Identification of *Leishmania donovani* Topoisomerase 1 inhibitors *via* intuitive scaffold hopping and bioisosteric modification of known Top 1 inhibitors

Rajinikanth Mamidala,^{2, 5} Papiya Majumdar,³ Kunal Kumar Jha,¹ Chandramohan Bathula,¹ Rahul Agarwal,⁴ M. Thirumala Chary ², ² H. K. Mazumdar³, Parthapratim Munshi¹ and Subhabrata Sen^{*, 1}

¹ Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Chithera, Dadri, Gautam Buddha Nagar 201314, Uttar Pradesh, India

² Department of Chemistry, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad 500085, Telangana, India

³ Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India

⁴ Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Chithera, Dadri, Gautam Buddha Nagar 201314, Uttar Pradesh, India

⁵ GVK Bioscience, 28 A, Nacharam, Hyderabad 500076, Telangana

Contents

- 1. Materials and methods
 - a. Chemistry
 - i. General procedure for the synthesis of 1-21
 - ii. Individual synthesis and analytical data
 - b. Molecular docking
 - i. Docking studies of camptothecin, edotecarin, compound 4 and 13 with HTop 1
 - ii. Docking studies of camptothecin, edotecarin, compound 4 and 13 with LdTop 1
- 2. ¹H and ¹³C-NMR spectra

Materials and methods

Chemistry

All reactions were carried out in flame-dried sealed tubes with magnetic stirring. Unless otherwise noted, all experiments were performed under argon atmosphere. All reagents were purchased from Sigma Aldrich, Acros or Alfa Aesar. Solvents were treated with 4 Å molecular sieves or sodium and distilled prior to use. Purifications of reaction products were carried out by column chromatography using Chem Lab silica gel (230-400 mesh). Infrared spectra (IR) were recorded on a Thermoscientific Neoled IS5 FTIR spectrophotometer and are reported as wavelength numbers (cm⁻¹). Infrared spectra were recorded by preparing a KBr pellet containing the title compound. ¹H NMR and ¹³C NMR spectra were recorded with tetramethylsilane (TMS) as internal standard at ambient temperature unless otherwise indicated on a Varian 300/400 and JEOL JNM-ECX500 MHz at 500 MHz for ¹H NMR and 100 MHz for ¹³C NMR. Chemical shifts are reported in parts per million (ppm) and coupling constants are reported as Hertz (Hz). Splitting patterns are designated as singlet (s), broad singlet (bs), doublet (d), triplet (t). Splitting patterns that could not be interpreted or easily visualized are designated as multiple (m). The Mass Spectrometry analysis was done on the 6540 UHD Accurate-Mass Q-TOF LC/MS system (Agilent Technologies) equipped with Agilent 1290 LC system obtained by the Dept. of Chemistry, School of Natural Sciences, Shiv Nadar University, Uttar Pradesh 203207, India.

General procedure for the knoevenagel condensation between 6-methylfuro[3,4-c]pyridine-3,4(1H,5H)-dione and appropriate aldehydes

The reactions were executed in a 24 carousal (15 mL volume) custom made reaction block. To a stirred solution of 6-methylfuro[3,4-c]pyridine-3,4(1H,5H)-dione (150 mg, 0.9 mmoles) in ethanol (9 mL) added piperidine (7.5 mg, 0.09 mmol), followed by corresponding aldehyde (0.99 mmol) under N₂ atmosphere at room temperature, then the reaction mixture stirred at 80° C for 16 h, allowed to cool to room temperature. The supernatant was removed and the resulting precipitate was washed twice with ethanol (10 mL X 2) and once with diethyl ether (10 mL). The solvent removal and washing was conducted in parallel in Tecan Evo Freedom machine. They were then dried in genevac to provide the desired derivatives of 6-methylfuro[3,4-c]pyridine-3,4(1H,5H)- dione (1-21).

(Z)-1-(2,4-dimethylbenzylidene)-6-methylfuro[3,4-c]pyridine-3,4(1H,5H)-dione (1)

Following the general protocol 2, 4-dimethylbenzaldehyde (134 mg, 0.99 mmol) afforded 1 in 127 mg (yield 48%). ¹H NMR (300 MHz; DMSO-d₆): δ 12.21 (br. s, 1H), 7.81 (m, 1H), 7.23-7.19 (m, 1H); 7.17-7.15 (m, 1H); 6.98-6.85 (m, 2H), 2.36 (s, 3H), 2.35-2.34 (m, 6H). ¹³C NMR (125 MHz; DMSO-d₆): δ 164.84, 157.98, 156.65, 155.67, 143.16, 135.61, 135.39, 131.38, 130.95, 130.52, 109.28, 106.01, 97.79, 21.15, 19.92, 19.72. LCMS (ESI) m/z: [M + H]⁺ calculated for (C₁₇H₁₆NO₃) 282.11, found 282.27.

(Z)-1-(4-methoxy-2,3-dimethylbenzylidene)-6-methylfuro[3,4-c]pyridine-3,4(1H,5H)-dione (2)

Following the general protocol 4-methoxy-2, 3-dimethylbenzaldehyde (162 mg, 0.99 mmol) afforded **2** in 200 mg (yield 72%). ¹H NMR (300 MHz; DMSO-d₆): δ 12.15 (br. s, 1H), 7.85-7.83 (d, *J* = 6 Hz, 1H), 7.01-6.95 (m, 3H); 3.81 (s, 3H), 2.27-2.26 (d, J = 3Hz, 6H), 2.18 (s, 3H). ¹³C NMR (125 MHz; DMSO-d₆): δ 164.90, 158.29, 156.71, 155.11, 141.76, 138.47, 129.06, 124.98, 123.96, 110.47, 108.88, 105.45, 97.42, 56.04, 20.38, 16.39, 12.32. LCMS (ESI) m/z: [M + H]⁺ calculated for (C₁₈H₁₉NO₄) 312.58, found 312.25.

(Z)-1-(2-trifluoromethylbenzylidene)-6-methylfuro[3,4-c]pyridine-3,4(1H,5H)-dione (**3**)

Following the general protocol 2-trifluoromethylbenzaldehyde (168 mg, 0.99 mmol) afforded **3** in 200 mg (yield 71%). ¹H NMR (300 MHz; DMSO-d₆): δ 11.99-11.80 (br. s, 1H), 8.20-8.18 (d, J = 6 Hz, 1H), 7.86-7.78 (m, 2H), 7.61-6.58 (m, 1H), 6.85 (s, 1H), 6.80 (s, 1H), 2.34 (s, 3H). ¹³C NMR (125 MHz; DMSO-d₆): δ 164.19, 157.98, 157.02, 156.09, 145.45, 133.29, 132.57, 130.64, 129.69, 127.56, 127.31, 126.64, 106.59, 105.27, 97.52, 19.96. LCMS (ESI) m/z: [M + H]⁺ calculated for (C₁₆H₁₁F₃NO₃) 322.06, found 322.00.

(Z)-1-(3,4-dihydroxybenzylidene)-6-methylfuro[3,4-c]pyridine-3,4(1H,5H)-dione (4)

Following the general protocol 3,4-dihydroxybenzaldehyde (136 mg, 0.99 mmol) afforded **4** in 132 mg (yield 53%). ¹H NMR (300 MHz; DMSO-d₆): δ 7.39 (s, 1H), 7.16-7.05 (m, 1H), 6.80-6.75 (m, 2H), 6.72 (s, 1H), 2.28 (s, 3H). ¹³C NMR (125 MHz; DMSO-d₆): δ 168.75, 167.43, 164.90, 158.35, 156.71, 155.05, 148.29, 146.05, 140.58, 124.67, 124.40, 117.66, 116.45, 113.39, 109.28, 105.14, 99.84, 97.03, 68.28, 20.00, 19.65. LCMS (ESI) m/z: $[M + H]^+$ calculated for (C₁₅H₁₂NO₅) 286.06, found 386.00.

(Z)-1-((1H-indol-3-yl)methylene)-6-methylfuro[3,4-c]pyridine-3,4(1H,5H)-dione (5)

Following the general protocol 1H-indole-3-carbaldehyde (145 mg, 0.99 mmol) afforded **5** in 192 mg (yield 71%). ¹H NMR (500 MHz; DMSO-d₆): δ 11.99 (br. s, 1H), 8.01 (m, 2H), 7.31-7.25 (m, 1H); 7.39 (s, 1H); 7.21-7.18 (m, 3H), 6.82 (s, 1H), 2.39 (s, 3H). ¹³C NMR (125 MHz; DMSO-d₆): δ 168.77, 167.41, 164.88, 158.56, 158.38, 155.79, 155.05, 154.35, 139.38, 136.44, 130.69, 126.96, 123.02, 121.01, 119.26, 112.72, 109.59, 109.29, 106.85, 104.80, 99.84, 96.94, 68.29, 19.99, 19.65. HRMS (ESI-TOF) m/z: [M + H]⁺ calculated for (C₁₇H₁₃N₂O₃) 293.08, found 293.00.

(Z)-1-(benzo[d][1,3]dioxol-5-ylmethylene)-6-methylfuro[3,4-c]pyridine-3,4(1H,5H)-dione (6)

Following the general protocol benzo[d][1,3]dioxole-5-carbaldehyde (150 mg, 0.99 mmol) afforded **6** in 200 mg (yield 75%). ¹H NMR (300 MHz; DMSO-d₆): δ 12.18 (bs, 1H), 7.40 (s, 1H), 7.35-7.33 (d, J = 6 Hz, 1H), 7.10-7.05 (m, 1H), 6.89 (s, 1H), 6.64-6.63 (d, J = 3 Hz, 1H), 6.05 (s, 2H), 2.34 (s, 3H). ¹³C NMR (125 MHz; DMSO-d₆): δ 164.55, 158.19, 156.64, 155.50, 148.90, 148.33, 141.64, 127.38, 126.64, 112.13, 109.73, 109.39, 105.50, 102.18, 97.05, 20.02. LCMS (ESI) m/z: [M + H]⁺ calculated for (C₁₆H₁₂NO₅) 298.06, found 298.18.

(Z)-6-methyl-1-((1-methyl-1H-imidazol-4-yl)methylene)furo[3,4-c]pyridine-3,4(1H,5H)-dione (7)

Following the general protocol 1-methyl-1H-imidazole-4-carbaldehyde (109 mg, 0.99 mmol) afforded 7 in 182 mg (yield 79%). ¹H NMR (500 MHz; DMSO-d₆): δ 11.98 (br. s, 1H), 8.03 (m, 1H), 7.61-7.55 (m, 1H); 7.49 (s, 1H); 6.86 (s, 1H), 3.92 (s, 3H), 2.31 (s, 3H). ¹³C NMR (125 MHz; DMSO-d₆): δ 164.36, 158.08, 155.29, 153.91, 138.86, 136.50, 133.84, 127.01, 122.71, 120.83, 118.90, 110.64, 108.20, 105.93, 96.48. HRMS (ESI-TOF) m/z: [M + H]⁺ calculated for (C₁₃H₁₂N₃O₃) 258.08, found 258.19.

(Z)-1-(3, 4-difluorobenzylidene)-6-methylfuro[3,4-c]pyridine-3,4(1H,5H)-dione (8)

Following the general protocol 3,4-difluorobenzaldehyde (140 mg, 0.99 mmol) afforded **8** in 220 mg (yield 85%). ¹H NMR (300 MHz; DMSO-d₆): δ 12.25 (bs, 1H), 7.85-7.79 (m, 1H), 7.62-7.55 (m, 2H), 6.99 (s, 1H), 6.62 (s, 1H), 2.34 (s, 3H). ¹³C NMR (125 MHz; DMSO-d₆): δ 164.21, 158.00, 156.47, 156.26, 143.69, 130.88, 128.11, 118.99, 118.85, 118.76, 118.62, 109.32, 106.00, 97.23, 20.07. LCMS (ESI) m/z: [M + H]⁺ calculated for (C₁₅H₁₀F₂NO₃) 290.05, found 290.17.

(Z)-1-(3-bromobenzylidene)-6-methylfuro[3,4-c]pyridine-3,4(1H,5H)-dione (9)

Following the general protocol 3-bromobenzaldehyde (182 mg, 0.99 mmol) afforded **9** in 178 mg (yield 60%). ¹H NMR (300 MHz; DMSO-d₆): δ 12.41-12.21 (bs, 1H), 8.00 (s, 1H), 7.80-7.75 (d, *J* = 15 Hz, 1H), 7.61-7.56 (m, 1H), 7.48-7.40 (m, 1H), 6.99 (s, 1H), 6.68 (s, 1H), 2.31 (s, 3H). ¹³C NMR (125 MHz; DMSO-d₆): δ 168.30, 158.04, 156.54, 156.27, 144.10, 135.53, 132.74, 132.23, 131.52, 129.71, 122.61, 109.86, 106.10, 97.35, 56.50, 20.10, 19.01. LCMS (ESI) m/z: [M + H]⁺ calculated for (C₁₅H₁₁BrNO₃) 332.1488, found 332.0950.

(Z)-1-(4-bromobenzylidene)-6-methylfuro[3,4-c]pyridine-3,4(1H,5H)-dione (10)

Following the general protocol 4-bromobenzaldehyde (182 mg, 0.99 mmol) afforded **10** in 192 mg (yield 64%). ¹H NMR (300 MHz; DMSO-d₆): δ 12.35-12.25 (bs, 1H), 7.79-7.81 (m, 4H), 6.98 (s, 1H), 6.67 (s, 1H), 2.36 (s, 3H). ¹³C NMR (125 MHz; DMSO-d₆): δ 164.37, 158.10, 156.61, 156.11, 143.67, 132.58, 132.49, 132.44, 123.18, 110.45, 106.02, 97.34, 20.09. LCMS (ESI) m/z: [M + H]⁺ calculated for (C₁₅H₁₁BrNO₃) 332.1488, found 332.1330.

(Z)-6-methyl-1-(naphthalen-2-ylmethylene)furo[3,4-c]pyridine-3,4(1H,5H)-dione (11)

Following the general protocol 3-naphthaldehyde (152 mg, 0.99 mmol) afforded **11** in 231 mg (yield 84%). ¹H NMR (300 MHz; DMSO-d₆): δ 12.23 (bs, 1H), 8.59-8.42 (m, 1H), 8.25-8.19 (m, 1H), 8.01-7.95 (m, 2H), 7.65-7.52 (m, 4H), 7.19 (s, 1H), 2.36 (s, 3H). ¹³C NMR (125 MHz; DMSO-d₆): δ 164.75, 158.31, 156.75, 155.92, 144.54, 133.84, 131.77, 130.29, 130.24, 129.77, 129.11, 127.42, 126.87, 126.17, 124.32, 107.50, 105.94, 97.93, 20.17. LCMS (ESI) m/z: [M + H]⁺ calculated for (C₁₉H₁₄NO₃) 304.09, found 304.23.

(Z)-1-(2,3-dimethoxybenzylidene)-6-methylfuro[3,4-c]pyridine-3,4(1H,5H)-dione (12)

Following the general protocol 2,3-dimethoxybenzaldehyde (164 mg, 0.99 mmol) afforded **12** in 220 mg (yield 78%). ¹H NMR (300 MHz; DMSO-d₆): δ 12.20 (bs, 1H), 7.40 (s, 1H), 7.64-7.62 (m, 1H), 7.21-7.15 (m, 2H), 6.95 (s, 1H), 6.88 (s, 1H) 3.80 (s, 6H), 2.31)s, 1H). LCMS (ESI) m/z: [M + H]⁺ calculated for (C₁₅H₁₂NO₅) 314.09, found 314.21.

(Z)-1-benzylidene-6-methylfuro[3,4-c]pyridine-3,4(1H,5H)-dione (13)

Following the general protocol benzaldehyde (105 mg, 0.99 mmol) afforded **13** in 163 mg (yield 74%). ¹H NMR (500 MHz; DMSO-d₆): δ 12.00 (br. s, 1H), 7.82-7.78 (m, 2H), 7.59-7.39 (m, 3H), 6.99 (s, 1H); 6.79 (s, 1H), 2.31 (s, 3H). ¹³C NMR (125 MHz; DMSO-d₆): δ 164.59, 158.17, 156.78, 155.94, 143.19, 133.21, 130.86, 129.83, 129.49, 111.82, 105.95, 97.34, 20.20. HRMS (ESI-TOF) m/z: [M + H]⁺ calculated for (C₁₅H₁₂NO₃) 254.07, found 254.14.

(Z)-1-(3-chlorobenzylidene)-6-methylfuro[3,4-c]pyridine-3,4(1H,5H)-dione (14)

Following the general protocol 3-chlorobenzaldehyde (140 mg, 0.99 mmol) afforded **14** in 229 mg (yield 80%). ¹H NMR (400 MHz; DMSO-d₆): δ 12.25 (br. s, 1H), 7.84-7.82 (m, 2H), 7.78-7.71 (m, 1H), 7.58-7.42 (m, 2H), 6.99 (s, 1H), 6.74 (s, 1H) 2.36 (s, 3H). ¹³C NMR (100 MHz; DMSO-d₆): δ 163.84, 157.58, 156.08, 155.81, 143.68, 134.80, 133.57, 130.81, 129.37, 128.91, 109.46, 105.66, 96.89, 19.64. UPLC m/z: [M + H]⁺ calculated for (C₁₆H₁₀ClNO₃) 288.03, found 288.01.

(Z)-1-(3-iodobenzylidene)-6-methylfuro[3,4-c]pyridine-3,4(1H,5H)-dione (15)

Following the general protocol 3-iodobenzaldehyde (231 mg, 0.99 mmol) afforded **19** in 347 mg (yield 92%). ¹H NMR (400 MHz; DMSO-d₆): δ 12.21 (br. s, 1H), 8.19-8.18 (d, *J* = 4 Hz, 1H), 7.81-7.75 (m, 2H), 7.35-7.25 (m, 1H), 6.96 (s, 1H), 6.71 (s, 1H) 2.37 (s, 3H). ¹³C NMR (100 MHz; DMSO-d₆): δ 164.39, 158.09, 156.62, 156.24, 143.95, 138.77, 138.11, 135.52, 131.52, 130.06, 109.97, 106.12, 97.38, 95.88, 20.16. UPLC m/z: [M + H]⁺ calculated for (C₁₅H₁₁INO₃) 379.97, found 380.00.

(Z)-6-methyl-1-propylidenefuro[3,4-c]pyridine-3,4(1H,5H)-dione (16)

Following the general protocol propionaldehyde (60 mg, 0.99 mmol) afforded **16** in 347185 mg (yield 90%). ¹H NMR (400 MHz; DMSO-d₆): δ 11.99 (br. s, 1H), 6.61 (s, 1H), 6.08-6.00 (m,

1H), 2.39-2.35 (m, 2H), 2.11 (s, 3H), 1.18-1.08 (m, 3H). UPLC m/z: $[M + H]^+$ calculated for $(C_{11}H_{12}NO_3)$ 206.07, found 206.

(Z)-1-(4-chlorobenzylidene)-6-methylfuro[3,4-c]pyridine-3,4(1H,5H)-dione (17)

Following the general protocol 4-chlorobenzaldehyde (138 mg, 0.99 mmol) afforded **17** in 215 mg (yield 75%). ¹H NMR (400 MHz; DMSO-d₆): δ 12.22 (br. s, 1H), 7.83-7.80 (d, *J* = 12 Hz, 2H), 7.60-7.57 (d, *J* = 12 Hz, 2H), 6.96 (s, 1H), 6.72 (s, 1H), 2.35 (s, 3H). ¹³C NMR (125 MHz; DMSO-d₆): δ 164.44, 158.15, 156.69, 156.17, 143.65, 134.36, 132.45, 132.18, 129.65, 110.43, 106.07, 97.39, 20.14. UPLC m/z: [M + H]⁺ calculated for (C₁₅H₁₁ClNO₃) 288.03, found 288.04

(Z)-1-(4-iodobenzylidene)-6-methylfuro[3,4-c]pyridine-3,4(1H,5H)-dione (18)

Following the general protocol 4-iodobenzaldehyde (228 mg, 0.99 mmol) afforded **18** in 265 mg (yield 70%). ¹H NMR (400 MHz; DMSO-d₆): δ 12.18 (br. s, 1H), 7.85-7.81 (d, *J* = 16 Hz, 2H), 7.60-7.56 (d, *J* = 12 Hz, 2H), 6.91 (s, 1H), 6.74 (s, 1H), 2.31 (s, 3H). ¹³C NMR (100 MHz; DMSO-d₆): δ 163.94, 157.66, 155.65, 143.30, 137.92, 132.23, 132.06, 110.29, 105.57, 96.9, 19.65. UPLC m/z: [M + H]⁺ calculated for (C₁₅H₁₁INO₃) 379.97, found 380.01

(Z)-1-(4-methoxybenzylidene)-6-methylfuro[3,4-c]pyridine-3,4(1H,5H)-dione (19)

Following the general protocol 4-methoxybenzaldehyde (135 mg, 0.99 mmol) afforded **19** in 237 mg (yield 84%). ¹H NMR (400 MHz; DMSO-d₆): δ 12.15 (br. s, 1H), 7.82-7.76 (d, *J* = 18 Hz, 2H), 7.18-7.12 (d, *J* = 17.8 Hz, 2H), 6.95 (s, 1H), 6.75 (s, 1H), 3.81 (s, 3H), 2.34 (s, 3H). ¹³C NMR (125 MHz; DMSO-d₆): δ 164.27, 160.24, 157.80, 156.26, 154.91, 140.98, 132.28, 125.38, 114.62, 111.69, 105.01, 96.61, 55.34, 19.57. UPLC m/z: [M + H]⁺ calculated for (C₁₆H₁₃NO₄) 284.08, found 284.11.

(Z)-1-(2-bromobenzylidene)-6-methylfuro[3,4-c]pyridine-3,4(1H,5H)-dione (20)

Following the general protocol 2-bromobenzaldehyde (180 mg, 0.99 mmol) afforded **20** in 310 mg (yield 94%). ¹H NMR (400 MHz; DMSO-d₆): δ 12.31 (br. s, 1H), 8.15-8.12 (m, 1H), 7.80-7.74 (m, 1H), 7.58-7.55 (m, 1H), 7.39-7.32 (m, 1H), 6.95 (s, 1H), 6.94 (s, 1H), 2.32 (s, 3H). ¹³C NMR (125 MHz; DMSO-d₆): δ 167.04, 157.87, 156.23, 144.34, 133.47, 132.19, 130.87, 128.24,

124.58, 108.86, 105.88, 97.30, 20.03. UPLC m/z: $[M + H]^+$ calculated for (C₁₅H₁₁BrNO₃) 331.98, found 332.01.

(Z)-1-(2-chlorobenzylidene)-6-methylfuro[3,4-c]pyridine-3,4(1H,5H)-dione (21)

Following the general protocol 2-chlorobenzaldehyde (137 mg, 0.99 mmol) afforded **21** in 210 mg (yield 73%). ¹H NMR (400 MHz; DMSO-d₆): δ 12.31 (br. s, 1H), 8.15-8.12 (m, 1H), 7.60-7.40 (m, 3H), 6.96 (s, 1H), 6.91 (s, 1H), 2.31 (s, 3H). ¹³C NMR (125 MHz; DMSO-d₆): δ 164.30, 158.05, 156.64, 156.37, 144.98, 133.80, 132.09, 131.18, 130.78, 130.32, 128.19, 106.32, 106.09, 97.64, 20.00. UPLC m/z: [M + H]⁺ calculated for (C₁₅H₁₁ClNO₃) 288.03, found 288.04.

Docking Studies with HumanTOP1

Results & Discussion

According to the docking results, the binding energy (kcal/mol) of the best pose of compounds with receptor HumanTOP1 are:

Compound Name	HumanTOP1
Edotecarin	-9.31
13	-7.70

All the compounds intercalates at the DNA cleavage site (Figure 2) and forms various bonded and nonbonded interactions as shown in Table and Figure 2 & 3.

Compound Name	Hydrogen Bonds Interactions	Non-bonded Interactions
Camptothecin (PDB ID : 1T8I)	ARG364	THR718, ASN722, DG12,
		DA113, DC112, TGP11
Edotecarin	ARG364, ASN352, TGP11,	ALA351, TYR426, ASP533,
	DG12, DA113, DC112	ASN722, DT10
13	ARG364, THR718, ASN722	DT10, DC112, DA113, TGP11

Figure 1: This figure shows the binding pose of docked compounds with HumanTOP1. Campthothecin in Red, Edotercarin in Green, **4** in Blue and **RM27** in Orange.

Figure 2. (a) Binding pose of Campthothecin in 2D; (b) Binding pose of Edotercarin in 2D; (c) Binding pose of **13** in 2D; (d) Binding pose of Camptothecin in 3D; (e) Binding pose of Edotercarin in 3D; (f) Binding pose of **13** in 3D.

Docking Studies with Ld TOP1

Results & Discussion

According to the docking results, the binding energy (kcal/mol) of the best pose of compounds with receptor LdTOP1 complex human Top1-DNA substituted are:

Compound Name	LdTOP1
Camptothecin	-10.01
Edotecarin	-11.15
4	-8.66
13	-8.07

All the compounds intercalate at the DNA cleavage site (Figure 3) and form various bonded and nonbonded interactions as shown in Table and Figure 4.

Compound Name	Hydrogen Bonds Interactions	Non-bonded Interactions
Camptothecin	ARG190, THR217, HIS453,	ASN221, ARG314, ASP353,
-	GLN454, DG12	ILE355, DT10, DA113, TGP11
Edotecarin	ARG190, GLN454, DT10,	ASN178, ILE220, ASN221,
	TGP11, DG12	ASP353, DC112, DA113

4	ARG190, ASN221, DA113	THR217, DT10, TGP11, DC112
13	ARG190, GLN454, TGP11	ASN221, DT10, DG12

Figure 3: This figure shows the binding pose of docked compounds with LdTOP1. Campthothecin in Red, Edotercarin in Green, 4 in Blue and 13 in Orange.

Figure 4. (a) Binding pose of Campthothecin in 2D; (b) Binding pose of Edotercarin in 2D; (c) Binding pose of **4** in 2D; (d) Binding pose of **13** in 2D; (e) Binding pose of Camptothecin in 3D; (f) Binding pose of Edotercarin in 3D; (g) Binding pose of **4** in 3D; (h) Binding pose of **13** in 3D.

Comopund 2

C NMR of RM-5	-164.19	∕_157.98 157.02 \-156.09	- 145.45	/ 133.29 / 132.57 / 130.64	-129.69 -127.56 -127.31 -126.64		~106.59 ~105.27	-97.52					-19.96	-38
	ł						<u> </u>							-36
														-38
														-38
														-28
														-26
														-21
														-21
														-2
												-		-1
												_		-1
														-8
														-6
														-4
			 											-2
	,					n daama ya mada ka					4		and the second second	
														2

15			14 1 88		.35	% 1 8	01 02	12 79	8 8 9	<u></u> 4 4		6		စ္က ဟု		
C NMR of	RM-7		-168 -167. -164	-158 -158 -155 -155	-154	-139 -136 -130	-126 -123 -121	-112	-109 -106	-99.9 9.06-		-68.2		-19.6		- 21
				N Im					Y77	((Y		 -21
																 -21
											 			 		 -11
																-
																-
																-
																 -71
																 -61
																-
												1		I		
							1	 	1) 1						-41
									_					 		 -31
																-
																 -1
		en al an air an				ul de la companya de	A A A A A A A A A A A A A A A A A A A			la la compe			et an		ley bearing a second	-0

8.9.1 13C	5 CNMR of	RM-56	-158.19 -156.64 -155.50	-148.90 -148.33	-141.64		-127.38 -126.64		-112.13	-109./3	-102.18	-97.05											-20.02			
			17	1			17		1		1															1E+08
																										-1E+08
																				_						-1E+08
																										- -1E+08
																										-9E+07
																										-8E+07
																										-7E+07
																										- -6E+07
																										-4E+07
																										-3E+07
																										- -2E+07
																										-
				4 d		r 6a a a aki		بريعا عسرار	A.I	han alki ata	1		60 D. 64		na cht ca tha aik	nadata itua	رين العلم الم	at sets a life second	متعاطية	. د اقل آمر د ۱	as theat scale :		1. I. M. a. B. a.	an a tao bili a	s. a.b b ab.	
	an a	ndadi bardan kana Galera dagi bila sa		is have a property of the second s	un de set de conset and se set de conset	t in film almost the stand of the				i policie de la com					Anna Chaine Ch	an an the second states of the	ante cheste	a ha sha ƙa sa			ila, Allanderen I		And Street of Street	Left of plate	al sais, illastrator Il sais	-0 -
																									I	-1E+07
180) 17	70	160	150	140	0 13	0	120	11	.0	10	0 f1 (90 ppm)	8	0	70	60		50	40	30	0	20	10)	0

160115_PF_3_13C_CARBON-4.jdf	Derived from: 160115_PF_3_13C_CAS	DL BON-1.1
And the second s	Filename = i60115 PF 3_13 Autbor = delta Experiment = single pulse c Solvant = DMSO_D6 Creation_time = 17-JAN-2015 02 Revision time = 17-JAN-2015 02 Current_time = 17-JAN-2015 02 Current_time = 17-JAN-2015 02 Current_time = 17-JAN-2015 02 Current_time = 17-JAN-2015 02 Commant = 160115 PF 3_13 Data format = 10 COMPLEX Dim_mixe = 26214 Dim_units = [prm] Dim_size = 26214 Dim_units = [prm] Dim_size = 26214 Dim_funits = [prm] Dim_size = 26214 Dim_funits = [prm] Dim_size = 26214 Dim_funits = [prm] Dimesize = 302.3061792[s] X acq_duration = 0.83361792[s] X freq = 1024 Y fregetime = 0.03361792[s] Irr_domain = 18 Irr_domain = 1024 X solutis sca	C_CARBO ac C ::141 ::48:38 ::48:58 C (500 [ME Elz] :] :]

9.15 3C NMR (of Rt 18	156.00 156.47 156.26	 130 88		118.99 118.85 118.76 118.62									
														-
														-
														-
											h			
l pigiti ya puga kuli	Reden des selfe norma des sel			una Anatana	al an a bill Any cardonal	silisiind on the density of		t de ante consta a stata a se	tern, film at the analysis of the	den anti-titulys frankji	-	un en fakteren	n dyn orgifiangersyndyn i	
_		 												

, NMI	R of Rum-2	 156.04 156.54 156.27 		135.53 132.74 132.74 132.23	-122.51 -129.71 -122.61		97.35			 		~ 20.10	
				1 111	r i								
													-
													-
													-
													-
													-
													-
													-
a la	y ayo afgar yiny handada		nang pang pang pang pang pang pang pang	ernin nestigna (Mele		en genige gegenige het de station de station Construir de station de	7 999-112-27-112-121-21- 21-21-21-21-21-21-21-21-21-21-21-21-21-2	arte Pilosetije teteratul	nganihissanti di jiwa di ji	a-frahis-bis-hridis (1994)	na tang tang tang tang tang tang tang ta		

8.9.15 13C NM	R of∰M-2	156.75 156.75 155.92		133.84 131.77 130.29 130.24	129.11	L124.32									20.17		
																	-6E+
	ns later and at the land.					1912) pice a line to poly of [1]. 1912) pice a line to poly of [1].	A a Hiller Leis Maler	at a procession	r ja van heef in 10 ee daar en jij daar Versel ja waard die bester gebieden.	la quitta la bateria polo pla quitta la forma polo por co	na la stiffet de sta de suit		la la la baint stockt ny construction	in a first and a line of a start	lifte han a la til i shalaan a bi		
ם, תינהניי 1						H +						· · · · · · · · · · · · · · · · · ·					
17	70 1	60 1!	50 1 [,]	40 13	30 12	20 1:	10 10)0 9 f1 (0 8 (nnn)	0 7	0 6	0 5	50 4	0 3	0 20) 10	0

2

