Supporting Information

Bio-inspired Hybrid Carbon Nanotube Muscles

Tae Hyeob Kim^{1,*}, Cheong Hoon Kwon^{1,*}, Changsun Lee¹, Jieun An², Tam Thi Thanh Phuong², Sun Hwa Park², Márcio D. Lima³, Ray H. Baughman³, Tong Mook Kang^{2,†}, and Seon Jeong Kim^{1,†}

¹Center for Self-powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul, 04763, Korea.

²Department of Physiology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea

³The Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75083, USA

* These authors contributed equally to this work.

[†]To whom correspondence should be addressed: <u>sjk@hanyang.ac.kr</u> and <u>tongmkang@skku.edu</u>

Supplementary Movies

Movie S1. Real-time tracing of the contraction and relaxation of a single myotube.

Movie S2. Contraction of hornworm-like hybrid muscle.

Figure S1. Comparison of the hydrophilicity of a bare MWCNT and a PEDOT-coated MWCNT sheets. (a) When cell culture medium (DMEM) is dropped on a bare MWCNT, the drop on it maintains a higher contact angle (Scale bar: 1 cm). (b) Fully-sunk bare MWCNT sheet with partially damaged structure in culture medium (Scale bar: 2 cm). (c) While, the drops on a PEDOT/MWCNT sheet, spread widely, indicating its hydrophilicity (Scale bar: 1 cm). (d) Fully-sunk PEDOT/MWCNT sheet showing the shape-maintenance property in culture medium (Scale bar: 2 cm)

Figure S2. SICM image of the PEDOT/MWCNT sheet surface. The manufactured PEDOT/MWCNT sheet is prepared on a slide glass and placed in PBS buffer solution, and then a SICM image of the surface is obtained. (**a**) A three-dimensional SICM image of a PEDOT/MWCNT sheet surface. Scan size: $30 \times 30 \ \mu m$. (**b**) Graph of the SICM image. The inset shows an enlarged line profile from the dashed box.

Figure S3. Comparison of each surface of a bare MWCNT sheet and a PEDOT-coated MWCNT sheet. (**a**) The surface image of a bare MWCNT sheet. Each carbon nanotube is well-aligned with an axial direction (Scale bar: $1 \mu m$) and (**b**) is a close-up SEM image of Fig. S3a (Scale bar: 250 nm). (**c**) The surface image of a PEDOT-coated MWCNT sheet. Compared to a bare MWCNT sheet, CNT bundles are densely placed with coating PEDOT polymer, and still kept the alignment from the bare MWCNT sheet (Scale bar: $1 \mu m$). (**d**) a close-up SEM image of Fig. S3c (Scale bar: 250 nm).

Figure S4. MyHC⁺ C2C12 myotubes differentiated on bare MWCNT sheet. The degree of differentiation and cell alignment on the bare MWCNT sheet is lower than that on the PEDOT/MWCNT sheet. (**a**) Nuclear staining with DAPI. (**b**) MyHC immunocytochemistry of the myotubes. (**c**) Merged image of DAPI and MyHC (Scale bars: 100 μ m). (**d**) Myotube alignment ratio analyzed by constructed angular spread distribution histogram. About 46 % of the myotubes are aligned with the direction of alignment of the bare MWCNT sheet (0^o aligned angle, n = 70).

Figure S5. The plot of the normalized cell densities according to the time (after differentiation) (* p < 0.05, n=5).