimental conditions: H = 9.053 GHz, T=30 K, Modulation = 4G, Microwave power = 0.2 mW.

Figure S4. Fourier transform and EXAFS (inset) data of holo Cu_A samples prepared by mixing apo Glu114GlyCu_AAz (A), Glu114AlaCu_AAz (B), Glu114LeuCu_AAz (C), and Glu114GlnCu_AAz (D) with a mixture of 0.8eq Cu(II)/0.8 eq Cu(I).

Figure S5. EPR quantification of Cu(II) present in Glu114GlyCu_AAz I_x with time. Concentration of Cu(II) is obtained from by double integration of the EPR spectra at various time points against the standard curve of CuSO₄. A loss of Cu(II) concentration with time suggests that spin is being lost from the system forming EPR silent Cu(I). Experimental parameters: H = 9.053 GHz, T=30 K, Modulation = 4G, Microwave power = 0.2 mW, gain = 1600.