
Algorithms for deconvoluting different cell types from expression data sets: 
applicability to the adjustment of RNA-Seq data of ovarian cancer associated cells 

Background 

Enrichment of specific cell types from ovarian cancer associated ascites is often faced with the 
problem of other “contaminating” cell types. Determining such contaminations from gene 
expression profiles in silico is a well-established problem commonly referred to as 
'”deconvolution” (see a recent review of available algorithms [1]). Once the composition of a 
sample has been established, a correction against the contamination can be implemented. 

We found that none of the available algorithms is suitable for our specific conditions:  

(i) we are dealing with RNA-Seq data, while many older algorithms have been established on 
micro array data,  

(ii) we have a relatively small number of samples to correct and learn from,  

(iii) our datasets reflect two or three cell types involved, which are highly dissimilar,  

(iv) there is no prior knowledge of appropriate marker genes (since TAMs are not canonically 
activated macrophages,  

(v) the profile of tumor cells in ascites was undetermined prior to the present study, and 

(vi) we require both an estimate of the contamination and a correction of expression gene 
profiles. 

Description of algorithm  

Our chosen approach is mathematically straightforward: Starting with two pure reference 
samples representing the cell type of interest ("target") and the contaminating cell type we 
select a set of suitable contamination marker genes, use these to estimate the extent of 
contamination and then adjust the target dataset by a linear model. The purity of reference 
samples must be determined by other methods, e.g. microscopy or flow cytometry. 

Potential marker genes are defined as genes with (i) at least a three fold change between 
target and contaminating cell types and (ii) a maximum expression of 10 TPM in non-target 
cell types. These candidates are ranked by fold change, the top j are skipped (see below) and 
a fixed number is chosen. 

Expression of marker genes is modeled as 

𝑦𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 =  𝑦𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ∗  𝑝 +  𝑦𝑡𝑎𝑟𝑔𝑒𝑡 ∗  (1 − 𝑥) 

 with 𝑦𝑠  being gene expression in TPM and 𝑥  the contamination percentage of a single 
contamination. We replace 𝑦𝑡𝑎𝑟𝑔𝑒𝑡 ∗  1 − 𝑥  with the expression in our target cell type 
reference sample (𝑦𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ), thereby introducing a slight bias to underestimate the 
contamination percentage. Note that for marker genes, 𝑦𝑡𝑎𝑟𝑔𝑒𝑡 is less than 10 TPM, while 
𝑦𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 is typically much larger. An underestimation of the contamination keeps our 
correction conservative, preventing too harsh a correction. 
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Our final estimation (𝑃) is the median of  

𝑝 =  
(𝑦𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 −  𝑦𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒) 

 𝑦𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛
 

𝑥 smaller than 0 is replaced by 0, 𝑃 >1.0 is rejected. 

To correct, for each gene we replace 𝑦𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 with  

  
𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =  (𝑦𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 −  𝑃 ∗  𝑦𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛)

(1.0 −  𝑃)
 

thereby rescaling to TPM. 

To extend the approach to a three-cell line setting, we estimate contamination percentages for 
each cell type independently using disjunct mark sets and replace 𝑦𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 with  

 𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =   
𝑦𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 −  𝑃1 ∗  𝑦𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛1 −  𝑃2 ∗  𝑦𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛2

1.0 −  𝑃1 −  𝑃2
   

Implausible results (𝑃1 +  𝑃2 >  1.0) are rejected. 

Estimation of nuisance parameters 

The algorithm has two nuisance parameters, the number of genes to choose (k), and the 
number of ranks to skip (j). Nuisance parameters were optimized in a simulation setting with 
1,000 repetitions per parameter value. Monocyte samples (contamination) from GSE60424 
(Table 1) were mixed with samples from other blood cells (target) at randomized percentages. 
One monocyte and one target sample (not part of the mixture) were chosen as reference. It 
was found that no straightforward correlation between the nuisance parameters and the 
accuracy of the algorithm exists (Figure 1). 

 

Table 1: Samples in dataset GSE60424 

Tissue Sample count Comment 
B-Cells 20  
CD4 20  
CD8 19 Sample lib264 omitted due to monocyte signal 
NK    14  
Monocytes 20  
Neutrophils  20  
Whole blood 20  
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Figure 1: Parameter sweep. Shown is the change in mean absolute error between (corrected) 
mixture TPM and ground truth. We performed 500 simulations per data point. Blue: values 
chosen for correction in the main paper. 
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Evaluation of algorithms 

We evaluated algorithms in a simulation setting, in which arbitrary percentages of randomly 
chosen samples of different tissues were mixed. Different samples from the same tissue were 
chosen as references. Two RNA-Seq data sets of different tissues were used: the large Gene 
Tissue-Expression (GTEx) dataset [2] (Table 2), and E-MTAB-2836 [3], a smaller dataset that 
includes immune related tissue (Table 3). Simulations were run 10,000 times. 

Table 2: Tissues in GTExdataset  
(retrieved on 2015-06-08, only the samples in the GTEx pilot study were used). 

Tissue Sample count 
Adipose - Subcutaneous 128 
Artery - Tibial 137 
Heart - Left Ventricle 95 
Lung 133 
Muscle - Skeletal 157 
Nerve - Tibial 114 
Skin - Sun Exposed (Lower 

leg) 

126 
Thyroid 120 
Whole Blood  191 

 

Table 3: Tissues in E-MTAB-2836 dataset 

Tissue Sample count 
adipose tissue 7 
bone marrow 8 
colon 8 
endometrium 9 
gall bladder  7 
heart 9 
lung 8 
lymph node  13 
placenta 7 
prostate 7 
small intestine 8 
testis 8 
thyroid 9 

 

The in-silico mixture allowed evaluation of algorithms on the difference between corrected and 
uncorrected Mean-Absolute-Error (MAE)  

deltaMAE = mean(|𝑦!"##$!%$& −  𝑦!"#$%&'"$'!|)  −𝑚𝑒𝑎𝑛(|𝑦!"#$%&' −  𝑦𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ)|). 

  



Additional File 1: Reinartz et al., A transcriptome-based global map of signaling pathways in the 
ovarian cancer microenvironment and associations with clinical outcome  
 
 

	 5 

Comparison with CIBERSORT and DeconRNASeq   

We next compared our algorithm with two recently published methods, CIBERSORT and 
DeconRNASeq. 

CIBERSORT [4] was established to distinguish 22 closely related immune cell types via 
support vector regression from microarray data, although the authors expect it to work with 
RNA-Seq data. Besides an estimation of the distribution of cell types, it provides a p-value “to 
test the null hypothesis that no cell types in the signature matrix […] are present in a given 
GEP [gene expression profile] mixture”. The 22 immune cell type signature (LM22) provided 
with CIBERSORT is unable to estimate macrophage contents in our tumor cell samples 
according to its own p-value estimation (our most contaminated sample: p = 0.02; all other 
samples: p > 0.1).  

To generate a custom signature matrix using CIBERSORT's automated procedure three pure 
samples of each cell type are required. In addition, the CIBERSORT FAQ states “Building the 
specific collection of genes in a signature matrix is a nuanced process, and is critical for its 
performance on complex tissues. Construction and validation of LM22 required more than a 
year of investigation”. Consequently, we ran CIBERSORT with ad-hoc signature matrices 
composed of the 500 genes showing the highest extent of differential expression (250 up, 250 
down, min. 10 TPM in the higher tissue).  

DeconRNASeq [5] models RNA-Seq samples as linear mixtures estimated via quadratic 
programing using a signature matrix. The signature matrix captures the expression difference 
of hundreds of genes across pure samples. The implementation does not offer correction, nor 
an automated way to build the signature matrix. We build an ad-hoc signature matrix as above 
for CIBERSORT.  

Our algorithm was run k = 250, j = 0 in order to keep comparable parameters. While our 
algorithm was able to predict the contamination in most cases (r = 0.8), both CIBERSORT and 
DeconRNAseq (r < 0.3) failed using these ad-hoc signature matrices (Figures 2 and 3).  
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Figure 2: Algorithm comparison with CIBERSORT and DeconRNASeq on GTEx samples [2]. 
Conditions: 10,000 simulations per algorithm, random percentage between 0 and 50%, single randomly 
chosen reference per tissue and simulation. (A) Actual versus calculated percentage. Blue: diagonal. 
(B) Resulting deltaMAE between corrected and uncorrected mixtures in comparison to the ground truth.  

A 

B 
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Figure 3: Algorithm comparison on E-MTAB-2836 dataset [3]. Conditions: 10,000 simulations per 
algorithm, random percentage between 0 and 50%, single randomly chosen reference per tissue and 
simulation. (A) Actual vs calculated percentage. Blue: diagonal. (B) Resulting deltaMAE between 
corrected and uncorrected mixtures in comparison to the ground truth.  

A 

B 
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Other algorithms 

A number of other algorithms were considered, but their application was rejected for technical 
reasons. 

ContamDE's [6] focus is on differential expression between tumor (mixture) and normal (pure) 
samples. It requires at least two of each and has a long runtime (on the order of minutes), 
complicating simulations.  

UNDO [7] is a completely unsupervised algorithm that merely uses mixture samples to 
deconvolute tumor and normal tissue. It does not use pure references and determines suitable 
marker genes solely from the mixture data. Although it was established on microarray data, it 
has been used with some success on RNA-Seq data [6]. When adjusting our simulation to 
provide two mixture samples, we found that UNDO only works if both mixtures are mixtures of 
the same (sample, contamination) samples. This makes it unusable in our setting, where there 
is only one mixture per patient available.  

TEMT [8] works on transcription level RNA-Seq alignments. Transcription level analysis is 
inappropriate for the cell-cell network investigated in this study.  

ESTIMATE [9] produces an 'ImmunoScore' that is not usable for correction. 

IsoPure [10] explicitly biases its results to the assumption that the two cell types being 
deconvoluted are closely related (tumor and normal tissue). 

DeMix [11], Dsection [12] and PSEA [13] have only been established on microarrays. 

Limitations of our algorithm 

Finally, two important limitations of our approach need to be briefly addressed, although these 
are not relevant to the present study:  

First, our algorithm is unable to distinguish closely related cell types, such as the CD4 and 
CD8 sample from GSE60424 (Figure 4).  

Second, as shown in Figure 5, small numbers of reference sample combinations caused all 
instances in Figure 3 where the algorithm actually increased MAE. Therefore, the references 
must be well chosen to represent the contaminating cell types. 

Availability 

A python implementation of our algorithm is included as Additional File 6.  

The code is also available, together with our simulation code, from 
https://github.com/IMTMarburg/rnaseqmixture 
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Figure 4: Failure of correction on closely related cell types from GSE604242.  
10,0 simulations. CD4 samples were contaminated with CD8 and vice versa. 

 

Figure 5: Reference sample dependency of the algorithm. Data from Figure 3, ‘median’ subset. 
Red: simulations with worse MAE after correction.  
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