
Biophysical Journal, Volume 110
Supplemental Information
Phenotypic Diversity Using Bimodal and Unimodal Expression of

Stress Response Proteins

Javier Garcia-Bernardo and Mary J. Dunlop



Biophysical Journal 

 

Supporting Material 

 

Phenotypic Diversity Using Bimodal and Unimodal Expression of 
Stress Response Proteins  

Javier Garcia-Bernardo1 and Mary J. Dunlop2,* 
1Department of Computer Science and 2School of Engineering, University of Vermont, Burlington, 
Vermont 

*Correspondence: mjdunlop@uvm.edu 

 



Supplementary Information

Supplementary Methods

Weak stressor

We distinguished between two strengths of the stressor: strong, where the cells with low levels of

protein expression are killed in the presence of high concentrations of the stressor and weak, where

the stressor stops cell division for cells with low protein expression. The growth rate for a weak

stressor is calculated by

λP,S =


cth−c(P,S)

cth
if c(P, S) < cth

0 if c(P, S) ≥ cth.
(1)

Fitness function

We assume fast switching rates, which produces identical distributions of phenotypes in low and

high stress conditions. At equilibrium, the growth of a population depends on the fraction of cells

at each protein level. The ratio of final to initial number of cells in one generation is

N1/N0 =
∑
P

xP 2λP,S , (2)

where N0 and N1 are the initial number of cells and the number of cells after one generation (1).

xP is the fraction of the population in the protein state P and λP,S is the growth rate of cells in the

protein state P and stress level S. The values of P correspond to the protein levels {0− 100, 100−

200, ..., 9900− 10000} molecules. Because the population stays in equilibrium, the total growth is

Nt/N0 =

(∑
P

xP 2λP,S

)t
, (3)

where t is the time spent in equilibrium conditions measured in generations. Note that the popu-

lation grows if the value of the sum is greater than 1.
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For the case with two environments, the ratio of final to initial cells is determined by

Nt/N0 =

(∑
P

xP 2λP,Sl

)tl
·

(∑
P

xP 2λP,Sh

)th
, (4)

where tl and th are the times spent in low and high stress conditions. Sl and Sh are the low and

high stress conditions. Instead of calculating the product of ratios, we record the logarithm of the

products of ratios

log (Nt/N0) = tl log

(∑
P

xP 2λP,Sl

)
+ th log

(∑
P

xP 2λP,Sh

)
. (5)

As the fitness function in our differential evolution algorithm, we use

R =
log (Nt/N0)

tl + th
, (6)

which corresponds to the geometric growth rate. In the special case where no cells survive (λP,Sh
=

−1 for all values of P), we set R to −1. When some cells survive, R evaluates to a number between

0 and 1, where 0 indicates that the population is not growing at all and 1 indicates that it is growing

optimally.

Sensing case

When cells are able to sense the environment, they can adapt their distribution in high stress

conditions. The switching rates between protein states are on the order of the doubling time.

Thus, we assumed one generation is required to sense and adapt to the environment.

The log of the ratio of final to initial number of cells in this case is calculated as

log (Nt/N0) = tl log

(∑
P

xP 2λP,Sl

)
+ log

(∑
P

xP 2λP,Sh

)

+(th − 1) log

(∑
P

yP 2λP,Sh

)
,

(7)

where xP is the fraction of cells in protein level P adapted to the low stress environment and yP

is the fraction of cells adapted to the high stress environment. We obtained the distribution of yP
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values by evolving the optimal unimodal distribution in fixed high stress conditions. The first term

in this equation describes the population in low stress, the middle term describes the population

during the one generation after the transition from low to high stress, and the final term describes

the population during the time in high stress.

Differential evolution algorithm

We used the Python differential evolution code (2), available online at http://www1.icsi.berkeley.

edu/∼storn/code.html. We modified it to use the Python module numpy, which allows for fast

operations on vector objects. Differential evolution finds optimal or near-optimal solutions by

iteratively improving a set of candidate solutions based on their fitness. For example, in the 2γ

case, differential evolution evolves the six parameters a1, b1, w1, a2, b2, and w2.

Initialization of the population

The population was set to 40 trial vectors, following recommendations for good performance of the

differential evolution algorithm from (3).

For the 1γ distribution, the initial population was set by creating vectors {a, b} in the range

a = [0.5, 100], b = [10, 400]. For the full algorithm, we used bounds [0.5, 100] for a and [10, 4000]

for b to allow for parameters in the range of experimentally derived values from (4). The difference

between the initialization ranges and bounds were empirically found to provide better convergence

of the algorithm.

For the 2γ distribution, the initial population was created in the range a1 = [0.5, 2], b1 =

[10, 400], w1 = [0, 1], a2 = [2, 100], b2 = [10, 400], and w2 = [0, 1]; with bounds a1 = [0.5, 100],

b1 = [10, 4000], w1 = [0, 10], a2 = [0.5, 100], b2 = [10, 4000], and w2 = [0, 10]. The difference between

the initialization ranges allows the two gamma distributions to start with proteins distributed

between low and high protein expression levels to allow the evolution of bimodality.

For the case with no restriction on the protein distribution, we evolved the fraction of the

population at each protein level, p(P ), directly with an initialization and bound range [0, 1]. The
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range has little effect on performance, since the final p(P ) values are normalized to
∑

P p(P ) = 1.

Given the large number of parameters, we initialized the population with 400 trial vectors, which

we found to improve convergence.

Evolution and parameters

For each trial vector xi in the population, a mutant vector vi was created using the DE/rand/1/bin

method (2), which combines three random trial vectors in the population, xr1 , xr2 , and xr3 , ac-

cording to

vi = xr1 + F · (xr2 − xr3), (8)

where the multiplier F was chosen randomly from the range [0.5, 2], since these values have been

shown to improve convergence, especially when the fitness function is noisy (3).

If the population had not converged after 50 generations (see termination description below),

the algorithm was switched from DE/rand/1/bin to DE/best/1/bin (2), and the mutant vector was

created as

vi = xbest + F · (xr1 − xr2), (9)

where xbest is the trial vector with highest fitness in the population. This change in the method

allows for a more refined search in the latter parts of the evolution.

The mutant vector vi is combined with the ith trial vector, xi, in the population using 90% of

the values in vi and 10% of the values in xi, i.e. the crossover rate is 0.9, as suggested by Price and

Storn in the case of parameter dependence (3). The resulting vector, ui, substitutes xi for the set

of trial vectors if it allows for a higher fitness value than xi.

Termination

The algorithm was allowed to run for 500 generations, or until convergence. Convergence was

defined as being achieved if the difference between the mean fitness of the population and the

fitness of all candidate solutions was within 10−10 fitness units.
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Supplementary Text

Fitness function

After a transition time, and while the environment is constant, the distribution of protein states

in a population is at equilibrium (5, 6). The equilibrium depends on the growth rates λP,S and

the switching rates between protein states (6). Here, we evolve the distribution of protein levels in

the population that yields the highest growth rate. Therefore, we indirectly evolve the switching

rates that produce that equilibrium. Furthermore, we assumed that the switching rates were on the

order of the doubling time of a cell, which produces fast transition times, consistent with memory

observed in the level of proteins in vivo (7, 8). One concern is that the distribution of protein levels

may change during the time in high stress, i.e. fewer cells may leave the resistant state than were

leaving before the stress appeared. However, this effect is only pronounced when the switching

rates are low compared with the differences in growth rates between cells (6). For our simulations,

the maximum difference in growth rates is one order of magnitude below the doubling time of the

cell, and therefore we assumed that the fraction of cells that leave the resistant state is constant

through the different environmental conditions.

Differences in growth rates and relationship to time for one population to overtake

another

Provided the population is growing, the growth rate is normalized to be between 0− 1, where the

value 1 corresponds to one cell division in the fastest possible cell division time.

The growth of cells is given by the equation

Nt = N02
R·t,

where Nt is the final number of cells, N0 is the initial number of cells, t is time that the population

has been growing, and R is the growth rate.
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The benefit of sensing or bimodality is measured in points as the difference in growth rate mul-

tiplied by 100, with units (generations)-1. For example, the ratio of cells between two populations

1 point apart is given by

2(x+0.01)t

2(x)t
= 20.01·t.

Therefore, the time until the more fit condition represents 90% of the population (in other words,

the ratio of more to less fit cells is 90:10, or 9) corresponds to

9 = 20.01·t

log2(9) = 0.01 · t

t = 317 generations.

For E. coli, a generation corresponds to about 38 minutes in rich media (9), and therefore 317

generations is 8.4 days.

Supplementary Figures
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Figure S1: Relationship between difference in growth rate and time for population
displacement. The time required for a fast growing population to displace a slow growing one
is plotted as a function of the difference in growth rate between the two populations. Displace-
ment is defined as achieved when the more fit condition represents 90% of the population. See
Supplementary Text for additional discussion.
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Figure S2: Bimodality is evolved in many conditions, even when there are no restric-
tions on the shape of the protein distribution. The distribution of proteins is allowed to
evolve freely, with no restrictions on its shape. An example of the solutions is shown in the cartoon
on the left. (A, B) The ratio of cells with high protein expression is plotted as a function of the
environmental conditions for the (A) no sensing and (B) sensing case. Unimodal (dark purple) and
bimodal (light purple) distributions are evolved.
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Figure S3: Bimodality is not generally evolved under weak stressors. (A) Environments
vary between low and high stress. Without sensing, the population can be composed of cells
with low levels of protein expression (histograms). Under low stress, the population grows well.
Under high stress, it stays latent. (B) With sensing, all cells sense and adapt to the current
environment after one generation. (C–D) Simulations use the 2γ restriction. Ratio of cells with
high to low protein expression for (C) no sensing and (D) sensing populations. Dark purple colors
indicate unimodal distributions with high protein expression. Light purple is bimodal. White
is a unimodal distribution with low protein expression. Inset shows the very small region where
bimodality is evolved. (E) The benefit of sensing is plotted as a function of the ratio of high to low
stress. The benefit is measured as the difference in growth rate between the sensing and no sensing
populations (Supplementary Text). These simulations use an environmental transition rate of 10.
Corresponding plots to (C–D) are shown in (F-G) for the case with no restrictions when evolving
the protein distribution.
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Figure S4: The benefit of bimodality decreases as noise or time in the intermediate
environment is increased. Examples of the distributions evolved with the 1γ and 2γ restrictions
are shown (histograms) for increasing levels of noise in the (A) no sensing and (B) sensing cases.
(C, D) The distributions evolved with the 1γ and 2γ cases are shown for increasing time in the
intermediate, medium stress environment for the (C) no sensing and (D) sensing cases. For the
sensing case, the evolved distributions are identical for all intermediate environment times, but the
benefit decreases as the time spent in the intermediate environment becomes a larger fraction of
the whole simulation time.
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Figure S6: Comparison of evolved unimodal and bimodal distributions. Distribution of
protein levels in (A) linear and (B) logarithmic scales for different ratios of high to low stress for
an environmental transition rate of 10. Blue shows the 1γ case; red shows the 2γ case.
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