Quantitative $PPAR\gamma$ expression affects the balance between tolerance and immunity Ya-Hui Liu¹, Yau-Sheng Tsai^{1,2,3}, Shih-Chieh Lin⁴, Nan-Shih Liao⁵, Ming-Shiou Jan⁶, Chung-Tiang Liang⁷, Shih-Wen Hsu⁸, Wen-Chung Chen⁹, Junne-Ming Sung¹⁰, Nobuyo Maeda¹¹, and Pei-Jane Tsai^{1,8,12} Supplemental Figure S1. Spleen enlargement in PPAR γ hypomorphic mice. (A) Immunofluorescent staining of PPAR γ (*green*) in splenocytes. The Hoechst nuclear counterstain appears *blue*. Scale bar, 20 µm (B) Ser273 phosphorylation of PPAR γ in splenocytes was determined by immunoblotting using antibodies against P-Ser273 PPAR γ and PPAR γ . (C) Spleen-to-body weight ratio in female mice. (D) Spleen weight and spleen-to-body weight ratio in male mice. Numbers inside bars indicate the number for each group. *p <0.05; **p <0.01; ***p <0.001. **Supplemental Figure S2. Effects of PPAR** γ hypomorph on bone formation and hematopoietic stem cell relocation. (A) Micro-CT images of the distal femur metaphysis and (B) quantification of structural parameters of femoral metaphysis from 2-mo-old and 9-mo-old mice. Bone marrow density (BMD); trabecular volume (BV/TV); trabecular number (Tb.n); trabecular separation (Tb.sp). (C) Flow cytometric analysis of hematopoietic stem cells (HSCs) in the spleen of 2-mo-old and 9-mo-old mice. (D) Expression of transcription factors regulating early hematopoiesis in the spleen and bone marrow of 2-mo-old and 9-mo-old mice. LMO2, LIM domain only 2; GATA1, GATA-binding protein 1. Numbers inside bars indicate the number for each group. *p <0.05; **p <0.01; ***p <0.001. Supplemental Figure S3. Migration ability of splenocytes toward S1P and S1P₁ expression after modulation of PPARγ activity. (A) CXCR4 and CXCR5 mRNA levels in B cells and CD4⁺ T cells from 3-mo-old mice. (B) S1P₁ protein levels in WT and $Pparg^{C'-}$ splenocytes after treatment with 80 μM Piog and 20 μM GW9662 for 24 hours. Migration of (C) splenocytes, (D) B cells and (E) CD4⁺ T cells in response to different concentrations of S1P in Transwell migration assays. *p <0.05; **p <0.01; ***p <0.001. Two-way ANOVA for splenocyte migration in panel (C) shows effects of genotype (p <0.001) and S1P dosage (p <0.01). Two-way ANOVA for B-cell migration in panel (D) shows effects of genotype (p <0.001) and S1P dosage (p <0.001) with an interaction between these factors (p <0.05). Two-way ANOVA for CD4⁺ T-cell migration in panel (E) shows effect of genotype (p <0.001). (F) S1P₁ expression in mouse embryonic fibroblasts treated with GW9662 (10 and 20 μg/ml) for 24 hours. Numbers inside bars indicate the number for each group. **Supplemental Figure S4. In vitro cell proliferation and apoptosis.** (A) CFSE-labeled B cells stimulated with anti-IgM (30 μg/ml) antibodies, a combination of anti-IgM (15 μg/ml) and anti-CD40 (10 μg/ml) antibodies, and LPS (10 μg/ml). (B) CFSE-labeled CD4⁺ T cells stimulated with anti-CD3/CD28 (4 μg/ml) antibodies. Proliferation was analyzed by flow cytometry and the proliferation index was quantified by FlowJo software. Numbers inside bars indicate the number for each group. Percentages of propidium iodide (PI)-positive (C) B cells and (D) CD4⁺ T cells cultured in the serum-free medium. B cells and CD4⁺ T cells were isolated from 3-mo-old mice. Numbers inside bars indicate the number for each group. Supplemental Figure S5. Normal kidney function but electron-dense deposits in mesangial cells of *Pparg*^{C/-} kidney. (A) Urine albumin concentration, daily urinary albumin excretion (UAE), and serum creatinine levels of 14-mo-old mice. Numbers inside bars indicate the number for each group. (B–C) Transmission electron microscopy of glomeruli. *Asterisks* show electron-dense deposits in the mesangium, and *black arrows* indicate normal podocyte foot processes. Scale bar, 1 μm. **Supplemental Figure S6. In vitro B-cell response.** (A) Coculture of $Pparg^{C/-}$ B cells with WT or $Pparg^{C/-}$ CD4⁺ T cells. Percentages of plasma cells (CD19⁺ CD138⁺) gating from B cells (CD19⁺) measured by flow cytometry after anti-CD3/CD28 stimulation for 3 d, and IgG production in the medium measured after anti-CD3/CD28 stimulation for 7 d. (B) Coculture of $Pparg^{C/-}$ CD4⁺ T cells with WT or $Pparg^{C/-}$ B cells, the same parameters as in A were measured. IgM and IgG production from WT or $Pparg^{C/-}$ B cells after stimulations with (C) LPS (5 μg/ml), NP-Ficoll (10 μg/ml), or (D) anti-CD40 (5 μg/ml) plus IL-4 (25 ng/ml) for 5 d. B cells were isolated from 4–6-mo-old mice. (E) Blimp1 and Bcl-6 mRNA levels of B cells in response to NP-Ficoll (10 μg/ml) or anti-CD40 (5 μg/ml) plus IL-4 (25 ng/ml) for 3 d. Numbers inside bars indicate the number for each group. *p <0.05 and *p <0.01. Supplemental Figure S7. Analysis of Tfh cells in the spleen of older WT and $Pparg^{C/-}$ mice. Flow cytometric analysis of the expression of PD-1 and CXCR5 on the splenic CD4⁺ T cells. Numbers inside bars indicate the number for each group. Supplemental Figure S8. Macrophage activation in WT and $Pparg^{C/-}$ mice. Basal and LPS-stimulated mRNA levels of IL-1 β , iNOS and MCP-1 in peritoneal macrophages. LPS (500 ng/ml) was stimulated for 3.5 hours. Numbers inside bars indicate the number for each group. *p < 0.05; **p < 0.01; ***p < 0.001. Table SI Flow cytometric analyses of splenic cells from younger WT and $\textit{Pparg}^{\textit{C/-}}$ mice | | WT | Pparg ^{c/-} | <i>P</i> -value | | |---|--|----------------------|-----------------|--| | | % of splenic cells | | | | | CD19⁺ | 58.80 ± 1.89 | 58.38 ± 0.84 | 0.844 | | | CD3⁺ | 33.84 ± 1.73 | 31.75 ± 1.24 | 0.366 | | | CD11C+FSC+ | 2.48 ± 0.53 | 1.93 ± 0.31 | 0.380 | | | Gr-1 ⁻ CD11b ⁺ F4/80 ⁺ | 3.43 ± 0.53 | 2.72 ± 0.48 | 0.371 | | | B-cell subtypes | % of splenic CD19 ⁺ B cells | | | | | IgM ^{high} IgD ^{low} | 19.53 ± 1.40 | 18.05 ± 1.61 | 0.514 | | | IgM ^{high} IgD ^{high} | 14.38 ± 0.34 | 13.51 ± 0.90 | 0.400 | | | IgM ^{low} IgD ^{high} | 44.48 ± 1.14 | 48.20 ± 1.77 | 0.126 | | | CD21lowCD23+ | 68.41 ± 1.17 | 69.90 ± 0.61 | 0.306 | | | CD21highCD23- | 13.00 ± 0.87 | 10.27 ± 0.78 | 0.058 | | | Plasma cells | % of splenic cells | | | | | CD19lowCD138+ | 1.45 ± 0.20 | 1.57 ± 0.44 | 0.575 | | | Germinal center B cells | % of splenic cells | | | | | B220 ⁺ PNA ^{hi} | 1.07 ± 0.11 | 0.86 ± 0.21 | 0.424 | | | T cell subtypes | % of splenic CD3 ⁺ T cells | | | | | CD4 ⁺ | 52.94 ± 4.94 | 59.61 ± 3.53 | 0.314 | | | CD8 ⁺ | 47.50 ± 0.87 | 49.94 ± 3.04 | 0.414 | | | CD62L and CD44 profile | % of splenic CD4 ⁺ T cells | | | | | CD62LhiCD44low | 69.43 ± 2.36 | 73.95 ± 2.78 | 0.261 | | | CD62LhiCD44hi | 16.13 ± 1.79 | 14.43 ± 1.78 | 0.526 | | | CD62LlowCD44hi | 7.19 ± 0.17 | 6.73 ± 0.62 | 0.496 | | Four 5-mo-old mice per group were analyzed and the data are presented as the average \pm SEM for each group. Table SII Flow cytometric analyses of splenic cells from older WT and $\textit{Pparg}^{\textit{C/-}}$ mice | | WT | Pparg ^{c/-} | <i>P</i> -value | | |---|--|----------------------|-----------------|--| | | % of splenic cells | | | | | CD19 ⁺ | 45.08 ± 1.78 | 50.08 ± 0.71 | 0.197 | | | CD3 ⁺ | 41.48 ± 2.56 | 35.38 ± 2.36 | 0.124 | | | CD11C+FSC+ | 3.28 ± 0.50 | 3.63 ± 0.37 | 0.591 | | | Gr-1 ⁻ CD11b ⁺ F4/80 ⁺ | 6.86 ± 1.65 | 6.07 ± 1.13 | 0.704 | | | B-cell subtypes | % of splenic CD19 ⁺ B cells | | | | | IgM ^{high} IgD ^{low} | 13.44 ± 0.32 | 13.72 ± 0.88 | 0.772 | | | lgM ^{high} lgD ^{high} | 11.74 ± 1.46 | 13.70 ± 1.34 | 0.320 | | | IgM ^{low} IgD ^{high} | 42.98 ± 2.51 | 38.92 ± 3.23 | 0.350 | | | CD21lowCD23+ | 62.22 ± 2.19 | 65.04 ± 0.74 | 0.257 | | | CD21highCD23- | 13.42 ± 0.97 | 11.64 ± 0.49 | 0.140 | | | Plasma cells | % of splenic cells | | | | | CD19lowCD138+ | 0.65 ± 0.75 | 0.61 ± 0.15 | 0.860 | | | Germinal center B cells | % of splenic cells | | | | | B220 ⁺ PNA ^{hi} | 2.23 ± 0.38 | 2.09 ± 0.21 | 0.760 | | | T-cell subtypes | % of splenic CD3+ T cells | | | | | CD4 ⁺ | 32.51 ± 2.14 | 35.56 ± 2.98 | 0.429 | | | CD8⁺ | 30.29 ± 2.17 | 22.52 ± 3.44 | 0.073 | | | CD62L and CD44 profile | % of splenic CD4 ⁺ T cells | | | | | CD62LhiCD44low | 55.72 ± 4.54 | 48.30 ± 5.07 | 0.307 | | | CD62L ^{hi} CD44 ^{hi} | 20.30 ± 2.16 | 26.28 ± 3.10 | 0.152 | | | CD62LlowCD44hi | 8.76 ± 0.86 | 9.51 ± 0.35 | 0.437 | | Five 14-mo-old mice per group were analyzed and the data are presented as the average \pm SEM for each group. Table SIII Complete blood cell counts in WT and $Pparg^{C/-}$ mice | Genotype | WBC
(K/μl) | Lymphocyte
(K/µl) | CD19 ⁺ B cell
(K/μl) | CD3 ⁺ T cell
(K/μl) | |----------------------|-----------------|----------------------|------------------------------------|-----------------------------------| | WT | 9.56 ± 0.67 | 7.29 ± 0.61 | 4.32 ± 0.33 | 2.23 ± 0.34 | | Pparg ^{c/−} | 9.22 ± 0.46 | 7.21 ± 0.30 | 4.46 ± 0.33 | 1.90 ± 0.34 | Four 4-mo-old mice per group were analyzed and the data are presented as the average \pm SEM for each group.