
Algorithm 1 Randomized sampling algorithm for estimating the impact of surveillance regulation.

1: procedure Reach(degree, hops, hubs)
2: if hops = 0 then
3: return 1 . With no hops, include just the seed.
4: end if
5: if hops = 1 then
6: return degree + 1 . With one hop, include the neighbors and seed.
7: end if
8: if hops = 2 then
9: connectedHubs← {}

10: connectedPopulation← 0
11: for hub in hubs do
12: if count(connectedHubs) = degree then
13: break
14: end if
15: if random() < connectivity(hub) then
16: connectedHubs = connectedHubs ∪ hub
17: connectedPopulation+ = connectivity(hub)
18: end if
19: end for
20: reach← connectedPopulation · subscriberBase . Estimate two-hop connectivity through hubs.
21: reach+ = (degree− count(connectedHubs)) · (degree− 1) . Estimate two-hop connectivity through individual

subscribers.
22: reach+ = degree . Estimate one-hop connectivity.
23: reach+ = 1 . Include the seed.
24: return min(reach, subscriberBase)
25: end if
26: if hops = 3 then
27: connectedHubs← {}
28: connectedPopulation← 0
29: for hub in hubs do
30: if count(connectedHubs) = degree then
31: break
32: end if
33: if random() < connectivity(hub) then
34: connectedHubs = connectedHubs ∪ hub
35: connectedPopulation+ = connectivity(hub)
36: end if
37: end for
38: reach← connectedPopulation · subscriberBase · degree . Estimate three-hop connectivity through first-hop hubs.
39: firstHopHubs← connectedHubs
40: remainingHubs← hubs− firstHopHubs
41: connectedPopulation← 0
42: for i in [0, degree− count(firstHopHubs)) do
43: secondHopHubs← {}
44: for hub in remainingHubs do
45: if random() < connectivity(hub) then
46: secondHopHubs = secondHopHubs ∪ hub
47: if hub not in connectedHubs then
48: connectedPopulation+ = connectivity(hub)
49: connectedHubs = connectedHubs ∪ hub
50: end if
51: end if
52: reach+ = 1 . Add the individual one-hop node.
53: reach+ = (degree− 1− count(secondHopHubs)) · degree . Add the second- and third-hop nodes that are

individual subscribers.
54: reach+ = count(secondHopHubs) . Add the second-hop nodes that are hubs.
55: end for
56: reach+ = connectedPopulation · subscriberBase · degree . Add the third-hop nodes through second-hop hubs.
57: end for
58: return min(reach, subscriberBase)
59: end if
60: end procedure


