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1. Logical modelling framework 
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1.1. Basics 

The model presented in this work was defined using the logical formalism (1, 2). In this 

framework, the gene regulatory network is represented in terms of a directed graph. Each 

node (gene or regulatory product) is assigned a discrete variable with a maximal level, 

which defines the highest qualitative functional level taken by the regulatory node (this 

maximal level equals 1 in the simplest, Boolean case). Whenever distinct functional 

concentrations of a regulatory product need to be considered, multilevel variables are 

used. Each arc embodies a regulatory interaction and is assigned a threshold. This 

threshold defines the smallest functional level of the interaction source for which the 

interaction is operative. Logical parameters qualitatively describe the effects of each 

interaction or combination of interactions controlling the states of the network nodes. 

Thus, each node is associated to as many parameters as the number of combinations of 

interactions acting on this node. Per default, these parameters are set to zero. Defining 

non zero parameters amounts to single out the combinations of interactions enabling the 

activation of the targeted node and to qualitatively recover all documented wild type and 

mutant gene expression patterns. Parameters for the 1-cell network of Fig. 1 are given in 

the Supplementary Table S2. 

A state of the network is represented by a vector, which encompasses the current 

(discrete) node levels. Given a state, one can determine which interactions are operative 

and the values of the logical parameters indicate the nodes called to change their levels 

(i.e. those nodes whose current levels differ from the values of the logical parameters). In 

general, for a given state, all possible elementary transitions (i.e. switching of a single 

node level, to a neighbouring integer level) are considered, thus leading to as many 

outgoing transitions as updating calls (asynchronous updating, see Section 1.3). 

Depending on the structure of the regulatory graph and on the values of the logical 
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parameters, a model leads to a large but finite number of dynamical pathways. These are 

in turn represented in the form of a State Transition Graph (STG), where nodes 

represent states and (directed) edges represent transitions between states.  

The software tool GINsim (3) was used for the simulation and logical analysis of the gene 

regulatory network. The model files for the 1-cell and 2-cell networks are available as a 

Supplementary Files F1 and F2, in SBML format (4). They will be also provided in the 

model repository of the GINsim software web site (http://ginsim.org), where the tool is 

freely available.  

1.2.  Simulation of genetic perturbations 

In the logical framework, simulation of genetic perturbations is straightforward. A loss-

of-function mutation of a given gene implies that this gene produces a non-functional 

product (or no product at all), which amounts to assign the value zero to the 

corresponding variable and parameters. In contrast, the ectopic expression of a gene 

implies that this gene is expressed in an unregulated manner beyond its normal spatio-

temporal expression domain. This can be accomplished by forcing the corresponding 

variable to take higher values (for detail of this formal treatment of mutations, see (5).  

1.3. Updating schemes and Hierarchical Transition Graphs 

Model dynamics are defined by the specification of initial state(s) and of an updating 

scheme, which refers to how network component levels (i.e., model variables) are 

updated. In a synchronous update scheme, at each simulation step, all the components 

that are called to change their levels are simultaneously updated. This defines a 

deterministic behaviour in which each state has at most one successor. In contrast, the 

asynchronous update scheme is considered to be more realistic since it accounts for 

different activation and/or inactivation time of the model components. This update 
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amounts to generate all possible trajectories from the specified initial conditions: e.g. 

when two component levels are changed, these updates are done asynchronously, 

defining two transitions towards alternative successor states. The resulting STG may 

then include bifurcation states from which, depending on the choice of the successor 

state, the final stable state may differ; in other words, in the absence of any further 

constraint, two alternative phenotypes are reachable. 

For our model of the gene network controlling primary sex determination, constraints 

on conflicting updates (transitions) needed to be considered to get the final state 

match the expected phenotype (testis or ovary). Such constraints are expressed in 

terms of priorities, i.e. temporal orders between component updates (6). To uncover 

these priorities, we relied on a compact representation of the dynamics, called 

Hierarchical transition graphs (HTG) (Supplementary Fig. S2).  

HTG have been introduced as compact representations revealing the attractors and 

their basins of attraction, as well as transient oscillatory behaviours (7). To briefly 

describe the compaction leading to these graphs, we first recall that a Strongly 

Connected Component (SCC) is defined as a maximal strongly connected subgraph 

(i.e., a maximal subset of states in the STG, such that there is a path connecting each 

state to any other state). These SCCs are termed trivial when they encompass a single 

state, complex otherwise.  

States of an STG are gathered into single nodes of the corresponding HTG as follows: 

• If they belong to a complex SCC; 

• If they belong to an attractor i.e. a trivial or a complex SCCs with no outgoing 

transitions; 

• If they define trivial SCCs from which the same complex and terminal SCCs are 
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reachable.  

Hence nodes of an HTG are defined as sets of states. The arcs between these nodes 

denote the existence of (at least) a transition between two states of the corresponding sets 

of states. They can be labelled by the associated updates of variables of the logical model 

(Supporting Fig. 2). Importantly, a path in a HTG towards any node defined by a 

complex or terminal SCC implies a path in the original STG (7). 

2. Gene network controlling primary sex determination 
in placental mammals 

In this section, the components and the interactions included in the gene network 

are discussed. 

2.1.  Simplification of the regulatory network 

For simplicity matters, before defining the logical model, we performed a series of 

simplification of the detailed gene network (Supplementary Fig. S1), which resulted in 

the network illustrated in Fig. 1. These simplifications are described and justified in what 

follows. 

The sexual cyto-differentiation genes, such as Amh and Fst were removed since they 

constitute the output, male versus female, of the regulatory network. Pgd2 was also 

eliminated because it is not essential for testis development (8). Gonad development into 

ovary requires the function of the canonical Wnt4 signalling pathway. This is triggered 

by both Wnt4 and Rspo1, which operate through the same effector, ß-catenin. For 

simplification, we selected the secreted ligand Wnt4 to represent Wnt4 signalling 

pathway.  

The gene Sox9 plays a key, crucial role for testis determination, yet its function seems to 
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be dispensable for maintaining adult testis identity (9). It appears that this function is 

exerted by its homolog Sox8, which is activated by Sox9 after its Sry-dependent up-

regulation (10). This is so because the elimination of Sox8 function in XY mice does not 

affect the development of the testis (11), except that they are unfertile, suggesting that 

Sox8 is required for the maintenance of male fertility in the adult (12). On the other hand, 

Dmrt1 binds to the Sox9 and Sox8 promoters and in Dmrt1(-/-) XY mutant gonads their 

expression was reduced (13). The interactions between Sox9, Sox8 and Dmrt1 shown in 

Fig. S1 were simplified and instead of considering both Sox9 and Sox8 in the genetic 

network, it was only considered Sox9 and assumed that participates in persistent testis 

identity through its interaction with Dmrt1 (see below). 

The receptors Fgfr2 and Fzd/Lrp of the secreted ligands Fgf9 and Wnt4, respectively, 

were eliminated since, from a formal point of view, their functional states follow that of 

their ligands; i.e., receptors are merely intermediate components between ligand and 

effector molecules of the corresponding signalling pathways. Consequently, the positive 

interactions from Fgfr2 to Fgf9 and from ß-catenin to Wnt4 represent the autocrine 

functions of Fgf9 and of Wnt4, respectively. They were replaced by positive self-loops on 

Fgf9 and on Wnt4. The paracrine function of Fgf9 is represented by a negative interaction 

towards Wnt4.  For simplicity, we assumed that Foxl2 is capable of exerting its function 

without the support of its co-factor, the oestrogen receptor ERα. Finally, we considered 

that, unless the presence of Dmrt1 prevents it, Foxl2 is constitutively activated by 12.5 

dpc in both sexes due to a developmentally programmed activator (see Section 2.3).  

The positive interaction of Dmrt1 upon Sox9 was eliminated because it was found to be 

irrelevant for gonadal sex determination. 
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2.2.  Experimental results backing the interactions of the gene network 
of Fig. 1 

Wt1-Sf1 interaction. Wt1 is required to initiate Sf1 expression because, even at the 

earliest time when Sf1 expression can be observed at 9.5 dpc (14), Sf1 expression is 

absent in both XY and XX embryos mutant for Wt1 (15). Moreover, Wt1 binds to a 674 

bp fragment in the Sf1 promoter causing its activation (15). 

Wt1-Sry and Gata4-Sry interactions. As previously mentioned, several factors have been 

identified that, when mutated, prevent the initiation of the male program because Sry 

expression is very much affected (reviewed in (16) and cites therein). Wt1 and Gata4 

were chosen to represent these activators of Sry.  

Sf1-Sry interaction. In vitro transfection studies showed that Sf1 protein binds to and 

activates Sry promoter (17, 18). Both XY and XX mice mutant for Sf1 develop female 

genitalia (19). Since the absence of either Sf1 or Wt1 causes male-to-female sex reversal, 

proper activation of Sry requires the presence of both Sf1 and Wt1.  

Sry-Sox9 and Sf1-Sox9 interactions. Sox9 is a direct target of Sry (20, 21). Chromatin 

immune-precipitation assays revealed that Sry protein binds to the TESCO enhancer 

sequence in the Sox9 promoter (22). Up-regulation of Sox9 requires both Sry and Sf1 

activators: Sf1 can activate TESCO in vitro although at low levels by itself, and Sry is 

able to activate TESCO in vitro only in the presence of Sf1 (22). Moreover, ubiquitous 

expression of Sry in XX gonads results in the initiation of Sox9 expression only in Sf1-

positive cells (23). 

Sox9-Sox9 interaction. Sox9 can bind the TESCO element of its own promoter via the 

same Sry binding sites (22). However, by itself, Sox9 has no activity in co-transfection 

assays, requiring the presence of Sf1 to activate TESCO (22). Indeed, a direct interaction 
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between the N-terminal domain of Sox9 and the C-terminal domain of Sf1 has been 

described for the regulation of Amh promoter (24). 

Sox9-Sf1 interaction. In vitro transfection analysis indicated that Sox9 could activate Sf1 

promoter in a reporter construct with increasing amounts of Sox9 (25).  

Sox9-Sry interaction. A negative feedback turns off Sry transcription, but only if the 

level of Sry protein is above a critical threshold required to initiate testis development 

(20). This is consistent with findings where Sry expression was prolonged in sex-reversed 

ovotestes in embryos carrying a weak allele of Sry (26). This negative feedback is 

mediated by Sox9 since the rapid decrease of Sry expression occurs just after Sox9 

activation: Sry expression is not turned off at 12.5-13.5 dpc in XY gonads with low levels 

of Sox9 (10) or in XY gonads where Sox9 function is inactivated (27). 

Sox9-Fgf9 interaction. Fgf9 expression decreases significantly or is absent in Sox9(-/-) 

XY gonads at 11.5 dpc, suggesting that Fgf9 expression in wild-type XY gonads depends 

on Sox9 expression (28).  

Fgf9-Wnt4 interaction. At 12.5 dpc, Wnt4 is up-regulated in Fgf9(-/-) XY gonads but 

not in wild type XY gonads. This suggests that Fgf9 is necessary for the down-regulation 

of Wnt4 in differentiating XY gonads (28). Moreover, treatment of XX gonads with 

exogenous Fgf9 suppresses Wnt4 normal expression (28). 

Indirect activation of Sox9 by Fgf9, through Wnt4. In XY gonads mutant for Fgf9, the 

initial and up-regulation steps of Sox9 are not affected, but Sox9 is lost later on, 

indicating that Fgf9 is required to maintain and not initiate Sox9 function (29). On the 

other hand, it was shown that the deletion of Wnt4 function prevents the male-to-female 
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sex transformation of XY Fgf9 mutants, indicating that Fgf9 indirectly activates Sox9 

through the inhibition of Wnt4 function (30).  

Wnt4-ß-catenin interaction. ß-catenin is the effector of the Wnt4-signalling pathway 

(reviewed in (31). 

Sox9-ß-catenin and ß-catenin-Sox9 interactions. Co-immune-precipitation experiments 

showed that Sox9 and ß-catenin form a physical complex that results in their mutual 

destruction by ubiquitination/26S proteasome pathway. The C-terminal transactivation 

domain of Sox9 was needed for its inhibitory activity on ß-catenin. In vitro binding 

assays showed that deletion mutants of Sox9 that lack the C-terminal transactivation 

domain fail to interact with ß-catenin (32). 

Foxl2-Sox9 interaction. Homozygous null mutations for Foxl2 result in Sox9 up-

regulation in XX ovaries after birth (33). The transcription factor Foxl2 represses TESCO 

activity in vitro and chromatin immune-precipitation assays demonstrated that Foxl2 is 

indeed bound to the TESCO sequence. Moreover, inactivation of all identified binding 

sites for Foxl2 in the TESCO element results in a de-repression of TESCO activity in the 

adult ovary in vivo (34). 

Foxl2-Dmrt1 interaction. Four Foxl2-binding sequences have been identified in Dmrt1 

promoter. Increasing the amount of co-transfected Foxl2 causes a decrease in Dmrt1 

transcription and removal of those putative Foxl2-like binding sequences prevents this 

Foxl2-dependent repression (35).  

Dmrt1-Foxl2 interaction. Dmrt1-knockout XY mice are born as males, although their 

testes later develop abnormally, so that Dmrt1 is crucial to maintain the testicular 

function (36). In conditional knockout mice, where Dmrt1 is specifically ablated in foetal 
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Sertoli cells or even in the testes of adult males, Foxl2 expression is induced. This 

strongly indicates that Dmrt1 prevents Foxl2 expression (13). 

Sox9-Dmrt1 interaction. Here, we assumed that the maintenance of Dmrt1 testis-

expression depends on Sox9 as XY gonads lacking Sox9 function show a reduced Dmrt1 

expression (37). It could be argued that this may be explained by Foxl2 activation in 

those gonads (27, 37), causing Dmrt1 repression (see above). This would imply a direct 

repression of Foxl2 by Sox9, which has not been reported. Indeed, experimental evidence 

argues against such a direct interaction of Sox9 on Foxl2: in Sox9(-/-) XY gonads, Foxl2 

starts to be activated at its normal time (i.e., 12.5 dpc, (38) as in wild type XX gonads 

(27). Alternatively, Sox9 negative effect on Foxl2 could be indirect, through Dmrt1: Sox9 

would be required for Dmrt1 expression that, in turn, would repress Foxl2. In the absence 

of Sox9 function, Dmrt1 expression could not be maintained and consequently Foxl2 

activation would follow. This interpretation agrees with the temporal appearance of Sox9 

and Dmrt1 in ovarian cells upon Foxl2 deletion: Sox9 expression precedes that of Dmrt1, 

suggesting that Sox9 transcriptionally regulates Dmrt1 (34, 39). Interactions defining 

Sox9, Dmrt1 and Foxl2 relationships in Fig. 1 were based on this interpretation. 

2.3.  Definition of developmental temporal signals acting on the gene 
network 

Gata4-Dmrt1 interaction. It is known that Gata4 is an activator of Dmrt1 (40-42). 

However, Gata4 requirement to regulate Dmrt1 expression is not constant: Gata4 is 

obligatory to initiate Dmrt1 expression in the bi-potential gonad of both sexes and to 

maintain Dmrt1 expression in Sertoli cells in early phases of testis development, but 

subsequent persistence of Dmrt1 expression does not require Gata4. 

AS-Sry interaction. Although Sry activators, here represented by Wt1 and Gata4, are 
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already expressed in the bi-potential gonad, Sry is not activated. This activation occurs 

later, suggesting a temporal control of expression of Sry. We hypothesised the existence 

of AS (Activator of Sry) to account for the time in development when Sry expression 

appears. 

IW-Wnt4 interaction. An inhibitor of Wnt4 pathway (IW) was hypothesised to account 

for the subsequent lack of effect of the Wnt4 pathway on gonadal sexual development.  

AF-Foxl2 interaction. How Foxl2 would be activated under the above scenario? Since 

Dmrt1 represses Foxl2, it could be that the initial, non-sex specific, Dmrt1 expression 

prevents Foxl2 activation before Sry activation, key event in male development. However, 

this is not the case as Dmrt1(-/-) XY mutant gonads develop into testes and become 

feminised after birth (36, 43). Thus, Dmrt1 does not seem to participate in male 

development triggering, but rather appears to maintain testis identity in adult males (37). 

Similarly, the alternative that Sox9 could repress Foxl2 does not seem to be correct 

because, as mentioned above, Foxl2 activation starts at its normal time in XY gonads 

mutant for Sox9 as it is in wild type XX gonads (27). Here, through the introduction of a 

putative Activator of Foxl2 (AF), we proposed that Foxl2 activation in both XY and XX 

gonads is constitutive and developmentally programmed by 12.5 dpc. Hence, in XY 

gonads, this Foxl2 activation would be overcome by Dmrt1 expression, which represses 

Foxl2. However, in XX gonads, as Dmrt1 is not expressed at that time, Foxl2 would be 

activated. 

3. Logical model definition 
Having defined the regulatory components and interactions to be included in the 

network, we are ready to define the logical model, i.e. specify the ranges taken by the 

variables associated to the components, their logical parameters, and finally the updating 
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scheme to be considered for the model dynamics (see Section 1). This section justifies the 

requirement for multi-valued variables for some components, lists the logical parameters 

of our 1-cell network model and finally, discusses the temporal constraints found to 

ensure a final phenotype (i.e. in each condition (XX vs XY gonad), the reachability of the 

expected final state,). 

3.1.  Genes having more than one single functional level 

Sf1 functional levels. In the bi-potential gonad of both sexes, the gene Sf1 is initially 

activated by Wt1 and, following Sry activation, becomes up-regulated in the XY but not 

in the XX gonad (25). We thus assumed that Sf1 initial expression corresponds to its first 

functional level, whereas its Sox9-dependent up-regulation corresponds to its second 

functional level. This second functional level is justified because Sox9 function requires 

Sf1 as co-factor and because Sox9 up-regulation produces more Sox9 protein, requiring a 

higher amount of Sf1. 

Sox9 functional levels. It was found that Sox9 auto-regulation needed to be operative 

already at its initial expression level in the bi-potential gonad for the model reproduce its 

sexual development. Hence, we assumed that Sox9 initial activation by Sf1 corresponds 

to its first functional level, and that subsequent expression of Sry brings Sox9 to its 

second functional level. This second level would be required to trigger the male 

development of the bi-potential gonad. 

Fgf9 and Wnt4 functional levels. We assumed that the initial expression of both Fgf9 

and Wnt4 (level 1) relates to their roles in cell proliferation during the formation and 

developmental plasticity of the bi-potential gonad. The specific up-regulation of Fgf9 in 

XY gonads after the increase of Sox9 expression (28) would constitute Fgf9 second 

functional level, involved in the inactivation of Wnt4-signalling pathway (28). Wnt4 
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second level would reflect its up-regulation in XX gonads, being involved in the 

inhibition of Sox9 auto-regulation (28). 

ß-catenin functional levels. Being the effector of the Wnt4-signalling pathway (reviewed 

in (31), ß-catenin levels reflect those of Wnt4. 

3.2.  Logical parameters 

The values of the logical parameters define the behaviour of the regulatory network (see 

Section 1.1). These parameters (listed in the Supplementary Table S2) were progressively 

specified by comparing simulation results with published experimental data, describing 

wild type and mutant phenotypes, and by applying simplicity criteria; that is, the lowest 

parameter value was selected whenever different values were compatible with available 

data.  

3.3.  Stable states analysis 

GINsim enables the identification of all the stable states of a logical model. Using this 

feature, 27 stable patterns were identified (data not shown). However, this number 

greatly decreases if we restrict the input values to relevant combinations (see 

Supporting Table S3). These results suggest that the temporal signals are instrumental 

for the selection of the adopted differentiated state. Morever, as shown by the model 

simulations, the selection of a relevant initial condition leads to trajectories that 

recapitulate observed differentiation decisions by reaching the Sertoli or granulosa 

cell phenotypes. 

3.4. Temporal constraints; defining priorities 

Analysing the model dynamics (Supplementary Fig. S2), we could define priorities on 

well-chosen transitions ensuring the sole reachability of the expected stable state: 

faster transitions (priority class 1) were those increasing the levels of Wnt4, ß-catenin 
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and Foxl2 and those decreasing the levels of Dmrt1, whereas all remaining transitions 

were considered slower. Note that transitions increasing Wnt4 and ß-catenin occur at 

the initiation phase, whereas Foxl2 increase and Dmrt1 decrease occur at the 

maintenance phase. 

4. Model analyses for mutant gonads 
4.1.  Mutations of the sex determination genes 

A series of perturbations of the sex determination logical model were simulated in the 

form of single and double loss-of-function mutations, as well as ectopic expression 

experiments (see Section 1.2). To define the sexual phenotypes of the final states 

obtained when simulating the model, we used the following criteria: expression of Sox9 

and Dmrt1 and absence of Foxl2 indicate a testicular identity, while Foxl2 expression and 

absence of both Sox9 and Dmrt1 denote an ovarian identity. The results, discussed below, 

are summarised in Fig. 3. 

1. Loss-of-function of Sf1 caused ovarian development for both XX and XY gonads, in 

agreement with experimental results (44). 

2. XY gonad lacking Sry function developed into ovary (45), whereas gain-of-function 

Sry mutation in XX gonad developed into testis, in agreement with experimental 

observations (46).  

3. XY gonad lacking Sox9 function developed into ovary (10, 27, 37) and XX gonad 

constitutively expressing Sox9 gave rise to testis, in agreement with experimental results 

(47). Moreover, model simulations predicted that Sox9 partial loss-of-function XY gonad 

would develop into ovary, whereas Sox9 partial gain-of-function XX gonad still gave rise 

to ovary.  
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4. Fgf9 loss-of-function caused XY gonad to develop into ovary, in agreement with 

experimental observations (28,29,48,49). Moreover, XX gonad carrying gain-of-function 

Fgf9 mutations was predicted to develop into testis. This result deserves further 

comments. To our knowledge, no experiments on the development of the bi-potential 

gonad constitutively expressing Fgf9 have been performed. However, wild type XX bi-

potential gonads have been exposed to exogenous Fgf9 —by culturing the gonads into a 

solution containing Fgf9. Two contradictory results have been reported: on the one side, 

the gonads did not express testis markers such as Sox9 (49), whereas on the other side, 

Sox9 expression (testis development) was reported, suggesting that Sox9 activation by 

exogenous Fgf9 is caused by Wnt4 function inhibition (28). This discrepancy is ascribed 

to the use of intact gonads in the first case and of dissociated XX gonads in the second 

case; i.e., it is explained by a lower accessibility of Fgf9 to the cells in the negative case 

of Sox9 activation (28). To assess this scheme, model simulations were performed 

accounting for these in vitro experiments, by considering dissociated (Fgf9 accessibility) 

or intact (Fgf9 non-accessibility) gonads exposed to exogenous Fgf9. To this end, the 

initial state was that of the wild type XX gonad except that Fgf9=2, for the dissociated 

gonad (Fgf9=1 for the intact gonad); i.e., the high or low accessibility of Fgf9 was 

reflected by the high or low concentration of Fgf9 in the cell at the initial state. In the 

case of a dissociated gonad, the exogenous Fgf9 induced Sox9 expression, whereas such 

induction did not occur for an intact gonad (data not shown). These results provided a 

formal demonstration to the explanation of (28).  

5. Lack of Wnt4 function in XX gonad resulted in testis development (50), whereas Wnt4 

ectopic expression in XY gonad resulted in ovary development, in agreement with 

experimental results (51). As previously mentioned, ß-catenin is the effector molecule of 

Wnt4 signalling pathway. Accordingly, mutations in ß-catenin are expected to mimic the 
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mutations in Wnt4. This was indeed the case as XX gonad lacking ß-catenin function was 

predicted to develop as testis. Furthermore, XY gonad constitutively expressing ß-catenin 

developed as ovary, in agreement with experimental observations (52). 

6. It has been reported that XY gonads lacking Dmrt1 function initially develop as normal 

testes but become feminised later (36, 43). The same effect has been reported when 

Dmrt1 function is removed from foetal or adult testes (13). The simulation of XY gonad 

lacking Dmrt1 function agreed with those experimental observations, in accordance with 

the role played by Dmrt1 in maintaining testis identity. In addition, gain-of-function 

Dmrt1 mutations were predicted to determine testis development of XX gonad. In this 

respect, it has been reported very recently that the expression of a conditional Dmrt1 

transgene in the ovary silences the female sex-maintenance gene Foxl2 and consequently 

re-programmes juvenile and adult female granulosa cells into male Sertoli-like cells (53). 

7. It has been reported that XX gonads lacking Foxl2 function initially develop as normal 

ovaries but become masculinised later (33). Moreover, the loss of Foxl2 function in adult 

ovaries causes their trans-differentiation into testes (34). Simulating XX gonad lacking 

Foxl2 function reproduced those experimental observations, in accordance with the role 

of Foxl2 in maintaining ovarian. Moreover, gain-of-function Foxl2 mutations were 

predicted to determine the ovarian development of XY gonads. 

8. Simulation of both XY and XX gonads carrying simultaneously loss-of-function Fgf9 

and Wnt4 mutations develop as testes, in agreement with experimental results (30).  

9. XX gonad double mutant for Sry gain-of-function together with Sox9 loss-of-function 

developed into ovary. To our knowledge, such a combination has not been 

experimentally tested yet. This result formally demonstrated that Sry action on male 

gonadal development takes place through the Sox9 gene. 
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4.2.  Mutations of the developmental temporal signals 

The sexual phenotypes of the gonads carrying either loss-of-function (KO) or gain-of-

function (GF) mutations in the genes encoding the developmental temporal signals AS, 

Gata4, IW and AF were simulated. The predicted phenotypes follow.  

1. AS-KO XY gonads are predicted to develop into ovaries similarly to Sry-KO XY 

gonads, since Sry activation does not occur. However, AS-GF XX gonads would develop 

into ovaries instead of testes as in the case of Sry-GF XX gonads. This is so because XX 

gonads do not carry the Sry gene.  

2. Gata4-KO XY gonads are expected to develop into ovaries similarly to Sry-KO XY 

gonads, since Sry activation does not occur. However, Gata4-GF XX gonads would 

develop into testes similarly to Sry-GF or Dmrt1-GF XX gonads. This is so because the 

persistent expression of Gata4 maintains Dmrt1 expression, thus preventing Foxl2 

activation. 

3. IW-KO XX gonads are expected to develop into ovaries instead of testes as in the case 

of Wnt4-KO XX gonads. This is so because the lack of IW function allows the 

continuous function of the Wnt4-signalling pathway. This prevents Sox9 to reach its 

highest functional level and consequently the expression of Dmrt1 cannot be maintained. 

Hence, Foxl2 becomes activated and ovary development ensues. IW-GF XY gonads 

develop into testes in contrast to Wnt4-GF XY gonads that develop into ovaries. This is 

so because in IW-GF XY gonads, Sox9 reaches its highest functional level so that Dmrt1 

maintains its function, thus preventing Folx2 activation. IW-GF XX gonads are predicted 

to develop into testes. This is so, because IW inhibits the Wnt4-signalling pathway, 

leading to a resolution of the Sox9-ß-catenin feedback loop in favour of Sox9 —due to 

the lack of ß-catenin activity— so that Sox9 auto-regulatory function get this gene to 
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reach its highest functional level. This, in turn, maintains the expression of Dmrt1, thus 

preventing Foxl2 activation. 

4. AF-KO XX gonads are predicted to develop into testes similarly to Foxl2-KO XX 

gonads. However, AF-GF XY gonads are expected to develop into testes instead of 

ovaries as in the case of Foxl2-GF XY gonads, because the initial expression of Dmrt1 

prevents Foxl2 activation by AF. 

4.3.  Genetic redundancy in primary sex determination 

Nicol and Yao´s study of the expression of sexual dimorphic genes during early sexual 

determination of XY and XX gonads simultaneously mutant for Sox9 and ß-catenin, 

demonstrates genetic redundancy (54). These authors proposed three classes of gonads: 

ovary class (expressing female genes), testis class (expressing male genes) and intersex 

class (expressing both male and female genes). The ovary class includes the wild type 

XX and Sox9-KO XY gonads. The wild type XY gonads form the testis class. The 

intersex class is defined by the ß-catenin-KO XX gonads together with the XX and XY 

gonads double mutant for Sox9-KO and ß-catenin-KO (hereafter double-KO gonads). 

Interestingly, the intersexual double-KO XY gonads clearly show more masculinisation 

than the double-KO XX gonads. The authors argued that this difference is due to a subset 

of male genes being up-regulated only in the double-KO XY gonads. Among these genes, 

some are Sry-targets such as, for example, Sox8. In addition, Nicol and Yao observed 

was that Sry expression lasts longer in double-KO than in wild type XY gonads. Lavery 

et al. (55) reported similar results for XX and XY gonads double mutants for Sox9 and 

Rspo1 genes. 

Our model accounts for these results (see complete network of Fig. S1). To this respect, 

the ensuing observations are relevant for explanation purposes. First Sox8 shows a 
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significant degree of homology to Sox9 at the DNA-binding HMG box and its two 

flanking regions and a lower homology at the C-terminal region (56). Secondly, Sox8 is 

turn on in the male gonad by Sox9 after this is up-regulated in a Sry-dependent manner 

(57, 58). Although Sox8 is a direct target of Sry (59), its main activator is Sox9 as the 

transcription of Sox8 directly depends on Sox9 expression (58). Thirdly, Sox8 activates 

the gene Amh, although this activation is weaker compared to Sox9-dependent activation 

(57), likely due to the differences between Sox8 and Sox9 in the C-terminal 

transactivation domain. And fourth, Sox9, throughout its C-terminal domain, interacts 

with ß-catenin resulting in their mutual destruction (32). These observations led us to 

assume that Sox8 and ß-catenin do interact also to form a complex that results in their 

mutual destruction, that is, that Sox8 and ß-catenin are engaged in a feedback loop.  

Following our model, the higher degree of masculinisation of double-KO XY intersexual 

gonads compared to double-KO XX gonads is due to the continuing Sry expression —

caused by the absence of its repressor Sox9— and to the absence of ß-catenin so that 

Sox8 can be activated, allowing the maintenance of Dmrt1 expression in the double-KO 

XY gonads with the consequent masculinisation effect. This agrees the reported 

experimental results regarding the complementary expression pattern of Dmrt1 and Foxl2 

in double-KO XX vs XY gonads: in the XX mutants, the great majority of cells express 

Foxl2 whereas the few remaining cells express Dmrt1; in XY mutants, however, there is 

a significant increase in the numbers of cells expressing Dmrt1 and the remaining cells 

express Foxl2 (54).  

The finding that double-KO XY gonads do not show a full male-to-female transformation 

as in the case of single Sox9-KO XY gonads can also be explained in the light of our 

model. In the latter mutant gonads —carrying wild type ß-catenin—, the initial Sox9-ß-

catenin feedback loop is resolved in favour of ß-catenin since there is no Sox9 function. 
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Consequently, ß-catenin expression level rises, thus preventing Sox8 activation despite of 

the persistent Sry function. Hence, Foxl2 activation occurs since Dmrt1 cannot maintain 

its expression in the absence of both Sox9 and Sox8. Notice that the effect of Sry on Sox8 

activation is irrelevant in wild type XY gonads because the Sox9-ß-catenin feedback loop 

is resolved in favour of Sox9, which represses Sry.  

5. Threshold number of Sertoli cells required for 
gonadal development into testis: the 2-cell network. 

To address this question, two replicas of the 1-cell network of Fig. 1 were connected, 

defining a new network (Fig. 4A): the replica identified as network “c” represents the 

gonadal centre and the replica identified as network “p” represents the gonadal pole. In 

this 2-cell network, the autocrine and paracrine functions of Fgf9 were explicitly 

dissociated: two positive arrows between Fgf9 and its receptor (Fgf9r) account for Fgf9 

autocrine function, whereas the positive arrow from Fgf9 of one network towards Fgf9-

receptor of the other network accounts for Fgf9 paracrine function. For the 2-cell model, 

the values of the logical parameters were those of the 1-cell model, with the 

corresponding modifications for the components involved in the new interactions (see 

Supporting Table S2).  

In addition, to get the 2-cell network dynamics mimics the biological process, it was 

necessary to refine the temporal constraints previously defined, as a consequence of the 

inclusion of Fgf9-receptor (Fgf9r). Thus, faster transitions (priority class 1) were those 

increasing the levels of Wnt4, ß-catenin and Foxl2 and those decreasing the levels of 

Dmrt1, Fgf9r (in both cells), whereas all remaining transitions were considered slower.  

The distinct temporal activation of Sry in central versus pole regions was modelled by 

assuming that AS, the developmental activator of Sry, exerts its function earlier in the 
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central region —represented by AS_c— than in the pole region —represented by AS_p. 

Hence, the initiation phase was subdivided into two sub-phases (t1 and t2), and the input 

signals were defined by: at t1, presence of Y, Wt1, Gata4, AS_c and absence of AS_p, 

AF and IW, and at t2, presence of Y, Wt1, Gata4, AS_c, AS_p and absence of AF and 

IW. In this scenario, the final state of t1 was taken as initial state of t2, whose final state 

was the initial state of the maintenance phase (t3).  
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Figure	   S1.	   The	   male	   and	   female	   genes	   that	   have	   been	   identified	   and	   their	   proposed	  
interactions	  involved	  in	  the	  sexual	  development	  of	  the	  gonad	  in	  placental	  mammals.	  Normal	  
green	  and	  blunt	   red	  arrows	   represent	  positive	  and	  negative	   interactions,	   respectively.	  Grey	  
nodes	  were	  subjected	  to	  simplification	  in	  the	  model	  of	  Figure	  1	  (see	  main	  text).	  
	  



Figure	   S2.	   Hierarchical	   transition	   graphs	   (see	   Supplemtary	   Text)	   revealing	   bifurcations	   in	  
the	  discrete	  dynamics	  and	  the	  required	  restrictions	  on	  the	  delays	  to	  ensure	  the	  reachability	  of	  
the	  expected	  final	  stable	  state	  (see	  main	  text).	  The	  final	  stable	  states	  are	  given	  as	  vector	  states,	  
with	  the	  values	  of	  the	  14	  model	  components,	  in	  the	  following	  order:	  Y,	  WT1,	  AS,	  AS,	  Gata4,	  AF,	  
IW,	  Sf1,	  Sox9,	  Fgf9,	  Wnt4,ß-‐cat,Dmrt1,	  Foxl2.	  	  The	  signs	  +	  and	  -‐	  associated	  to	  the	  gene	  names	  
indicate	  updates	  increasing	  and	  decreasing	  the	  corresponding	  gene	  levels.	  

	  

	  



Figure S3. Final states reached by the gene network and their corresponding 
phenotypes (testis, ovary) for the gonad under mutant conditions (loss-‐of-function and 
gain‐of-function) of the developmental signals. Phenotypes resulting from mutations of 
the target genes of these signals are described in Figure 3 (see main text). 
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WT XY 2 2 2 0 0 1 0 testis

WT XX 1 0 1 0 0 0 1 ovary

AS-KO XY 1 0 0 1 1 0 1 ovary

AS-GF XX 1 0 1 0 0 0 1 ovary

GATA4-KO XY 1 0 1 0 0 0 1 ovary

GATA4-GF XX 2 2 2 0 0 1 0 testis

IW-KO XX 1 0 1 1 1 0 1 ovary

IW-GF XY 2 2 2 0 0 1 0 testis

IW-GF XX 2 2 2 0 0 1 0 testis

AF-KO XX 2 2 2 0 0 1 0 testis

AF-GF XY 2 2 2 0 0 1 0 testis

0
1 (when this is not the max value)
max value



Table S1. Symbols and names of the genes 

Symbol Name of the gene 
Gata4 GATA binding protein 4 
Wt1 Wilms tumor 1 
Fog2 Zinc Finger Protein, FOG Family Member 2 
Sf1 Steroidogenic factor 1 
Sry Sex-determining region Y 
Sox8 Sry-box 8 
Sox9 Sry-box 9 
Pgd2 Prostaglandin D2 synthase 
Fgf9 Fibroblast growth factor 9 
Fgfr2 Fibroblast growth factor receptor 2 
Wnt4 Wingless related MMTV integration site 4 
Fzd G protein-coupled receptors, Class F frizzled 
Lrp Low density lipoprotein receptor-related protein 
Rspo1 R-sponding 1 
Lgr4-6 Leucine-rich repeat-containing G-protein coupled receptor 4-6 
b-cat Catenin beta-1 
Dmrt1 Doublesex- and mab-3-related transcription factor 1 
Foxl2 Forkhead-domain transcription factor L2 
ERα oestrogen receptor alfa 
Amh Anti-Müllerian hormone 
Fst Follistatin 
 



Table S2. Maximal values and logical parameters defining the effect of regulatory interactions, for each 
model component. Interactions are denoted by the name of their source node, together with the level(s) for 
which they are operative. The value of a parameter defines the effect of a given combination of interactions 
(set in parentheses) operating on a given component. For example, KDmrt({Gata4,1},{Sox9,2})=1 indicates 
that the target value of Dmrt1 is 1, in the presence of Gata4 and Sox9 (both at level 1) and in the absence of 
Sf1. Note that only the non-zero parameters are listed. The lower part of the table relates to components of 
the 2-cell network. 
 

Network element Maximal value Logical parameter values 
Y 1 constant to initial value 

Wt1 1 constant to initial value 
AS 1 constant to initial value 

Gata4 1 constant to initial value 
AF 1 constant to initial value 
IW 1 constant to initial value 
Sry 1 KSry({Y,1},{Wt1,1},{AS,1},{Sf1,1},{Gata4,1})=1 

Sf1 2 KSf1({Wt1,1})=1 
KSf1({Wt1,1},{Sox9,2})=2 

Sox9 2 

KSox9({Sf1,1})=1 
KSox9({Sf1,1}, {b-cat,1})=1  
KSox9({Sf1,1}, {b-cat,1},{Sox9,1})=1  
KSox9({Sf1,1},{Sry,1})=2 
KSox9({Sf1,1},{b-cat,1},{Sry,1})=2 
KSox9({Sf1,1},{Sry,1},{Sox9,1})=2 
KSox9({Sf1,1},{b-cat,1},{Sry,1},{Sox9,1})=2 
KSox9({Sf1,1},{Sox9,1})=2 

Fgf9 2 
KFgf9({Fgf9,1})=1 
KFgf9({Sox9,2})=1 
KFgf9({Fgf9,1},({Sox9,2})=2 

Wnt4 2 KWnt4({Wnt4,1},{Fgf9,1})=1 
KWnt4({Wnt4,1})=2 

b-cat 2 Kb-cat({Wnt4,1})=1  
Kb-cat({Wnt4,2})=2 

Dmrt1 1 

KDmrt({Gata4,1})=1  
KDmrt({Gata4,1},{Sf1,1})=1  
KDmrt({Gata4,1},{Sox9,2})=1  
KDmrt({Gata4,1},{Sox9,2},{Sf1,1})=1  
KDmrt({Sox9,2},{Sf1,1})=1  

Foxl2 1 KDmrt({AF,1})=1 

Fgf9_c 2 
KFgf9_c({Sox9_c,2})=1 
KFgf9_c({Fgf9r_c,1})=1 
KFgf9_c({Sox9_c,2},{Fgf9r_c,1})=2 

Fgf9r_c 2 KFgf9r_c({Fgf9_c,1})=1 
KFgf9r_c({Fgf9_c,1},({Fgf9_p,2})=2 

Wnt4_c 2 KWnt4_c({Wnt4_c,1},{Fgf9r_c,1})=1 
KWnt4_c({Wnt4_c,1})=2  

Fgf9_p 2 
KFgf9_p({Sox9_p,2})=1 
KFgf9_p({Fgf9r_p,1})=1 
KFgf9_p({Sox9_p,2},{Fgf9r_p,1})=2 

Fgf9r_p 2 KFgf9r_p({Fgf9_p,1})=1 
KFgf9r_p({Fgf9_p,1},({Fgf9_c,2})=2 

Wnt4_p 2 2KWnt4_p({Wnt4_p,1},{Fgf9r_p,1})=1 
KWnt4_p({Wnt4_p,1})=2 

 



Y Wt1 AS G4 AF IW Sry Sf1 Sox9 Fgf9 Wnt4 b4cat Dmrt1 Foxl2 Probability=
0 2 2 2 1 0 1 0 0.5344
0 2 2 2 0 0 1 0 0.3348
1 1 0 0 2 2 1 0 0.1308
0 1 0 1 0 0 0 1 0.5926
0 1 0 0 0 0 0 1 0.2362
0 2 2 2 0 0 1 0 0.1712
0 1 1 1 1 1 1 0 0.3474
0 2 2 2 1 0 1 0 0.3352
0 1 0 0 2 2 1 0 0.1628
0 2 2 2 1 0 1 0 0.1546
0 1 0 1 0 0 0 1 0.5936
0 1 0 0 0 0 0 1 0.2344
0 2 2 2 0 0 1 0 0.172

1 1 1 1 0

Male=Maint

Female=Init

Male=Maint 0 1 0 0

0Male=Init

1 1 0 0 1 1

1 1

0 1 1 1 0 0

	  
	  
Table	   S3:	   Model	   stable	   states	   complying	   with	   selected	   combinations	   of	   the	  
temporal	   signals	   (left	   column).	   Color	   code	   indicates	   the	   male	   (blue)	   versus	  
female	  (pink)	  situation	  (with	  the	  presence/absence	  of	  Y),	  light	  colors	  correspond	  
to	   the	   initiation	   phase,	   whereas	   darker	   colors	   correspond	   to	   the	  maintenance	  
phase.	  For	  each	  such	  combination,	  there	  are	  3	  to	  4	  potential	  stable	  states,	  the	  one	  
reached	  in	  our	  simulations	  (i.e.,	  selecting	  an	  initial	  condition)	  is	  highlighted	  with	  
the	  appropriate	  color.	  The	  latest	  column	  indicates	  the	  probability	  of	  reaching	  the	  
corresponding	   stable	   state	  when	   sampling	   the	   initial	   condition	   over	   the	  whole	  
state	  space	  (using	  an	  asynchronous	  update).	  Remarkably,	  the	  Sertoli	  phenotype	  
has	  a	  low	  probability	  (0.1712),	  suggesting	  the	  importance	  of	  the	  initiation	  phase	  
and	  the	  selection	  of	  the	  appropriate	  initial	  condition.	  	  
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