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Supplemental Information

Here we present a model that generalizes the approach used in the main text to any two

player symmetric game. We show that the results regarding the evolutionary instability of

conditional helping and the evolutionary stability of conditional harming are general. We

consider both the stability of behavioral types in any two player symmetric game as well as

the stability of recognition in monomorphic populations. Finally, we present an alternative

selection dynamics on recognition which alters the relative rate of evolution, but produces

qualitatively similar results to those presented in the main text.

A generalized model

For any two player symmetric game, let π(σ, σ′) be the payoff of behavior σ played against σ′.

As we are considering conditional strategies in these games, we will refer to choices within the

game as “behaviors” and the full conditional strategies (e.g., do behavior x against similar

types and behavior y against different types) as “types.” Let i ⇀ j denote that i considers j

a similar type (but j does not consider i similar) and i
 j denote that both types consider

each other similar. As in the main text, r represents recognition ability. Let si be the

behavior that type i adopts against similar types and di be the behavior they adopt against

different types. The generalized utility function can be specified as follows. When i
 j:

u(i, j, r′, r) = r′rπ(si, sj) + r′(1− r)π(si, dj)

+ (1− r′)rπ(di, sj) + (1− r′)(1− r)π(di, dj).

(1)

Where r′ is the recognition ability of i and r is the recognition ability of j. For i ⇀ j simply

swap sj and dj in Equation 1. Similarly for i ↽ j, swap si and di in Equation 1. For the

case where neither type considers the other type similar, swap si and di as well as sj and

dj throughout. Finally, we will use u(i, j, r) to denote the case where both players have the
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same recognition value (r′ = r).

A population state x = (..., xi, ...) is a point in the unit simplex which represents the

frequency of each type i with a value xi ∈ [0, 1]. Let F (i, x, r) be the fitness of type i in

population x with a mean recognition ability r. When recognition ability is uncorrelated

with type and the population is infinitely large this is

F (i, x, r) =
∑

j∈Types

xju(i, j, r). (2)

The average fitness in the population is

F (x, r) =
∑

i∈Types

xiF (i, x, r). (3)

It is also possible to determine the fitness of a population state relative to another pop-

ulation state by treating those states as a mixed type (a mixed strategy in the type game)

equivalent to the frequency of types in the population [1]. The fitness of population x′ play-

ing against population x is given by F (x′, x, r) according to equation 2 where a weighted

average of types in x′ is used in place of i: F (x′, x, r) =
∑

i

∑
j x

′
ixju(i, j, r). This will be

helpful in thinking about evolutionary stability in the next section.

Finally, to consider the fitness of alternative recognition values r′ relative to a population

mean r, we use the full utility function u(i, j, r′, r). Let F(r′, x, r) denote the fitness of a

recognition ability r′ in a population x with mean recognition ability r:

F(r′, x, r) =
∑

i∈Types

∑
j∈Types

xixju(i, j, r′, r). (4)

Recognition ability r′ will be favored by selection whenever F(r′, x, r) > F (x, r). Because

u(i, j, r′, r) is linear with respect to r′, we can determine whether or not an alternative

r′ > r is favored by selection by simply examining the case of a perfectly accurate recognizer
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F(1, x, r) in comparison with the mean fitness of the population: r′ > r will be favored

whenever F(1, x, r) > F (x, r). Likewise, r′ < r will be favored if and only if F(0, x, r) <

F (x, r).

Stability of types

Standard fitness comparisons (with mean fitness) can be used to determine whether types

will increase in frequency according to any monotonic selection dynamic. Likewise, given a

fixed recognition value, we can define stability with respect to types in a manner similar to

the standard definition of an Evolutionarily Stable Strategy [1, 2].

Definition 1. A population state (x, r) is evolutionarily stable with respect to types if and

only if (i) F (x, x, r) > F (x′, x, r) or (ii) F (x, x, r) = F (x′, x, r) and F (x, x′, r) > F (x′, x′, r)

for all x′ 6= x.

If a population state satisfies the first condition, we will call it strongly evolutionarily stable.

Before considering evolutionary stability with respect to recognition, it is possible to

demonstrate some necessary and sufficient conditions regarding stability with respect to

types in populations with high recognition.

Propositon 1. If (x, r) is such that xi ≈ 1 and r ≈ 1, then for (x, r) to be evolutionarily

stable with respect to types, it is necessary that π(si, si) ≥ π(s, di) for all behaviors s.

Proof. Suppose that xi ≈ 1, r ≈ 1 and π(si, si) < π(s, di) for some behavior s. Note that we

cannot have s = di = si. Let j be such that dj = s. In which case, π(si, si) < π(j, di) and,

because r ≈ 1, u(i, i, r) < u(j, i, r). Lastly, if xi ≈ 1, F (x, x, r) < F (j, x, r). Thus, (x, r) is

not evolutionarily stable with respect to types.

In words, this proposition shows that when recognition is high no monomorphic population

can be stable if native’s conditional behavior di benefits some alternative behavior that a
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different type may choose. If there is such a behavior, then any type which adopts that

behavior against type i will have a strict fitness advantage over the natives. The next

proposition shows that if the inequality in Proposition 1 is strict, it is a sufficient condition

for evolutionary stability with respect to types.

Propositon 2. If (x, r) is such that xi ≈ 1 and r ≈ 1, then for (x, r) to be evolutionarily

stable with respect to types, it is sufficient that π(si, si) > π(s, di) for all behaviors s.

Proof. Suppose xi ≈ 1, r ≈ 1 and that π(si, si) > π(s, di) for all behaviors s. Then,

for every type j 6= i, π(si, si) > π(dj, di). Thus, u(i, i, r) > u(j, i, r) and, since xi ≈ 1,

F (x, x, r) > F (x′, x, r) for all x′ nearby x and (x, r) is strongly evolutionarily stable with

respect to types.

Proposition 2 shows that any conditional behavior that effectively harms alternative types

will be evolutionarily stable. This is harm in a relative sense: alternative types against the

natives receive a payoff less than that of the average in the native population.

Stability of recognition ability

We are specifically interested in populations that can maintain high recognition and will

demonstrate the conditions under which higher values of recognition are favored over lower

values in monomorphic populations. The single dimension of the r parameter and the fact

that u(i, j, r′, r) is linear with respect to r′ allows a straightforward definition.

Definition 2. A population state (x, r) favors recognition if and only if (i) F(r′, x, r) >

F (x, r) for all r′ > r and (ii) F(r′, x, r) < F (x, r) for all r′ < r.

To determine whether or not a monomorphic population can favor high recognition we

need to compare cases of successful recognition to those of unsuccessful recognition. Because

we are assuming two player symmetric games, this comparison can be done by considering
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si di
si a b
di c d

Table 1: The sub-game between si and di for a specific type i.

the behavior used when the native type i makes a “similar” determination (si) against others

of that type and the behavior used when i makes a “different” determination (di) against

other type i players. The interaction between these component behaviors si and di can be

summarized in Table 1. Note that a similar matrix has been used to represent the space

of all possible 2 × 2 interactions [3]. Also note that Table 1 describes only one part of a

potentially much larger game. However, in a monomorphic population si and di are the only

strategies that will be realized with measurable frequency. With this interaction component

we are able to express general conditions for when recognition will be favored in monomorphic

populations.

Propositon 3. Recognition is favored in a monomoprhic population if and only if

r(a− c) > (1− r)(d− b).

Proof. Supppose xi ≈ 1. Recognition will be favored whenever (i) F(r′, x, r) > F (x, r) for all

r′ > r and (ii) F(r′, x, r) < F (x, r) for all r′ < r. First consider r′ > r. Because u(i, j, r′, r)

is linear with respect to r′ and xi ≈ 1:

F(r′, x, r) > F (x, r) iff F(1, x, r) > F (x, r)

iff u(i, i, 1, r) > u(i, i, r)

iff ra+ (1− r)b > r2a+ r(1− r)b+ (1− r)rc+ (1− r)2d

iff r(a− c) > (1− r)(d− b)
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Next consider r′ < r:

F(r′, x, r) < F (x, r) iff F(0, x, r) < F (x, r)

iff u(i, i, 0, r) < u(i, i, r)

iff rc+ (1− r)d < r2a+ r(1− r)b+ (1− r)rc+ (1− r)2d

iff r(a− c) > (1− r)(d− b)

Therefore, recognition is favored in (x, r) if and only if r(a− c) > (1− r)(d− b).

Proposition 3 shows that there are only certain types that can favor recognition ability.

This can apply readily to important classes of games. For example, consider a conditionally

altruistic type in the Prisoner’s Dilemma, which cooperates with similar types and defects

on different types (i.e., type A in the Help Game). In this case, we have c > a > b > d and

consequently conditional altruism can never maintain recognition on its own. Proposition 3

shows that this will be a general trend in any game with a conditional type attempting to

maintain a dominated strategy in a similar way—i.e., where the conditional type plays the

dominated strategy against its own type and the dominant strategy against others.

Additionally, for any monomorphic population to maintain a high degree of recognition

(r ≈ 1) it becomes essential that a > c. This means that that it must be, in a relative

sense, costly for the native population to execute their different-targeted conditional be-

havior against other natives. Combining this result from that of Proposition 2 shows that

conditional spite (costly behavior that inflicts harm) is sufficient to stabilize both type and

recognition (e.g. type S in the Harm game). This is not to say that games such as the Harm

game are the only interactions that can sustain high recognition values. Other games may

provide the requisite settings as well, provided that the conditional behavior di is sufficiently

harmful to potential invaders and sufficiently costly to the natives.
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Variance of recognition and speed of selection

In the dynamic model we implemented a discrete-time selection dynamic on recognition:

rt+1 = (1− µ)r
F(1, x, r)

F (x, r)
+
µ

2
. (5)

This dynamic considers only perfect recognition in comparison with mean fitness. While

we saw above that this is sufficient to draw conclusions about the direction of selection

(higher or lower r′), it also assumes that selection will operate at a very fast speed, as

though the population had the highest possible variance among r values. To account for the

possibility of lower variation in recognition ability relative to that of behavioral dispositions,

we introduce a variance term into the evolutionary dynamics that are operating on r. Let

rvar ∈ [0, 1] be a variance parameter within the population with respect to recognition ability

and r∆ represent the difference between the fitness of successful recognition and the mean

fitness:

r∆ = F(1, x, r)− F (x, r). (6)

Then we can modify equation 5 to slow evolution in proportion to the degree of variance in

recognition ability. This is a linear transformation of the fitness that effectively allows us

to consider deviations of recognition value that are much closer to the mean value of the

population:

rt+1 = (1− µ)r
F(1, x, r)− (1− rvar)r∆∑

i xiF (i, x, r)
+
µ

2
. (7)

We ran an additional set of simulations using the dynamics expressed in Equation 7.

These simulations produced results that were qualitatively similar to the results of the main

text. These results show that using a perfect-recognition as the comparison point for the

evolutionary dynamics does not change the qualitative results of the model. See Figure 1.
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Figure 1: Simulation results for slower evolution of r. All populations converge to a
monomorphic equilibrium of one of the behavioral types E, S, or C (A never evolves).
Simulation results show proportion of descendant population states from random initial con-
ditions for rvar = 0.1, equal values for help conferred or harm inflicted (b = h = 1), equal
costs to confer help or inflict harm (ch = cb = 0.2), 10000 runs with mutation (µ = 0.0001).
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