Supporting Information

Mechanism of the human nucleocytoplasmic hexosaminidase D

Matthew G. Alteen^{1,2}, Verena Oehler², Ivana Nemčovičová^{3,¶}, Iain B. H. Wilson³, David J. Vocadlo^{1*}, Tracey M. Gloster^{2*}

(1) Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada

(2) Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK

(3) Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria

¹ Current address: Virologický ústav, Slovenská akadémia vied, Dúbravská cesta 9, 845 38 Bratislava, Slovakia

* To whom correspondence should be addressed: Tracey M. Gloster <u>tmg@st-andrews.ac.uk</u> David Vocadlo <u>dvocadlo@sfu.ca</u> Table S1. Primers used for mutagenesis of HexD.

	-
Mutant	Primer
D148A Forward	CTGCACATCGGGTGTGCTGAGGTCTATTACCTC
D148A Reverse	GAGGTAATAGACCTCAGCACACCCGATGTGCAG
D148N Forward	CTGCACATCGGGTGTAATGAGGTCTATTACC
D148N Reverse	GGTAATAGACCTCATTACACCCGATGTGCAG
E149A Forward	CACATCGGGTGTGATGCGGTCTATTACCTCGGAG
E149A Reverse	CTCCGAGGTAATAGACCGCATCACACCCGATGTG
E149Q Forward	CACATCGGGTGTGATCAGGTCTATTACCTCG
E149Q Reverse	CGAGGTAATAGACCTGATCACACCCGATGTG
H92A Forward	GTGCAGACATTTGGAGCCATGGAGTTTGTGCT
H92A Reverse	AGCACAAACTCCATGGCTCCAAATGTCTGCAC

Substrate	р <i>К</i> _а а	λ (nm)	ε (M ⁻¹ cm ⁻	[E]₀	[E] ₀	[E]₀
			¹) ^b	wт	D148A	E149A
				(µM)	(µM)	(µM)
3,4-NO ₂ P-GalNAc (1e)	5.42	400	12900	0.1	1	0.1
3F4NP-GalNAc (1f)	6.42	388	17600	0.1	1	0.1
pNP-GalNAc (1a)	7.18	400	13210	0.1	2	0.1
4MU-GalNAc (3)	7.5	360	8600	0.2	5	0.2
mNP-GalNAc (1g)	8.29	330	650	1		1
pCIP-GalNAc (1h)	9.47	280	720	2		5
P-GalNAc (1i)	9.99	269	969	2		
pOMeP-GalNAc (1 j)	10.2	296	1670	2		

Table S2. Spectrophotometric parameters used for monitoring of Brønsted analyses.

^a pK_a values were obtained from previously reported analyses [1-3].

^b Extinction coefficients were obtained from Macauley *et al.* [4] with the exception of 4methoxyphenyl-O-GalNAc which was calculated experimentally. Synthetic Schemes S1 and S2: Synthesis of galactosaminide substrates.

Scheme S1: Synthesis of fluorinated *N*-acyl substrates. (i) NaOOCCH₂F, Amberlite-120 H , HBTU, Et₃N, DMF, 0°C, 70%; (ii) HOOCH₂F, HBTU, Et₃N, DMF, 0°C, 62%; (iii) $(CF_{3}CO)_{2}O$, Et₃N, CH₂Cl₂, 0°C, 40%.

Scheme S2: Synthesis of aryl N-acetylgalactosamine substrate analogues.

Figure S1. Sequence alignment of HexD with the lysosomal ß-hexosaminidases HexA and HexB. Black shading shows identical residues; grey shading shows similar residues. Starred residues were mutated as part of this study. The alignment was performed in Clustal Omega and figure produced in BoxShade.

HexD HexA HexB	1 1 1	LLAAAFAGRATALWPWP MELCGLGLPRPPMLLALLLATLLAAMLALL <mark>T</mark> QVALVVQVAEAARAPSVS <u>A</u> KPGP <u>ALWP</u> LP
HexD HexA HexB	1 28 61	QNFQTSDQRYVLYPNNFQFQYDVSSAAQPGCSVLDEAFQRYRDLLFGSGSWPRPYLTGKR LSVKMTPNLLHLAP <mark>ENF</mark> YISHSPN <mark>STAGPSCTLLEEAFRRY</mark> HGYIFGFYKWHHEPAEFQA
HexD HexA HexB	1 88 121	HELEKNVLVVSVVTPGCNQLPTLESVENYTLTINDDQCLLLSETVWGALRGLETFSQLVW KTQVQQLLVSITLQSECDAFPNISSDESYTLLVKEPVAVLKANRVWGALRGLETFSQLVY
HexD HexA HexB	1 148 181	$\label{eq:starses} \begin{array}{l}msgStpFQMRLVHLDLkgappkvsyLSeIfplfRALgangll \\ ksaeGFFFINkteHeDFPRFPHRGLLLDtsRhylPLSSILDTLDVMAyNKLNVFHWH \\ QDsyGFFTINESTIIDSPRFSHRGILIDTSRHylPVKIILKTLDAMAFNKFNVLHWH \\ \end{array}$
HexD HexA HexB	43 205 238	IEYEDMFFYEGPLRLLRAKYAYSPSEIKEILHLAGLNELEVIPLVOTFGHME IVDDPSFPYESFTFPELMRKGSYNPVTHIYTAODVKEVIEYARLRGIRVLAEFDTPGHTL IVDDOSFPYOSITFPELSNKGSYS-LSHVYTPNDVRMVIEYARLRGIRVLPEFDTPGHTL
HexD HexA HexB	95 265 297	FVLKHTAFAHLREVGSFPCTLNPHEAESLALVGAMIDQVLELHPGAQRLHIGCD SWGPGIPGLLTPCYSGSEPSGTFG-PVNPSLNNTYEFMSTFFLEVSSVFP-DFYLHLGGD SWGKGQKDLLTPCYSRQNKLDSFG-PINPTLNTTYSFLTTFFKEISEVFP-DQFIHLGGD
HexD HexA HexB	149 323 355	* EVYYLGEGEA – SRRWLQOEQNST – – – – GKLCLSHMRAVASGVKARRPSVTPLVWDDML EVDFTCWKSNPEIQDFMRKKGFGEDFKQLESFYIQTLLDIVS – – – – SYGKGYVVWQEVF EVEFKCWESNPKIQDFMRQKGFGTDFKKLESFYIQKVLDIIA – – – – TINKGSIVWQEVF
HexD HexA HexB	202 378 410	RDLPEDOLAASGVPOLVEPVLWDYTADLDVHGKVLLMOKYRRCGFPOLWAASAF DNKVKIQPDTIIQVWREDIPVNYMKELELVTKAGFRALLSAPWYLNRISY DDKAKLAPGTIVEVWKDSAYPEELSRVTASGFPVILSAPWYLDLISY
HexD HexA HexB	256 428 457	GODWRKYYKVEPLDFGGTQKQKQLFIGGEACLWGEYVDATNLTPRLWPRAGAVAERLWSN GODWRKYYKVEPLDFGGTQKQKQLFIGGEACLWGEYVDATNLTPRLWPRAGAVAERLWSS GODWRKYYKVEPLDFGGTQKQKQLFIGGEACLWGEYVDATNLTPRLWPRASAVGERLWSS
HexD HexA HexB	289 488 517	SEQGIILTGWQRYDHYSVLCELLPAGVPSLAACLQLLLRGGFDEDVKAKVENLLGISSLE KLTSDLTFAYERISHFRCELLRRGVQAQPLNVGFCEQEFEQT KDVRDMDDAYDRLTRHRCRMVERGIAAQPLYAGYCNHENM
HexD HexA HexB	349	KTDPVREGAGSFPGSNILALVTQVSLHLRSSVDALLEGNRYVTGWFSPYHRQRKLIHPVM
HexD HexA HexB	409	VQHIQPAALSLLAQWSTLVQELEAALQLAFYPDAVEEWLEENVHPSLQRLQALLQDLSEV
HexD HexA HexB	469	SAPPLPPTSPGRDVAQDP

References

(1) Barlin, G. B., and Perrin, D. D. (1966) Prediction of the strengths of organic acids. *Q. Rev. Chem. Soc.* 20, 75-102.

(2) Kortum, G., Vogel, W., and Andrussow, K. (1961) Dissociation constants of organic acids in aqueous solution. *Pure Appl. Chem. 1*, 187-536.

(3) Robinson, R. A., Davis, M. M., Paabo, M., and Bower, V. E. (1960) Ionization constants of four dinitrophenols in water at 25 °C. *Res. Nat. Bur. Stand. Sect. A. 64*, 347-352.

(4) Macauley, M. S., Whitworth, G. E., Debowski, A. W., Chin, D. and Vocadlo, D. J. (2005) O-GlcNAcase uses substrate-assisted catalysis: kinetic analysis and development of highly selective mechanism-inspired inhibitors. *J. Biol. Chem.* 280, 25313-25322.