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SUPPLEMENTARY METHODS 

Flux Balance Analysis (FBA) 
To mathematically formulate FBA, let S denote the stoichiometric matrix of dimensions m x n where m is 
the number of metabolites and n the number of metabolic fluxes, x the vector of metabolic fluxes (internal 
and external), c the vector of coefficients expressing the cellular objective (e.g., biomass), Zopt the optimal 
objective value, and xlb, xub lower and upper bounds, respectively, on the metabolic fluxes implied by 
empirical evidence of irreversibility or by the composition of the growth medium. The FBA problem is 
formulated as: 

𝑍!"# = 𝑚𝑎𝑥𝐱  𝒄′𝐱 
                                                                                 s. t.   𝐒𝐱 = 𝟎,                                             [S1] 

                                                     𝐱𝒍𝒃 ≤ 𝐱 ≤ 𝐱𝒖𝒃, 
where 0 is the vector of all zeroes and primes indicates transpose.  
 
Inverse Flux Balance Analysis (invFBA) 
Let us assume we have a set of measured metabolic flux distributions xi, where i = 1,…,N. Let us also 
assume that, due to measurement noise, these flux distributions are not necessarily optimal, even if they 
are feasible solutions of the FBA problem (Eq. S1). With x* denoting an optimal solution of Eq. 1, let 𝜖!≥ 
0 denote the suboptimality gap of xi, i.e., the distance between the measured objective function value and 
the predicted one. This implies: 
 
                                                                       𝐜!𝐱∗ − 𝒄!𝐱! = 𝜖!              
                                                
It is well known that for every maximization linear programming problem like Eq. 1 we can write a 
corresponding Lagrangian dual problem (24): 
 

min𝒑,𝒒𝟏,𝒒𝟐   𝒒𝟐! 𝐱𝒖𝒃 − 𝒒𝟏! 𝐱𝒍𝒃  
                                                               s. t.   𝐩!𝐒 −  𝒒𝟏! + 𝒒𝟐! = 𝒄!,                                          [S2] 
                                                                       𝒒𝟏 ,   𝒒𝟐 ≥ 𝟎, 
 
where p, q1, and q2 are the dual variables corresponding to the constraint 𝐒𝐱 = 𝟎, 𝐱 ≥ 𝐱𝒍𝒃 and 𝐱 ≤ 𝐱𝒍𝒃 
respectively. The optimal objective values of (the primal) problem (Eq. S1) and the dual problem (Eq. S2) 
are equal (strong duality (24)). Each element pi, i=1,…, m of p can be interpreted as a shadow price for 
metabolite i. Assuming that none of the inequality constraints in Eq. S1 are binding, there exists a set of 
prices p so that the value ck of one unit of flux x!∗  is equal to the sum of the prices of the metabolites that 
make up x!  in the proportions given by the kth column of the stoichiometry matrix S.  
 
For any measured (and feasible) metabolic flux distribution  𝐱!, and using Eq. S2, the strong duality 
theorem (which ensures the equality of the optimal primal and dual objectives) [25] implies the following 
set of conditions:   
 

𝐩𝐢!𝐒 −  𝒒𝟏𝒊
!
+ 𝒒𝟐𝒊

!
= 𝒄!,∀𝒊, 

𝒒𝟐𝒊!𝐱𝒖𝒃 − 𝒒𝟏𝒊
!
𝐱𝒍𝒃 − 𝜖! =  𝒄!𝐱! ,∀𝑖,                                        [S3]       

𝒒𝟏𝒊 ,   𝒒𝟐𝒊 ≥ 𝟎, ∀𝑖. 
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These equations guarantee that 𝐱! is near-optimal, that is, its objective cost is 𝜖!  away from the optimal 
objective cost value of Eq. 1. Put differently, the equations above describe a set of vectors c that lead to 
the near-optimality of xi. This set of c’s is a cone C, namely, a set that contains all non-negative multiples 
of its elements. This conclusion is quite intuitive since it suffices to determine the objective coefficient 
vector up to a non-negative multiplicative constant. Fig. 1 illustrates the conic structure of the set of c's 
that validate the optimality of a given metabolic flux distribution.  
 
So far, we have characterized a set of c vectors that are consistent with the measurements xi. It is 
important to note that there are many valid cellular objectives (an infinite number of c vectors in the cone 
C) that are consistent with the measured flux distribution. Essentially, FBA modeling cannot lead to 
unique inference of the cellular objective from measured fluxes. Collecting the constraints in Eq. S3 for 
all measurements i = 1,…,N and minimizing the total sub-optimality gap, we obtain the following 
optimization problem (see Appendix A for further details): 
 

min𝒑𝒊,𝒒𝟏𝒊 ,𝒒𝟐𝒊 ,𝝐𝒊,𝒄   𝜖!
!

!!!
 

            s. t.      𝐩𝒊!𝐒 −  𝒒𝟏𝒊
!
+ 𝒒𝟐𝒊

!
= 𝒄!,∀𝑖, 

 𝒒𝟐𝒊!𝐱𝒖𝒃 − 𝒒𝟏𝒊
!
𝐱𝒍𝒃 − 𝜖! =  𝒄!𝐱! ,∀𝑖,                            [S4] 

         𝒒𝟏𝒊 ,   𝒒𝟐𝒊 ≥ 𝟎, ∀𝑖, 
𝜖! ≥ 0, ∀𝑖. 

 
We can interpret the above linear program as seeking a vector c that makes all measurement flux vectors 
xi as close as possible to optimal flux distributions in the FBA problem (Eq. S1).  

 
The problem in Eq. 4 has the trivial solution c = 0, which is reasonable given our observation that we can 
only determine the objective coefficient vector up to a non-negative multiplicative constant. It follows 
that we need to introduce some form of regularization to restrict c to non-trivial choices.  
 
One possible regularization is to add to the formulation in Eq. S4 the L2-norm equality constraint ||c||2 = 
1. In this case, the objective coefficient vector c lies on the surface of the unit ball in Rn. To gain more 
geometric insight into the proposed L2-regularized invFBA, consider the case of a single measured flux 
vector, say x (i.e., N = 1). Solving the problem in Eq. 4 amounts to minimizing c′(xj - x) over all c and all 
extreme points xj of the FBA polyhedron (feasible set of Eq. 1). We have 
                                       min!  𝒄′ 𝐱!  −  𝐱 =  min! 𝒄 𝐱!  −  𝐱 cos𝛼,                                    [S5] 
 
where α is the angle between c and xj - x and ||xj - x|| cosα is the projection of xj - x onto c. Thus, and 
since ||c|| = 1, minimizing Eq. S5 over c is equivalent to projecting x on all facets of the FBA polyhedron 
and selecting the c that is perpendicular to the closest facet. As an example, in Fig. S3 (right), we compare 
the distances dj, j = 1,…,4, between x and the four facets, which yields d1 as the minimum and sets the 
corresponding optimal objective coefficient vector to c1. 
 
Solving the FBA problem in Eq. S1, in practice, often leads to multiple optimal solutions. To select a 
unique optimal solution from the optimal solution set, a second optimization is required. In particular, one 
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minimizes the L1-norm of the metabolic flux distribution subject to the constraints of Eq. S1 and an 
additional constraint that guarantees the same objective value is achieved. The formulation is: 

                  min𝐱 |𝐱| 
                                                                                s. t.   𝒄!𝐱 = Z!"# , 
                                                                                        𝐒𝐱 = 𝟎,                                                [S6] 
                                                                                        𝐱𝒍𝒃 ≤ 𝐱 ≤ 𝐱𝒖𝒃. 
 
An L1-norm is appealing because of its sparsity-inducing properties, which can help the biological 
interpretation of the solution.  An L1-norm constraint can also be seen as a relaxation of the combinatorial 
problem that minimizes the number of nonzero elements of c in Eq. S4. In the same spirit, we propose the 
regularization constraint  𝑐!!

!!! = 1 and add it to Eq. S4, which leads to the formulation: 

Z!"#! =  min𝒑𝒊,𝒒𝟏𝒊 ,𝒒𝟐𝒊 ,𝝐𝒊,𝒄   𝜖!
!

!!!
 

                                                                         s.t. 𝑐!!
!!! = 1 

                                                                              𝐩𝐢!𝐒 −  𝒒𝟏𝒊
!
+ 𝒒𝟐𝒊

!
= 𝒄!,∀𝑖,                         

𝒒𝟐𝒊!𝐱𝒖𝒃 − 𝒒𝟏𝒊
!
𝐱𝒍𝒃 − 𝜖! =  𝒄!𝐱! ,∀𝑖,                   [S7] 

                                                                              𝒒𝟏𝒊 ,   𝒒𝟐𝒊 ≥ 𝟎, ∀𝑖, 
                                                                              𝜖! ≥ 0, ∀𝑖, 
where ZI

opt denotes the optimal value.  
 
Again motivated by the second step of FBA in Eq. S6, we propose a subsequent step in invFBA to 
minimize the L1-norm of c = (c1,…,cn) vectors that solve Eq. S6: 
 

min𝒑𝒊,𝒒𝟏𝒊!,𝒒𝟐𝒊!,𝝐𝒊,𝒄   |𝑐!|
!

!!!
 

                                                                 s.t.  𝜖!!
!!! = Z!"#! , 

                                                                       𝑐!!
!!! = 1 

                                                                       𝐩𝐢!𝐒 −  𝒒𝟏𝒊
!
+ 𝒒𝟐𝒊

!
= 𝒄!,∀𝑖,                         

𝒒𝟐𝒊!𝐱𝒖𝒃 − 𝒒𝟏𝒊
!
𝐱𝒍𝒃 − 𝜖! =  𝒄!𝐱! ,∀𝑖,                         [S8] 

                                                                        𝒒𝟏𝒊 ,   𝒒𝟐𝒊 ≥ 𝟎, ∀𝑖, 
                                                                        𝜖! ≥ 0, ∀𝑖. 
 
Part of the optimal solution of Eq. S8 is a sparse c vector that renders the given set of measured metabolic 
flux distributions x1,…,xN near-optimal in the FBA optimization (Eq. S1). One can then interpret non-zero 
elements of c as corresponding to important metabolic fluxes that are critical in the FBA optimization 
context and provide a minimal description of the cellular objective function. In the sequel, when we refer 
to the invFBA algorithm, we mean the two-step procedure of solving problems Eq. S7 and Eq. S8. Due to 
the L1 regularization and the use of multiple flux vectors xi as inputs to invFBA, the resulting c may not 
be perpendicular to one of the hyperplanes defining the FBA polytope; it can in fact be interior to the 
cone C containing all valid c's.  
 
Problem [S8] is a linear programming problem and it can be viewed as the convex relaxation of a problem 
that minimizes the L0-norm of c (i.e., the number of nonzero elements of c) instead of minimizing the L1-
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norm of c. To pursue more sparse objective functions, an integer programming problem is introduced to 
minimize the L0-norm of c. This problem is formulated as: 

min𝒑𝒊,𝒒𝟏𝒊!,𝒒𝟐𝒊!,𝝐𝒊,𝒄,𝒛   𝑧!
!

!!!
 

                                                                 s.t.  𝜖!!
!!! = Z!"#! , 

                                                                        𝑐!!
!!! = 1, 

                                                                       𝑧! ≥
|!!|
!
, 𝑧! ∈ {0,1}, ∀𝑗, 

                                                                       𝐩𝐢!𝐒 −  𝒒𝟏𝒊
!
+ 𝒒𝟐𝒊

!
= 𝒄!,∀𝑖,                         

𝒒𝟐𝒊!𝐱𝒖𝒃 − 𝒒𝟏𝒊
!
𝐱𝒍𝒃 − 𝜖! =  𝒄!𝐱! ,∀𝑖,                      [S8.1] 

                                                                        𝒒𝟏𝒊 ,   𝒒𝟐𝒊 ≥ 𝟎, ∀𝑖, 
                                                                        𝜖! ≥ 0, ∀𝑖. 
In [S8.1], the binary variable 𝑧! is the indicator of whether 𝑐!  is nonzero (then  𝑧! = 1) or not (then,  
𝑧! = 0). The constant L is a large number that together with the integrality constraint 𝑧! ∈ {0,1} forces 𝑧! 
to be 1 when 𝑐!  is nonzero. Formulation [S8.1] is an integer programming problem and formulation [S8] 
is a convex relaxation of [S8.1]. Of course, it is much more computationally expensive to solve [S8.1] 
compared to solving [S8]. We can, however, use the solution of [S8] as a feasible solution for [S8.1], 
which can substantially speed up the solution time of [S8.1] (using the value of the [S8] solution in a 
branch-and-bound algorithm for [S8.1]). The results from [S8] and [S8.1] are shown in Table S7, S8 and 
S9. 

 
LASSO version of invFBA 
Here we provide an alternative LASSO version of invFBA that can be used instead of Eq. S7 and Eq. S8. 
The key idea is to add a sparsity-inducing L1 penalty for c in the objective. The formulation is: 

Z!"#! =  min𝒑𝒊,𝒒𝟏𝒊 ,𝒒𝟐𝒊 ,𝝐𝒊,𝒄   𝜖! + 𝜆|𝒄|
!

!!!
 

                                                                           s.t. 𝑐!!
!!! = 1 

                                                                              𝐩𝐢!𝐒 −  𝒒𝟏𝒊
!
+ 𝒒𝟐𝒊

!
= 𝒄!,∀𝑖,                         

                                                                              𝒒𝟐𝒊!𝐱𝒖𝒃 − 𝒒𝟏𝒊
!
𝐱𝒍𝒃 − 𝜖! =  𝒄!𝐱! ,∀𝑖,               [S9] 

                                                                              𝒒𝟏𝒊 ,   𝒒𝟐𝒊 ≥ 𝟎, ∀𝑖, 
                                                                              𝜖! ≥ 0, ∀𝑖, 
 
where 𝜆 is a tunable parameter that controls the sparsity of c.   
 
Objective Variability Analysis 
To analyze the variability of each element in the objective function within the optimal solution space, we 
developed a method called Objective Variability Analysis (OVA). OVA is a heuristic optimization 
method used to compute the upper and lower bound of the elements in the objective function. The first 
step of OVA is to solve the linear optimization problem given in Eq .S8.  



	 5	

 By solving this problem, we can obtain an optimal solution for c and the optimal objective value 

𝜖!!
!!! = Z!"#! .  Let R  be the set of reaction indexes which are important in the FBA problem. To find 

the possible range for each cr, r ϵ R , we solve  

 
     min𝒑𝒊,𝒒𝟏𝒊 ,𝒒𝟐𝒊 ,𝝐𝒊,𝒄 𝑐! + |𝒄|                                                                   

                                                                     s.t.    𝜖!!
!!! = Z!"#!   

                                                                             𝑐!!
!!! = 1 

                                                                              𝐩𝐢!𝐒 −  𝒒𝟏𝒊
!
+ 𝒒𝟐𝒊

!
= 𝒄!,∀𝑖,                           [S10] 

                                                                              𝒒𝟐𝒊!𝐱𝒖𝒃 − 𝒒𝟐𝒊
!
𝐱𝒍𝒃 − 𝜖! =  𝒄!𝐱! ,∀𝑖,                         

                                                                              𝒒𝟏𝒊 ,   𝒒𝟐𝒊 ≥ 𝟎, ∀𝑖, 
                                                                              𝜖! ≥ 0, ∀𝑖,  
 
and an identical problem with the only difference being that we maximize  𝑐!  - |𝒄|  (instead of 
minimizing) so as to find the largest possible value of cr and maintain a small L1 norm of c. Solving these 
problems yields upper and lower bounds on each elements in the objective function.  
 
To apply OVA in practice, some extra constraints on c should be added to Eq. S10. Consider reactions 
represented in the flux vectors 𝐱! which have a flux equal to zero for all 𝑖. For these reactions, the 
corresponding elements cj in c can take arbitrary feasible values because of the term  𝒄!𝐱! in Eq. S10. For 
this reason, it is meaningless to run OVA on these cj. To that end, we set cj=0 for all those indices. In the 
case study involving simulated E. coli data, since the flux distributions are very sparse, we applied this 
technique and focused on the non-trivial reactions only. 
 
Generation of noisy flux sets 
In order to generate simulated feasible flux vectors around a defined point, containing a given amount of 
noise, we devised the following optimization problem:   
 

max𝐱𝒊𝒓′𝐱! 
                                                                             s. t.  𝑺𝐱! = 𝟎, 
                                                                                 𝐱𝒍𝒃 ≤  𝐱! ≤ 𝐱𝒖𝒃,                                                              
                                                                                     ||𝐱! − 𝐱∗|| ≤ 𝜎!, 
 
where r is a random objective function, xi is the noisy flux distribution, x* is the pre-computed optimal 
flux distribution, and σ2 denotes the largest Euclidean distance between optimal flux and noisy flux. 
Changing the value of σ2 yields different magnitudes of noise. 
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Inference of fluxes from experimentally measured branching ratios 
To apply the invFBA algorithm and infer the objective function in E. coli strains that underwent long-
term evolutionary experiments (LTEE), we needed to convert the C!" -labeling raw measurements of flux 
ratios and uptake/secretion rates into central carbon metabolism flux values.  

The dataset we used is obtained from Tables S1 (Growth parameters for ancestral and evolved LTEE 
isolates) and S2 (Experimentally determined flux ratios for ancestral and evolved LTEE isolates) from 
Harcombe WR, et al., PLoS Comput Biol 9(6): e1003091. This dataset includes measurements for one 
ancestral strain (Anc) and ten evolved strains (named, as in the original paper, A+1, A+2, A+3, A+4, 
A+5, A–1, A–2, A-4, A–5, A-6). For each strain, six pathway branch ratios (Ser from glycolysis, PYR 
though ED pathway, upper bound of PEP through PPP, lower bound of PYR from MAL, OAA from PEP, 
PEP from OAA; see also Zamboni et al., BMC Bioinformatics 2005, 6:209) and three external fluxes 
(glucose uptake rate, acetate excretion rate and growth rate) are available. All fluxes are part of a central 
carbon metabolism model for E. coli with stoichiometric matrix S (see Supplementary Table 2). In our 
formulation, we call 𝑅!!  (s = 1,…,11 ; i=1,…,6) the measured pathway branch ratio i of strain s and 𝐸!

! (s 
= 1, ..., 11 ; j=1,2,3) the measured value of external flux j of strain s. Each flux ratio 𝑅!!  can be expressed 
in terms of the flux vectors, appropriately weighted by two vectors 𝒂𝒊 ∈ 𝑅𝒏 and 𝒃𝒊 ∈ 𝑅𝒏: 

                                                                 𝒂𝒊′𝐱 𝒃!!𝐱 =𝑅!! , 𝑖 = 1,… ,6,                                     [S11] 

These equations can be reformulated as standard linear equations: 

                                                                              𝐀𝐱 = 𝟎,                                                       [S12]                                                             

where the ith row of A is 𝒂𝒊! − 𝒃𝒊!𝑅!! , i = 1,…,6. Translating the measured ratios and external fluxes to a 
feasible flux distribution for strain s is posed as the following optimization problem 

min    𝑨𝐱 𝟐

  𝑠. 𝑡.     𝑺𝐱! = 𝟎,
                                                                      𝐸!

! − 𝛽 ∗ 𝑠𝑡𝑑!
! ≤ x!

! ≤ 𝐸!
! + 𝛽 ∗ 𝑠𝑡𝑑!

! , 𝑗 = 1,2,3,
 [S13] 

where 𝛽 is a coefficient determining the feasible range (here, we set 𝛽 = 1), and 𝑠𝑡𝑑!
! is the standard 

deviation of the measurements of external flux j of strain s.  

The problem (S13) is a standard quadratic programming problem yielding the flux distribution, which is 
the closest one to the measured pathway branch ratio and is consistent with the stoichiometry constraints 
and external flux measurements. The problem can be solved efficiently and global optimality can be 
guaranteed. The optimal solution 𝐱! of (S13) is the feasible flux distribution for strain s and can be used 
to test our invFBA algorithm.  

	


