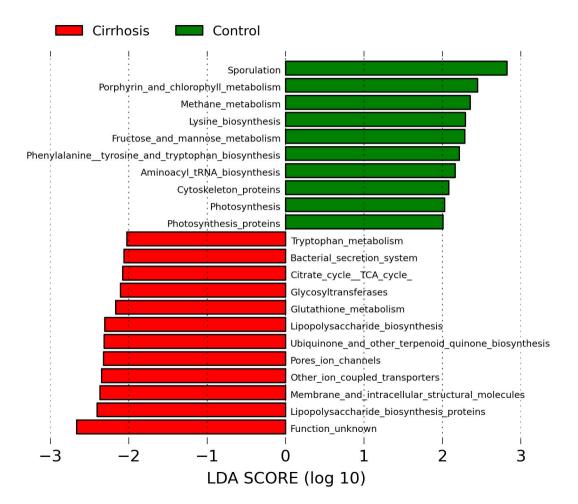
Impaired Gut-Liver-Brain Axis in Patients with Cirrhosis

Vishwadeep Ahluwalia¹, Naga S Betrapally², Phillip B Hylemon³, Melanie B White¹, Patrick M Gillevet², Ariel B Unser¹, Andrew Fagan¹, Kalyani Daita¹, Douglas M Heuman¹, Huiping Zhou³, Masoumeh Sikaroodi², Jasmohan S Bajaj¹


¹Gastroenterology, Hepatology and Nutrition, ³Microbiology and Immunology, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia ²Microbiome Analysis Center, George Mason University, Manassas, Virginia

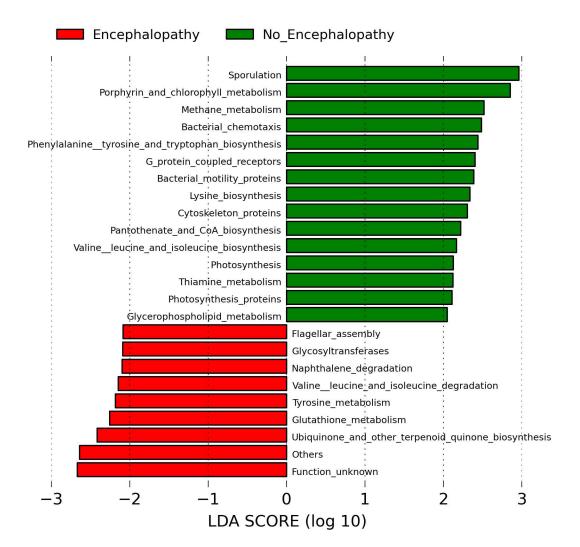

Supplementary figure legends

Figure S1: PiCRUST analysis of predicted bacterial functions.

S1A:Human stool analysis of controls vs. cirrhotics. Red=cirrhosis, Green=controls. This shows a significantly increased predicted bacterial functions related to endotoxin and endotoxin protein synthesis as well as aromatic amino acid metabolism in cirrhotic stool.

S1b: Human stool analysis of cirrhotic patients. Red=hepatic encephalopathy, Green=no hepatic encephalopathy. There was a significantly higher aromatic amino acid metabolism-related predicted function in stool microbiota of patients with hepatic encephalopathy

