Supplemental material

JCB

Cummings et al., http://www.jcb.org/cgi/content/full/jcb.201510065/DC1

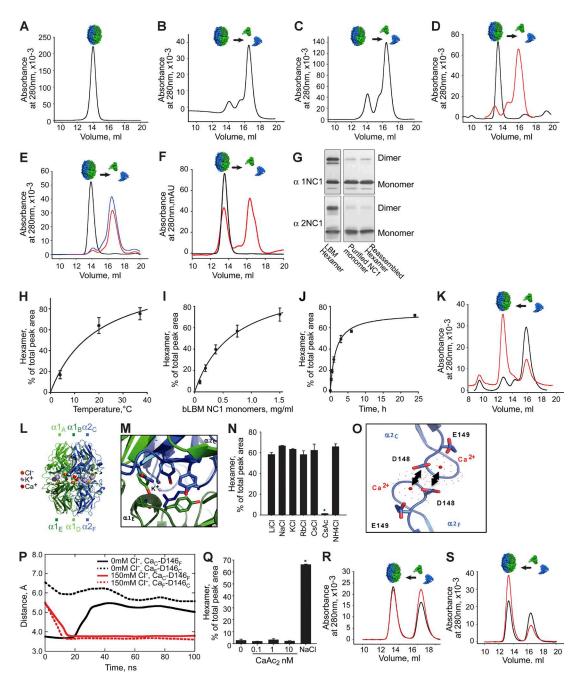


Figure S1. **Chloride is required for hexamer assembly.** (A–C) SEC profiles of native LBM NC1 hexamer in TBS (A) and LBM hexamer after dissociation in 6 M guanidine-HCl (B) or 8 M urea (C), causing loss of 14 ml hexamer peak and formation of 16.3 ml monomer peak. (D) Uncross-linked PFHR9 NC1 hexamers dissociate in TrisAc (red line) but not in TBS (black line). (E) Uncross-linked PFHR9 NC1 hexamers are stable in PBS (black line) but dissociate in 10 mM phosphate buffer, pH 7.4, irrespective of whether KI (red line) or phloroglucinol (blue line) was used to inhibit cross-linking in culture. (F) LBM hexamers dissociate in 10 mM phosphate buffer (red line; black line, undissociated control LBM hexamers in TBS, pH 7.4). (G) Composition of reassembled hexamers from LBM NC1 monomers in Cl⁻. Western blots developed using monoclonal antibodies to a1NC1 and a2NC1 domains. Vertical line denotes image boundary between distant lanes. Positions of NC1 monomers (I), and incubation time (J). (K) Reassembly of PFHR9 NC1 hexamer reassembly with respect to incubation temperature (H), starting concentration of NC1 monomers (I), and incubation time (J). (K) Reassembled of PFHR9 NC1 hexamer structure. (N) Effect of monovalent cations on LBM hexamer reassembly (100 mM, Cl⁻ salts). CsAc did not support reassembly in contrast with CsCl, demonstrating importance of Cl⁻. (O) Molecular model of Ca²⁺ in hexamer (a2 NC1) interacting with E¹⁴⁹ and D¹⁴⁸. (P) MD simulations of distances between Ca²⁺ ions and the carboxyl carbon of aspartic acid residues. (Q) CaAc₂ alone does not induce hexamer assembly from 0.1 to 10 mM. (R) Cl⁻-dependent assembly occurs equally well in TBS alone (black line) or with 0.2 mM EDTA (red line). (S) Ca²⁺ may potentiate Cl⁻ activity because the addition of 1 mM CaCl₂ in 100 NaCl (red line) appeared to enhance hexamer formation over 100 mM NaCl alone (black line). *, P < 0.01.

FLAG		α1
FLAG	α2β1	α1
 FLAG	I	I 02

TRIPLE HELIX

Α

 $\begin{array}{l} \alpha 1 \\ GEPGLPGPEGPPGLKGLQGLPGPKGQQGVTGLVGIPGPPGIPGAPGFPGERGEKGPAGPTGPRGFPGPPGPDGLPGSMGPPGTP \\ \alpha 2 \\ GTVGPQGRRGPPGAPGEIGPQGPPGEPGFRGAPGKAGPQGRGGLPGEMGPKGFIGPIGHQGPIGQEGAPGRPGSPGLPGMPGRS \\ \textbf{NC1} \end{array}$

α1 SVDHGFLVTRHSQTIDDPQCPSGTKILYHGYSLLYVQGNERAHGQDLGTAGSCLRKFSTMPFLFCNINNVCNFASRNDYSYWLS
 α2 VSIGYLLVKHSQTDQEPMCPVGMNKLWSGYSLLYFEGQEKAHNQDLGLAGSCLARFSTMPFLYCNPGDVCYYASRNDKSYWLS

 α 1 RSAPFIECHGRGTCNYYANAYSFWLATIERSEMFKK-PTPSTLKAGELRTHVSRCQVCMRRT

 $\alpha 2 \text{ ratpfiecnggrgtchyyankysfwlttipeqsfqgspsadtlkaglirthisrcqvcmknl}$

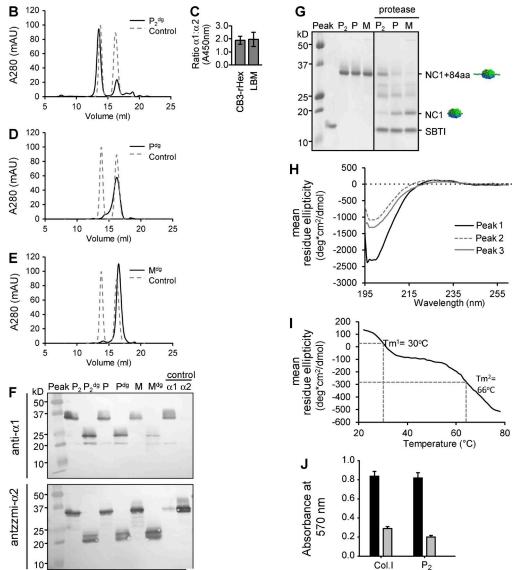


Figure S2. **Design and characterization of recombinant protomer (r-Prot).** (A) Schematic of heterotrimeric r-Prot containing integrin $\alpha 2\beta 1$ binding site and N-terminal FLAG tag for purification. Primary aa sequence shown with red text identifying the engineered $\alpha 2\beta 1$ integrin binding site. (B) SEC profile of P₂ samples after collagenase treatment (P₂^{dg}). Control sample (dashed line) contained mixture of NC1 hexamers isolated from LBM and recombinant $\alpha 2$ NC1 monomers. (C) ELISA analyses of P₂ (CB3-rHex) using anti- $\alpha 1$ and - $\alpha 2$ monoclonal antibodies. LBM NC1 hexamers were control. (D and E) SEC profiles of P (P^{dg}) and M (M^{dg}), respectively, after collagenase treatment. Control (dashed line) is the same as B. (F) Western blot of SEC peaks and collagenase digest products, using anti- $\alpha 1$ and - $\alpha 2$ monoclonal antibodies. Unfractionated samples (SEC input) served as controls. (G) All three SEC peaks migrate as 35 kD monomers by SDS-PAGE. P₂ resisted trypsin and chymotrypsin proteolysis (NC1+84aa). Soybean trypsin inhibitor (SBTI) quenched reaction. (H and I) CD spectroscopy of SEC peaks (P₂, peak 1; P, peak 2; and M, peak 3). Helical content seen by negative ellipticity at 198 nm and positive ellipticity at 220–235 nm. (I) r-Prot thermal stability measured by CD. 30°C transition point correspond to melting temperatures of helices and NC1 domains, respectively. (I) HT1080 cells adhesion to recombinant protomer dimer (P₂) is mediated by the integrin $\alpha 2\beta 1$. Cell adhesion to wells coated with P₂ (black bar) was significantly inhibited by neutralizing monoclonal antibody to $\alpha 2\beta 1$ integrin (gray bar). Collagen I, a known ligand for $\alpha 2\beta 1$ integrin, has been used as a positive control.

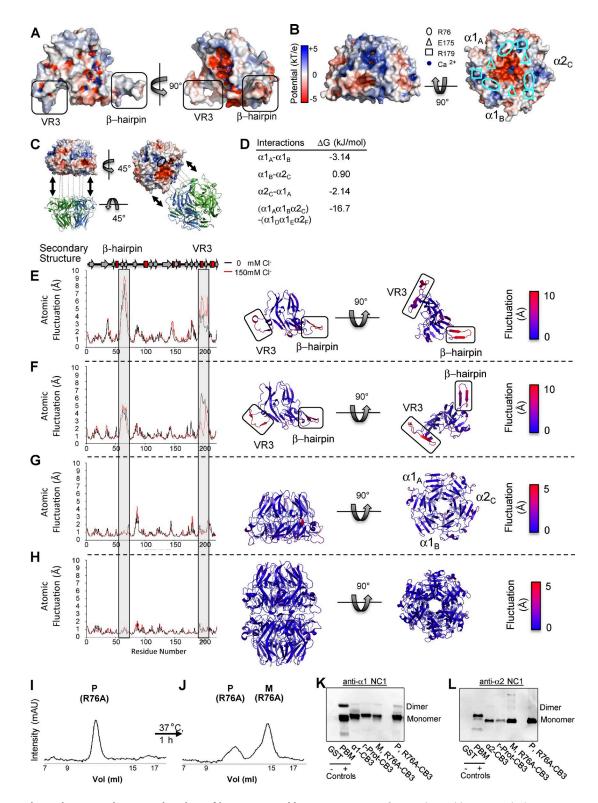


Figure S3. Thermodynamic and mutational analysis of hexamer assembly. (A) Protomer specificity is dictated by VR3 and β -hairpin interactions. Electrostatic surface potentials on the NC1 monomer van der Waals surface show the VR3 and β -hairpin regions are mostly charge neutral. (B) The trimer electrostatic surface potential shows that the interface is dominated by electro-negative potential in the center cavity that surrounds the calcium binding site, whereas R76, G175, and R179 comprise discrete charge pockets (units = Boltzman's constant [k] × temperature [298 K]/electron charge [q]]. (C) Charged pockets are complementary in trimer–trimer association. (D) From nonlinear Poisson–Boltzmann calculations, salt has a favorable impact on a1A-a1B, a2C-a1A, and trimer–trimer association and a negative effect on a1B-a2C association. (E–H) Atomic fluctuations of the a1 monomer (E), a2 monomer (F), a112 trimer (F), and a112 hexamer (H) measured in 0 (black) and 150 mM Cl- (red). β -Hairpin and VR3 regions denoted by gray filled boxes. For a112 trimer and hexamer system, the a1 A chain is depicted. Atomic fluctuations are projected onto representative structures (right). (I) R76A chimeras of both a1-CB3 and a2-CB3 constructs were expressed and combined to form P. (J) Above helical melting temperature, P samples with R76A mutations dissociated to monomeric chains by SEC. (K and L) Western blot analysis of R76A products, showing reactivity to α 1 (K) and α 2 (L) NC1 antibodies.

	 Salt Bridg Electrosta Ca²⁺ 			-		Cl⁻ ∢	r Interface			_
	● CI-				•	;	Trimer •	a ²⁺		
	Name	Species	Chain	72 767	8811	45148-9	9 1541	73175	179	187 191
	Human	Homo sapiens	α1	NFASRN		. SAGAEG	2.4	FIECHG	- <mark>R</mark> GTCNY	YANAYSF
			α2	YYASRN	DKSY	. AAG <mark>DE</mark> GO	GGQS	FIECNG	G <mark>R</mark> GTCHY	YA <mark>N</mark> KYSF
			α3	NFASRNI	DYSY	. SAGSEG	IGQA	FLECHG	- <mark>r</mark> gtcny	YS <mark>N</mark> SYSF
			α4	HYAQ <mark>RN</mark> I	DRSY	. GAG <mark>D</mark> QG0	GGQA	FLECQG	RQGTCHF	FANKYSF
			α5	NFASRN	DYSY	. SAGAEG	SGQA	FIECHG	-RGTCNY	YANSYSF
			α6	HYARRN	DKSY	. AAGAEGO	GGQS	FIECSG	ARGTCHY	FANKYSF
	Monkey	Macaca mulatt	a α1	NFASRN	DYSY	. SAGAEGS	SGQA	FIECHG	-RGTCNY	YANAYSF
			α2	YYASRN	DKSY	. AAG <mark>DE</mark> GO	GGQS	FIECNG	GRGTCHY	YANKYSF
			α3	NFASRN	DYSY	. SAGSEG	TGQA	FLECHG	- <mark>R</mark> GTCNY	YSNSYSF
			α4	hyaq <mark>rn</mark> i	DRSY	. GAG <mark>D</mark> QG0	GGQA	FLECQG	RQGTCHF	FANEYSF
			α5	NFASRN	DYSY	. SAGAEGS	SGQA	FIECHG	-RGTCNY	YANSYSF
	0	D	α6	HYARRN	DKSY	. AAGAEG	GGQS	FIECSG	ARGTCHY	FANKYSF
a	Cow	Bos taurus	α1	NFASRN	DYSY	. SAGAEG	SGQA	FIECHG	-RGTCNY	YANAYSF
Deuterostoma			α 2			. AAG <mark>DE</mark> GO	-			
crost			α3			. SAGSEG	-			
eute			α 4 α5			. GAG <mark>D</mark> QG0				
ŏ			α6			. SAGAEGS				
	Mouse	Mus musculus				. AAGAEG				
			α2			. SAGAEGS				
			α3			. AAGDEGO				
			α4			. SAGSEG				
			α5			. SAGAEG			-	
			α6			. AAGAEG				
	Zebrafish	Danio rerio	α1			. SAGAEG				
			α2	YYASRN	DKSY	. AAG <mark>DE</mark> GO	GGQS	FIECNG	AKGTCHY	FANKHSF
			α3			. GVGAEGS	-			
			α4			. GSG <mark>DE</mark> GO				
			α5	NFASRN	DYSY	. SAGAEG	SGQA	FIECHG	- <mark>r</mark> gtcny	YG <mark>N</mark> SYSF
			α6	YYASRN	DKSY	. GAGGEG	GGQS	FIECNG	ARGTCHY	FANKYSF

Figure S4. Assembly Switch Motif is Present in α 3- α 6 Chains. Multiple sequence alignment of α 1-6 chains from human, monkey, cow, mouse, and zebra-fish, with emphasis on putatively important assembly residues near the trimer-trimer interface.

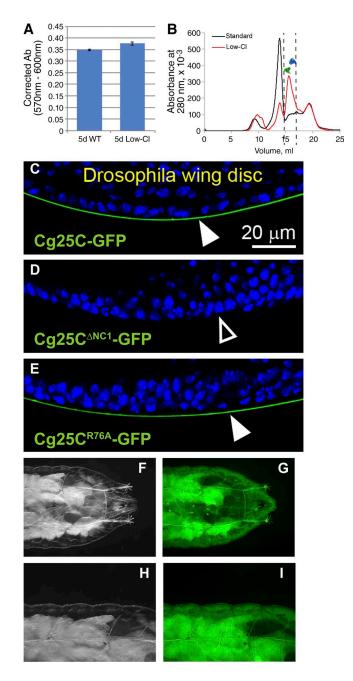


Figure S5. **NC1 domains are required for collagen IV network assembly.** (A) Cellular viability is not reduced in low-Cl conditions compared with standard conditions. Results shown from PrestoBlue assay. n = 12. (B) NC1 monomers from standard and low-Cl cultures were isolated via SEC. Samples analyzed after collagenase digestion and dialysis into 50 mM TrisAc. Dashed lines denote monomer fractions collected. (C–E) Confocal images of *Drosophila* wing imaginal disks dissected from larvae expressing C-terminally GFP-tagged Cg25C (C), Cg25C Δ NC1 (D), and Cg25CT6A (E). Expression of the three constructs is driven in the fat body under control of Cg-GAL4. WT collagen IV (Cg25C Δ NC1-GFP localizes to the BM (C), whereas Cg25C Δ NC1-GFP does not incorporate into the BM in the presence of endogenous collagen IV (D). (F–I) Cg25C Δ NC1-GFP expression products were detected in the larval body cavity, indicating that NC1 domains are required for assembling collagen IV into networks within BMs. H and I are enlarged images of F and G, respectively.

T C 1	
Table S1.	Comparison of interactions stabilizing monomer-monomer and trimer-trimer associations
10010 01.	comparison of interactions stabilizing menericit interestion and interest associations

Interaction	Subunits	Salt bridges	Electrostatic	H-bonds	Total polar	Nonpolar	Total	Ratio (NP/P
Trimer–trimer (end-to-end)	al _A -al _D	2	2	12	16	34	50	2.1
	al _A —al _E	0	0	2	2	23	25	11.5
	al _A —a2 _F	0	0	0	0	0	0	0
	al _B —al _D	0	0	3	3	21	24	7
	al _B —al _E	0	0	2	2	2	4	1
	al _B —a2 _F	2	2	9	13	39	52	3
	a2 _C -a1 _D	0	0	0	0	0	0	0
	a2 _c —a1 _E	2	2	12	16	44	60	2.8
	a2 _C —a2 _F	0	0	1	1	19	20	19
	Subtotal	6	6	41	53	182	235	3.4
	Density	0.45	0.45	3.1	4	13.8		3.5
Nonomer–monomer (side-to-side)	al _A -al _B	1	0	15	16	81	97	5.1
	al _B -a2 _C	2	0	20	22	88	110	4
	a2 _c -a1 _A	1	0	17	18	83	101	4.6
	Subtotal	4	0	49	53	252	305	4.8
	Density	0.19	0	3.1	3.3	16.2		4.9

Enumeration of the modeled noncovalent interactions present between NC1 domains as well as between NC1 trimers, using the LIGPLOT+ algorithm (Wallace et al., 1995). NP, nonpolar; P, polar.

Table S2. Low-Cl media composition

Component	Catalog number	Final concentration	Molecular mass	mg/liter	
		mМ	g/mol		
Neutral aa					
Glycine	G7126	0.4	75.07	30.0	
L-Arginine	A8094	0.4	174.2	69.7	
L-Cystine	C7602	0.2	240.3	48.1	
L-Glutamine	49419	4	146.14	584.6	
L-Histidine	53319	0.2	155.15	31.0	
L-Isoleucine	W527602	0.8	131.17	104.9	
L-Leucine	61819	0.8	131.17	104.9	
L-Lysine	L9037	0.8	164.2	131.4	
L-Methionine	64319	0.2	149.21	29.8	
L-Phenylalanine	P5482	0.4	165.19	66.1	
L-Serine	S4311	0.4	105.09	42.0	
L-Threonine	89179	0.8	119.12	95.3	
L-Tryptophan	93659	0.08	204.23	16.3	
L-Tyrosine	93829	0.4	181.19	72.5	
-Valine	V0513	0.8	117.15	93.7	
Vitamin					
Choline citrate	C2004	0.03	295.29	8.9	
D-calcium pantothenate	P5155	0.008	238.27	1.9	
Folic acid	F8758	0.009	441.4	4.0	
Niacinamide	PHR1033	0.033	122.12	4.0	
Pyridoxine (neutral)	P5669	0.02	169.18	3.4	
Riboflavin	R4500	0.001	376.36	0.4	
Thiamine ntrate	CDS000474	0.012	327.36	3.9	
Myoinositol	57569	0.04	180.16	7.2	
Bulk salts/minerals					
Sodium glutanate	S2054	115	218.14	25.08	
Sodium bicarbonate	\$5761	44	84.007	3,696.3	
Calcium lactate	L4388	1.8	218.22	392.8	
Iron (III) Nitrate	254223	0.001	404	0.4	
Magnesium sulfate	M9397	0.8	246.47	197.2	
Sodium phosphate monobasic	71492	0.4	119.98	48.0	
Sodium phospahte dibasic	71629	0.3	141.96	42.6	
D-Glucose	G7021	25	180.16	4,504.0	
Sodium pyruvate	P2256	1	110.04	110.0	
Antibiotic					
Penicillin P3032	P3032	100 U/ml	356.3	60.45	
Streptomycin S1277	S1277	100 U/ml	728.69	100	

Reference

Wallace, A.C., R.A. Laskowski, and J.M. Thornton. 1995. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. *Protein Eng.* 8:127–134. http://dx.doi.org/10.1093/protein/8.2.127