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Supplementary Table S1 Previous studies using morphometric-based correlation 

networks (MCNs) with various structural phenotypes. 

Previous Studies Structural Phenotypes Data 

1He, Chen et al. 2007 Cortical thickness HS 

2Bassett, Bullmore et al. 2008 GM volume Schizophrenia 

3Chen, He et al. 2008 Cortical thickness HS 

4He, Chen et al. 2008 Cortical thickness AD 

5He, Dagher et al. 2009 Cortical thickness MS 

6Lv, Li et al. 2010 Cortical thickness HS 

7Raj, Mueller et al. 2010 Cortical thickness Epilepsy 

8Sanabria-Diaz et al. 2010 Cortical thickness, surface area HS 

9Bernhardt, Chen et al. 2011 Cortical thickness Epilepsy 

10Fan, Shi et al. 2011 GM volume Pediatric  

11Zhou, Wang et al. 2011 GM, WM, CSF volume AD, MCI 

12Hosseini, Koovakkattu et al. 2012 GM volume Breast cancer 

13Shi, Yap et al. 2012 GM volume Neonates 

14Wu, Taki et al. 2012 GM volume HS 

15Hosseini, Black et al. 2013 Cortical thickness, surface area Dyslexia 

GM, gray matter; WM, white matter; CSF, cerebrospinal fluid; HS, Healthy subjects; AD, 

Alzheimer’s disease; MCI, mild cognitive impairment; MS, Multiple sclerosis. 

 

 

 



Supplementary Table S2 Definitions and formulations of network parameters used 

in this study. The detailed definitions and formulations were described in a previous 

study16. 

Parameter Definitions Formulations 

Degree The degree of a node (k) 

indicating the number of 

links connected to a node 

ki = aij
j∈N
∑  

where N is the set of all nodes in the 

networks and aij is a link (i.e. edge) from a 

node i to a node j. 

Clustering 

Coefficients 

The clustering coefficient (C) 

measuring the whole brain 

segregation 

C = 1
n

Ci
i∈N
∑ =

1
n

2ti
ki ki −1( )i∈N

∑  

where Ci is a clustering coefficient of node 

(Ci = 0, for ki < 2), ti is the number of 

triangles around a node i, and  n is the 

number of nodes. 

Characteristic 

path length17 

The characteristic path length 

(L) measuring the whole 

brain integration 

L = 1
n

Li
i∈N
∑ =

1
n

dij
j∈N , j≠i
∑

n−1i∈N
∑  

where dij is a shortest path length (distance) 

between nodes i and j, and Li is a 

characteristic path length of node i. 

Global 

efficiency18 

Global efficiency ( ) 

inferring the global 

information processing and 

transfer. 

E = 1
n

Ei
i∈N
∑ =

1
n

dij
−1

j∈N , j≠i
∑

n−1i∈N
∑  

where Ei is the efficiency of node i. 

Network 

small-

Small-world networks are 

highly clustered than random 
S =

C
Crand

L
Lrand

 

E



worldness19 networks and approximately 

the same characteristic path 

length as random networks17 

 

where C and Crand are the clustering 

coefficients, and L and Lrand are the 

characteristic path lengths of the tested 

network and a related random network, 

respectively. Small-world networks often 

have S > 1. 

 

 



Supplementary Table S3 Abbreviations for the cortical regions  

AAL number Abgreviation AAL Regions 

1 PreCG.L Left Precentral gyrus 

2 PreCG.R Right Precentral gyrus 

3 SFGdor.L Left Superior frontal gyrus, dorsolateral 

4 SFGdor.R Right Superior frontal gyrus, dorsolateral 

5 ORBsup.L Left Supeiror frontal gyrus, orbital part 

6 ORBsup.R Right Supeiror frontal gyrus, orbital part 

7 MFG.L Left Middle frontal gyrus 

8 MFG.R Right Middle frontal gyrus 

9 ORBmid.L Left Middle frontal gyrus orbital part 

10 ORBmid.R Right Middle frontal gyrus orbital part 

11 IFGoperc.L Left Inferior frontal gyrus, opercular part 

12 IFGoperc.R Right Inferior frontal gyrus, opercular part 

13 IFGtriang.L Left Inferior frontal gyrus, triangular part 

14 IFGtriang.R Right Inferior frontal gyrus, triangular part 

15 ORBinf.L Left Inferior frontal gyrus, orbital part 

16 ORBinf.R Right Inferior frontal gyrus, orbital part 

17 ROL.L Left Rolandic operculum 

18 ROL.R Right Rolandic operculum 

19 SMA.L Left Supplementary motor area 

20 SMA.R Right Supplementary motor area 

21 OLF.L Left Olfactory Cortex 

22 OLF.R Right Olfactory Cortex 

23 SFGmed.L Left Superior frontal gyrus, medial 

24 SFGmed.R Right Superior frontal gyrus, medial 

25 ORBsupmed.L Left Superior frontal gyrus, medial orbital 

26 ORBsupmed.R Right Superior frontal gyrus, medial orbital 

27 REC.L Left Gyrus Rectus 



28 REC.R Right Gyrus Rectus 

29 INS.L Left Insula 

30 INS.R Right Insula 

31 ACG.L Left Anterior cingulate and paracingulate gyri 

32 ACG.R Right Anterior cingulate and paracingulate gyri 

33 DCG.L Left Median cingulate and paracingulate gyri 

34 DCG.R Right Median cingulate and paracingulate gyri 

35 PCG.L Left Posterior cingulate gyrus 

36 PCG.R Right Posterior cingulate gyrus 

39 PHG.L Left Parahippocampal gyrus 

40 PHG.R Right Parahippocampal gyrus 

43 CAL.L Left Calcarine fissure and surrounding cortex 

44 CAL.R Right Calcarine fissure and surrounding cortex 

45 CUN.L Left Cuneus 

46 CUN.R Right Cuneus 

47 LING.L Left Lingual gyrus 

48 LING.R Right Lingual gyrus 

49 SOG.L Left Superior occipital gyrus 

50 SOG.R Right Superior occipital gyrus 

51 MOG.L Left Middle occipital gyrus 

52 MOG.R Right Middle occipital gyrus 

53 IOG.L Left Inferior occipital gyrus 

54 IOG.R Right Inferior occipital gyrus 

55 FFG.L Left Fusiform gyrus 

56 FFG.R Right Fusiform gyrus 

57 PoCG.L Left Postcentral gyrus 

58 PoCG.R Right Postcentral gyrus 

59 SPG.L Left Superior parietal gyrus 

60 SPG.R Right Superior parietal gyrus 

61 IPL.L Left Inferior parietal 



62 IPL.R Right Inferior parietal 

63 SMG.L Left Supramarginal gyrus 

64 SMG.R Right Supramarginal gyrus 

65 ANG.L Left Angular gyrus 

66 ANG.R Right Angular gyrus 

67 PCUN.L Left Precuneus 

68 PCUN.R Right Precuneus 

69 PCL.L Left Paracentral lobule 

70 PCL.R Right Paracentral lobule 

79 HES.L Left Heschl gyrus 

80 HES.R Right Heschl gyrus 

81 STG.L Left Superior temporal gyrus 

82 STG.R Right Superior temporal gyrus 

83 TPOsup.L Left Temporal pole: superior temporal gyrus 

84 TPOsup.R Right Temporal pole: superior temporal gyrus 

85 MTG.L Left Middle temporal gyrus 

86 MTG.R Right Middle temporal gyrus 

87 TPOmid.L Left Temporal pole: middle temporal gyrus 

88 TPOmid.R Right Temporal pole: middle temporal gyrus 

89 ITG.L Left Inferior temporal gyrus 

90 ITG.R Right Inferior temporal gyrus 

 



Supplementary Table S4 The coincident hubs in each group from the principal data 

Subgroup  VTAV VTA VTV VAV VTO VAO VVO 

Male MT 0.188 0.353 0.167 0.000 0.455* 0.000 0.048 

 MA 0.091 0.333 0.040 0.313 0.050 0.389* 0.038 

  MV 0.333 0.077 0.444 0.235 0.000 0.000 0.588* 

Female MT 0.238 0.400* 0.125 0.143 0.353 0.190 0.040 

 MA 0.136 0.250 0.083 0.353 0.048 0.600* 0.087 

  MV 0.238 0.000 0.350 0.200 0.000 0.042 0.444* 

Young MT 0.238 0.389 0.227 0.043 0.529* 0.077 0.130 

 MA 0.182 0.190 0.038 0.263 0.040 0.474* 0.083 

  MV 0.389 0.000 0.444 0.211 0.042 0.000 0.786* 

Old MT 0.273 0.333 0.091 0.045 0.600* 0.080 0.000 

 MA 0.174 0.278 0.000 0.375 0.150 0.625* 0.045 

  MV 0.261 0.000 0.316 0.143 0.042 0.077 0.563* 

Dementia MT 0.043 0.294 0.313 0.048 0.714* 0.042 0.087 

 MA 0.042 0.150 0.048 0.211 0.042 0.529* 0.040 

  MV 0.174 0.000 0.143 0.389 0.080 0.037 0.647* 

The Jaccard index was calculated for the coincident hub regions between MCNs of MT, MA, 

and MV and subnetworks of each partition such as VTAV, VTA, VTV, VAV, VTO, VAO, VVO. The hub 

regions of each network are marked in Supplementary Fig. S3. Asterisk indicates the highest 

Jaccard index between hub regions of MCNs and subnetworks of each partition. 



Supplementary Table S5 The coincident hubs in each group from the replication 

data set 

Subgroup   VTAV VTA VTV VAV VTO VAO VVO 

Total MT 0.091 0.250 0.300 0.000 0.474* 0.040 0.000 

 MA 0.050 0.294 0.000 0.500* 0.042 0.353 0.048 

 MV 0.353 0.000 0.190 0.176 0.000 0.042 0.500* 

Male MT 0.235 0.211 0.333* 0.000 0.316 0.043 0.000 

 MA 0.000 0.263 0.000 0.375 0.083 0.471* 0.087 

 MV 0.278 0.042 0.238 0.150 0.080 0.040 0.733* 

Female MT 0.136 0.368 0.167 0.000 0.526* 0.077 0.000 

 MA 0.313 0.158 0.043 0.118 0.000 0.600* 0.038 

 MV 0.278 0.043 0.300 0.235 0.000 0.083 0.611* 

The Jaccard index was calculated for the coincident hub regions between MCNs of MT, MA, 

and MV and subnetworks of each partition such as VTAV, VTA, VTV, VAV, VTO, VAO, VVO. The hub 

regions of each network are marked in Supplementary Fig. S6. Asterisk indicates the highest 

Jaccard index between hub regions of MCNs and subnetworks of each partition.



 Supplementary Fig. S1 Group differences in ORs from the principal data 

The plot figure shows the observed OR of each partition as a function. Each plot was 

marked as follows: (a) Male group, (b) Female group, (c) Group difference in OR 

between male and female group, (d) Old group, (e) Young group, (f) Group difference 

in OR between old and young group, (g) dementia group, (h) Group difference in OR 

between old and dementia group. In (c), (f), and (h), data points with cross indicate 

statistically significance (P < 0.05). 



Supplementary Fig. S2 Four edge types for subgroups from the principal data 

(a) The edges show both signs, with positive and negative correlation coefficients 

between regions. (b) The edges show only positive correlation. (c) The edges show 

only negative correlation. The percentages of the four types of edges, that is, the 

homotopic, the left and right ipsilateral, and heterotopic edges were plotted in each 

partition. In each box, the central mark is the median, the edges of the box are the 

25th and 75th percentiles, and the box color indicates the edge type. The box plot was 

implemented using matlab code 

(alex.bikfalvi.com/research/advanced_matlab_boxplot/). 

 

 



 





Supplementary Fig. S3 The hub regions from the principal data 

Each partition (a-j) was marked as follows: (a) VTAV, (b) VTA, (c) VTV, (d) VAV, (e) VTO, 

(f) VAO, (g) VVO, and (h) MT, (i) MA, and (j) MV indicate the adjacency matrix of 

cortical thickness, surface area, and gray matter volume, respectively. The hub regions 

for each group were marked as different markers with same color in each box plot. In 

each box, each group was marked as follows: M; Male group, F; Female group, Y; 

Young group, O; Old, D; Dementia group. 



Supplementary Fig. S4 Group differences in ORs from the replication data 

The plot figure shows the observed OR of each partition as a function.  

Each plot was marked as follows: (a) Total subjects, (b) Male group, (c) Female 

group, (d) Group difference in OR between male and female group and data points 

with cross indicate statistically significance (P < 0.05). 

 

 



Supplementary Fig. S5 Four edge types for subgroups from the replication data 

The percentages of the four types of edges, that is, the homotopic, the left and right 

ipsilateral, and heterotopic edges were plotted in each partition. Each group was 

marked as follows: (a) total subjects, (b) male group, (c) female group. Green box 

plots indicate the edges showing both signs, with positive and negative correlation 

coefficients between regions. Orange box plots indicate the edges showing only 

positive correlation. Blue box plots indicate the edges showing only negative 

correlation. In each box, the central mark is the median, the edges of the box are the 

25th and 75th percentiles, and the box color indicates the edge type. 





Supplementary Fig. S6 The hub regions from the replication data 

Each partition (a-j) was marked as follows: (a) VTAV, (b) VTA, (c) VTV, (d) VAV, (e) VTO, 

(f) VAO, (g) VVO, and (h) MT, (i) MA, and (j) MV indicate the adjacency matrix of 

cortical thickness, surface area, and gray matter volume, respectively. The hub regions 

for each group were marked as different markers with same color in each box plot. In 

each box, each group was marked as follows: Total; total subjects, M; Male group, F; 

Female group. 



Supplementary Fig. S7 Comparison of network properties between three networks. 

Network properties of (a) small-worldness index, (b) normalized clustering 

coefficients, (c) global efficiency, and (d) normalized characteristic path length as 

functions of network sparsity for three MCNs of cortical thickness (red), surface area 

(blue), and gray matter volume (black). The network parameters of 1000 bootstrap 

samples show the mean and standard deviation at each sparsity level. Data points with 

asterisks indicate significant differences (P < 0.05). 



Supplementary Data  

Principal data set The OASIS data (www.oasis-brains.org) were composed of 416 

subjects with ages from 18–96 years including 316 of healthy controls and 100 of 

patients with Dementia on 1.5 Tesla MRI. For this study, 2 of normal subjects and 11 

of patients were excluded because of failure of image processing. We selected 314 

healthy normal subjects, referred to as the principal data set of the study. The subjects 

were 44.9 ± 23.79 years old (mean ± standard deviation (STD)) with a sex ratio of 

195/119 (female/male). For group differences, we grouped the subjects as follows: (1) 

Female and male group; their ages were ranged 47.9 ± 24.39 and 39.9 ± 22.0 

respectively for the female and male groups. (2) Young and old group; 119 subjects of 

20s (22.8 ± 2.49 years old, 68/51 (female/male)) were selected as young group and 

with old group, 96 subjects (75.8 ± 8.99 years old, 70/26 (female/male)), aged 60 and 

older in the principal data. (3) For patient group, 89 of dementia subjects (76.8 ± 7.25 

years old, 55/34 (female/male)) were included in this study.  

All the magnetic resonance imaging (MRI) data were sagittal T1-weighted images 

with typical dimensions of 256 × 256 and resolutions of 1 mm × 1 mm × 1.25 mm. 

The scans were collected using a Siemens Vision scanner with a magnetization-

prepared rapid acquisition with gradient echo. All subjects used in this work gave 

written informed consent and the use of these subjects was approved by the 

Institutional Review Boards (IRB) of Washington University (www.oasis-brains.org). 

The details have been described in Marcus, D. S. et al (2007) for OASIS20.  

 

Replication data set An independent replication data set was obtained from HCP 

data (www.humanconnectome.org) including 509 healthy subjects with age range of 

22 to 35 years (302/207 (female/male)). The data set were provided by the Human 



Connectome Project, WU-Minn Consortium (Principal Investigators: David Van 

Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and 

Centers that support the NIH Blueprint for Neuroscience Research; and by the 

McDonnell Center for Systems Neuroscience at Washington University.  

All images were scanned on a customized Siemens 3 T (a modified Siemens Skyra 3T) 

using the special gradients of the WU-Minn and MGH-UCLA Connectome scanners. 

Briefly, T1-weighted images are acquired using the 3D MPRAGE sequence with 0.7 

mm isotropic resolution and the following parameters: TR=2400ms, TE=2.14ms, 

TI=1000ms, FA=8°, Band- width (BW) = 210 Hz per pixel, Echo Spacing (ES) = 7.6 

ms, with a non-selective binomial (1:1) water excitation pulse (a pair of 100 µs hard 

pulses with 1.2 ms spacing). The field of view (FOV) was 224 mm, matrix size was 

320 x 256 with sagittal slices in a single slab. The details have been described in Van 

Essen, D. C. et al. for HCP21,22.  

 



Supplementary Methods  

Image preprocessing for a morphometric descriptor 

CIVET software was used to extract cortical surfaces. The procedures are well 

validated and have been extensively described23-27. The T1-weighted MRI data were 

first registered into a standardized stereotaxic space using an affine linear 

transformation and then corrected for nonuniform intensity artifacts using an N3 

algorithm28,29. The registered and corrected volumes were segmented into GM, white 

matter (WM), cerebrospinal fluid (CSF), and background using a neural net 

classifier30. Next, the inner and outer surfaces were automatically constructed by 

deforming a spherical mesh onto the GM/WM boundary and GM/CSF boundary, 

respectively, in each hemisphere using the CLASP algorithm31,32. A surface model for 

each hemisphere consisted of 81924 vertices with polygonal meshes. We applied an 

inverse transformation matrix to the surface model to estimate cortical measurements 

in the native space. Cortical thickness was calculated as the Euclidean distance 

between the corresponding vertices of inner and outer surfaces using a t-link 

method23. Surface area was measured by calculating the Voronoi area assigned to any 

vertices33. Cortical thickness and surface area were blurred using a 20 mm full-width 

half-maximum surface-based diffusion kernel and spatially normalized to a group 

template using a surface-based two-dimensional registration algorithm34,35. GM 

volume was obtained from the segmented GM images in native space. 

 

Morphometric network construction 

For each subject, regional cortical thickness and surface area were respectively 

obtained as the average thickness of all the vertices belonging to each region and the 

sum of the surface area making up the surface model within each region33,36. The 



regional GM volume was calculated by measuring the total number of voxels 

belonging to that region. A linear regression analysis was performed at every cortical 

region to remove the confounding factors of age, sex, and any variance explained by 

global measures (mean cortical thickness, and total sum of surface area, estimated 

intracranial volume, respectively)4,8,9,15 The interregional symmetric correlation 

matrix was constructed by calculating the Pearson correlation coefficients across the 

individuals between the morphological measures of every regional pair. 
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