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ABSTRACT Populations of cells need to express proteins to survive the sudden appearance of stressors. However, these
mechanisms may be taxing. Populations can introduce diversity, allowing individual cells to stochastically switch between
fast-growing and stress-tolerant states. One way to achieve this is to use genetic networks coupled with noise to generate
bimodal distributions with two distinct subpopulations, each adapted to a stress condition. Another survival strategy is to rely
on random fluctuations in gene expression to produce continuous, unimodal distributions of the stress response protein. To
quantify the environmental conditions where bimodal versus unimodal expression is beneficial, we used a differential evolution
algorithm to evolve optimal distributions of stress response proteins given environments with sudden fluctuations between low
and high stress. We found that bimodality evolved for a large range of environmental conditions. However, we asked whether
these findings were an artifact of considering two well-defined stress environments (low and high stress). As noise in the
environment increases, or when there is an intermediate environment (medium stress), the benefits of bimodality decrease.
Our results indicate that under realistic conditions, a continuum of resistance phenotypes generated through a unimodal distri-
bution is sufficient to ensure survival without a high cost to the population.
INTRODUCTION
Populations of cells that live in fluctuating environments
must cope with a wide range of conditions and sudden
changes in their surroundings. Cells can sense their environ-
ment and respond to changes. However, if the time required
to initiate a response is longer than the time the stressor
takes to act, cells need alternative strategies to ensure that
the entire population is not killed off due to the sudden
appearance of a stressor. Furthermore, initiating stress
response mechanisms in all cells within a population may
be costly. When sensing the environment is too slow or
too costly, populations can rely on genetic and phenotypic
variation to balance survival and growth. For example,
they may sacrifice growth in low stress conditions to in-
crease fitness in other environments (1–3). In the past
decade, bet hedging, a type of nongenetic variation between
individuals, has gained attention for its role in multiple bio-
logical processes (1,3). For instance, the presence of sub-
populations of nongrowing persister cells allows bacterial
populations to survive high concentrations of antibiotics
that target cell growth (4). This persistent population has
been found in many pathogenic microbes, and has been
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shown to be an important contributor to antibiotic resistance
(5). Similarly, under nutrient limitation, Bacillus subtilis
generates phenotypic diversity resulting in normally
growing cells, sporulating cells, and those that eventually
become competent (6,7). Maintaining different phenotypes
within the same genotype allows populations of cells to
ensure variability at every generation, reducing differences
in the population growth rate across environments and
ensuring survival under a variety of conditions (8).

In this article, we focus on how a population of cells
grows in the presence of a time-varying stressor. Cells can
express genes to tolerate high concentrations of a stressor,
such as genes encoding efflux pumps, reductases, and
DNA repair systems (9). However, these stress-response
mechanisms can have a high metabolic cost (10). Thus, pop-
ulations may use phenotypic diversity so that not all cells
have the burden of expressing them. Two approaches are
as follows. 1) The generation of two distinct phenotypic
states optimized for each environment, which we refer to
as a ‘‘bimodal distribution’’. Establishing two well-defined
phenotypes and stochastically switching between them can
be advantageous in some conditions. For instance, in bacte-
rial persistence, populations are bimodal, maintaining a
small subpopulation of dormant cells in addition to normally
growing cells (11). This type of bet-hedging has been
evolved in Pseudomonas fluorescens in the presence of
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Bimodality in Fluctuating Environments
alternating stresses (12,13). 2) An alternative approach is to
generate a continuum of stress-resistance levels within a
population, which we refer to as a ‘‘unimodal distribution’’.
In this case, cells have a similar phenotype with variations
about the mean levels. In contrast to the bimodal case, there
are not distinct phenotypic states. An example of unimodal
distributions comes from TATA box-containing genes asso-
ciated with stress response in Saccharomyces cerevisiae,
which exhibit large levels of variability that protect against
future environmental changes (14). Similarly, increased
population heterogeneity has been shown to enhance sur-
vival of stress in S. cerevisiae (15). A broad, continuous
distribution of phenotypes has also been evolved in Escher-
ichia coli in a periodic selection and mutation experiment
(16). Phenotypic diversity, in the form of bimodal or unim-
odal distributions of phenotypes, plays an important role in
increasing fitness in uncertain environments.

The mathematical analysis of fluctuating environments
dates back to work by Levins (17), who showed that
environmental fluctuations hinder adaptation to a single
phenotype. Since then, many studies have examined the
relationship between time-varying environments and
cellular phenotypes. Generally, cells are modeled as
growing exponentially, with each phenotype having a
distinct growth rate for each environment and a rate of
switching to other phenotypes (18–23). Given the large
number of parameters present, numerical and analytical
studies have primarily focused on the case with two environ-
ments and two phenotypes, with the following general con-
clusions: Two different optimal strategies can be found,
where the optimum depends on the frequency at which the
environment changes. A unimodal population is best for
very rapid or very slow environmental changes, and a
bimodal population where cells stochastically switch be-
tween two phenotypes is best for intermediate ranges of
environmental switching (24). Furthermore, the unimodal
population can be either adapted to this environment if the
changes are slow, i.e., cells can sense and adapt to the extra-
cellular conditions; or adapted to the mean environment if
the changes are rapid (24). When cells do not explicitly
sense their environment, bimodal strategies with stochastic
switching between the two states are favored (20). Even in
conditions where cells do sense their environment, bimo-
dality can still be used to prevent complete extinction of
the population if sensing is too slow (25,26). In general, in
a periodic environment, the optimal switching rate between
phenotypes in a bimodal population is proportional to the
asymmetry of the stress environment (25) and the transition
rate between environmental states (18,27). These results
have provided insight into the cases where bimodal popula-
tions are favored, showing that bimodality coupled with sto-
chastic switching between states is advantageous for a large
range of conditions.

Although these studies have demonstrated the theoretical
benefit of bimodality, >99% of E. coli genes show unimodal
distributions in their protein levels (28). There are select ex-
amples of bimodal gene expression in E. coli, but relatively
few cases exist; other bacterial species appear to be similar
(29). Thus, we were motivated to understand the conditions
where bimodal distributions of proteins increase the growth
rate of a population with respect to a unimodal distribution.
To achieve this, we developed a computational model and
used a differential evolution algorithm (30) to evolve optimal
or near-optimal distributions of phenotypes for a population
growing in the presence of a time-varying stressor. When we
restricted the concentration of the stressor to two levels (low
and high), we were able to reproduce the benefits of bimo-
dality previously reported. However, this benefit disappeared
when variability in the concentration of the stressor was
increased. This is the case when there is noise in the environ-
ment, or when there are more than two distinct environ-
mental conditions. Given realistic conditions, unimodal
distributions of proteins may be a straightforward bet-hedg-
ing approach for surviving in fluctuating environments.
MATERIALS AND METHODS

Distribution of protein levels

In the context of general stress response, some proteins confer resistance

to a broad range of chemicals, either by regulating expression of suites of

genes or by directly providing stress resistance. Therefore, we represented

the phenotype of a cell, P, as the concentration of a hypothetical protein

involved in response to stress. To study populations of cells growing in

fluctuating environments, we developed a model that assigns fitness values

(growth rates) to a distribution of protein levels in a series of environ-

ments. We evolved the probability distribution of the protein under the

basal conditions, where no stressor was present. This distribution is en-

coded by an n-dimensional vector, where the dimension corresponds

to different protein levels in the population, and the n values correspond

to the probability of expressing the phenotypes, p(P). The values of

P were set to n bins: {0–100, 100–200,., 9900–10000} molecules, to

represent a typical range of protein numbers that can be found in both

bacteria and yeast (31).
Gamma distributions

The n values in vector p(P) were extracted from a g-distribution in the 1g

case, the weighted sum of two g-distributions in the 2g case, or evolved

directly in the case with no restrictions.

A g-distribution arises from a two-state model of gene expression, where

the promoter can be ON or OFF and the protein is expressed in bursts (32).

In this context, a corresponds to the number of bursts per cell cycle, while b

is the average number of molecules produced per burst. For both the 1g and

2g cases, we restricted a to ½0:5; 100�, and b to ½10; 4000� to maintain values

in a biologically feasible range. This prevents the evolved distributions

from being unrealistically sharp.

For the 1g case,

pðPÞ ¼ Pa�1e�P=b

b

a

GðaÞ; (1)

where the values a (shape parameter) and b (rate parameter) define the dis-

tribution. The 1g case has two parameters that are evolved in the differential

evolution algorithm: a and b.
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For the 2g case,

pðPÞ ¼ w1

Pa1�1e�P=b1

b1

a1

Gða1Þ þ w2

Pa2�1e�P=b2

b2

a2

Gða2Þ;
(2)

where w1 and w2 set the relative weights of the two g-distributions. The 2g

case has six parameters that are evolved: a1, b1, w1, a2, b2, and w2.

For the free case, p(P) is evolved directly, so there are n parameters

evolved.

For each of the three cases, the distributions are normalized such thatP
PpðPÞ ¼ 1.
Environmental parameters

The concentration of the stressor, S, and the time spent in the different stress

levels characterize the environment. For the case with two environmental

states, the concentrations of the stressor were set to 0 mM (low stress)

and 10 mM (high stress). The time spent in the two environments, measured

in generations, is shown in Table 1.
Cost and benefit

We used a cost-benefit function based on those fromWood and Cluzel (10),

Dekel and Alon (33), and Garcia-Bernardo and Dunlop (34). The growth

rate of a cell, lP;S, is defined in terms of c(P,S), the cost of growing when

the concentration of stressor in the environment is S and the intracellular

number of proteins is P. Briefly, the growth rate of a cell, lP;S, is defined

in terms of c(P,S), where

cðP; SÞ ¼ c1ðPÞ þ c2ðP; SÞ � c1ðPÞc2ðP; SÞ: (3)

Here, c1ðPÞ corresponds to the cost of expressing the stress resistance

machinery at a level P, while c2ðP; SÞ is the cost of growing in the presence
of a concentration of stressor S given a stress resistance level P:

c1ðPÞ ¼ n0P

1� P=M
; (4)

Sneff
c2ðP; SÞ ¼
kn þ Sneff

; (5)

S

Seff ¼

1þ B
; (6)

bmaxP

B ¼

kb þ P
; (7)
TABLE 1 Time Spent in Low and High Stress Conditions

1 3

Ratio high:low 101 1000:100 333:

100 1000:1000 333:3

10�1 1000:10,000 333:3

10�2 1000:100,000 333:33

10�3 1000:1,000,000 333:33

For each high to low stress ratio and environmental transition rate, the number
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whereM¼ 15,000 molecules, n0 ¼ 10�5, k ¼ 1 mM, n¼ 2, bmax ¼ 10, and

kb ¼ 15,000 molecules. See Garcia-Bernardo and Dunlop (34) for a com-

plete description of the equations and parameters.

Using the cost, we defined the growth rate as

lP;S ¼

8><
>:

cth � cðP; SÞ
cth

if cðP; SÞ< cth

�1 if cðP; SÞRcth:

(8)

Note that lP;S is normalized to maintain growth rates between 0 and 1

when the cost is under the threshold cth. Cells with costs above cth are

determined to be dead. The value lP;S ¼ 1 is the maximal growth rate;

positive values less than this indicate slow growth. The value lP;S ¼ �1

corresponds to the cell dying in one generation. We set cth ¼ 0:9; however,

the results are not specific to the exact value used. Higher thresholds

imply that cells need higher protein levels to survive, which increases

the area in Fig. 3, where bimodality is favored, but not the qualitative

results about where bimodality appears (Fig. S7 in the Supporting

Material).
Fitness function

The fitness of a population with a distribution of protein levels is measured

by the overall growth rate. As the fitness function, we use the geometric

growth rate

R ¼ tllog
�P

PxP2
lP;Sl

�þ thlog
�P

PxP2
lP;Sh

�
tl þ th

; (9)

where xP is the fraction of the population in the protein state P. The values tl
and th are the times spent in low and high stress conditions; Sl and Sh are the

low and high stress conditions. The full derivation of this fitness function,

including the modified fitness function for the sensing case, is provided

in the Supporting Material.
Differential evolution algorithm

We used the differential evolution algorithm (30); further details are avail-

able in the Supporting Material.
Switching rates

In the no-sensing case, we assumed that switching between phenotypic

states is fast in relation to the amount of time spent in each stress environ-

ment. Under this assumption, we do not explicitly model switching; instead,

we assume that switching happens instantaneously and that the population

of cells has identical protein distributions growing in the presence and

absence of the stressor. In the sensing case, the transition from no-stress

conditions to stress conditions is explicitly modeled as taking one
Environmental Transition Rate

10 30 100

33 100:10 33:3 10:1

33 100:100 33:33 10:10

333 100:1000 33:333 10:100

,333 100:10,000 33:3333 10:1000

3,333 100:100,000 33:33,333 10:10,000

of generations spent in each state is shown.
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generation (Supporting Material); however, we note this timescale is much

shorter than the typical duration in each stress state (Table 1).
Bimodality metric

We do not explicitly calculate bimodality, rather we compare cells with the

capacity to evolve a 2g distribution with cells only able to evolve 1g distri-

butions. The benefit of bimodality is defined as the difference in fitness be-

tween these two cases. The 2g distribution always performs better than or

equal to 1g, because the latter can always be obtained by zeroing the weight

of one of the two g-distributions, or by evolving two distributions with iden-

tical parameters. If the optimal distribution is a unimodal distribution, then

the difference in fitness between the 2g and 1g distributions is zero.

Conversely, a positive benefit of bimodality implies that a bimodal distribu-

tion has been obtained.

The ratio of cells with high to low protein expression (see Fig. 2)

is defined as the ratio between the number of cells with above and

below 5000 proteins. This threshold corresponds to the minimum protein

level needed to survive in any studied environment (Fig. S7 B for

cth ¼ 0:9).
Addition of noise in the environment

We created exponential distributions of noise with mean noise levels be-

tween 0.025 and 0.5 mM. A random value from this distribution was

added (subtracted) from the 0 (10 mM) environments. While the noise

changes between generations of the algorithm, the noise was identical

for all vectors encoding the distribution of protein levels (see the

Supporting Material) within a generation. When the stress level is deter-

ministic, the fitness can be calculated after visiting the high and low

stress conditions once (Eq. 9). For the case with noise, the stress level

changes with time. To reduce the variation in highest obtainable fitness

between generations, the growth rate was calculated after 100 alternative

visits to low and high stress conditions. To further reduce the differences

between the simulations in the 1g and 2g cases, three independent

simulations were run, and the simulation with the highest fitness

was recorded. This was necessary because the differential evolution

algorithm does not guarantee a globally optimal solution; therefore we

ran three independent replicates and recorded the one with the highest

fitness.
A

B

C

D

E

a few cells are depicted for simplicity and to show relative growth rates, it is im

environment. In the low stress region, the population grows at equilibrium. In

With sensing, populations maintain diversity as a bet-hedging strategy when st

in the high protein state. (D) Cartoon showing ratio between the time spent i

rate. Note that the ratio of high to low stress is identical for both transition rate
Intermediate environment

An intermediate environment was added, with a stressor concentration of

1.1 mM. We selected this value because the optimal concentration of pro-

tein in a fixed 1.1 mM environment is half-way between the optimal con-

centration for 0 and 10 mM due to the nonlinear nature of the growth

rate function (Eq. 8; Fig. S7). The fitness of a population with a distribution

of protein levels was calculated by cycling between the three stress condi-

tions in this order: low; medium; low; and high stress.
RESULTS AND DISCUSSION

Protein expression model and environmental
variables

To study how populations of cells optimize growth in the
presence of fluctuations in the concentration of a stressor
in the environment, we developed a model where a protein
controls the level of resistance to the stressor. For example,
this could be a regulatory protein that controls expression of
a suite of downstream genes involved in stress response, or it
could provide stress resistance directly; examples include
efflux pumps or proteins that induce growth arrest to evade
antibiotics. In the model, increased protein expression al-
lows for survival in high stress environments, but impacts
growth in low stress environments because expression pla-
ces a burden on the cell. We used a computational method
(differential evolution algorithm) to find optimal or near-
optimal distributions of protein levels in the population
given a fluctuating environment as an input. Because we
evolve the distributions directly, we do not explicitly model
switching or specify the method by which the distributions
are generated. Initially, we restricted the distribution of pro-
teins to be the weighted sum of two gamma distributions,
which can represent either unimodal or bimodal expression
of proteins, depending on weighting values (Fig. 1 A). We
later relaxed this restriction and obtained similar results,
FIGURE 1 Population and environmental variables

tested. (A) The distribution of protein levels in the pop-

ulation was initially restricted to be a weighted sum of

two gamma distributions. (B) Environments vary be-

tween low and high stress. Without sensing, the popula-

tion always maintains cells with low and high levels of

protein expression (histograms), where cells switch sto-

chastically between these two phenotypic states. Under

low stress, cells with low protein expression (blue) grow

well, while cells with high protein expression (red) grow

slowly due to the burden of expressing the stress

response protein. Under high stress, cells with low pro-

tein expression are killed (yellow ‘‘x’’ symbols), while

cells with high protein expression survive. Note that

the histograms are colored as blue and red to distinguish

cells with low and high expression; however, all cells

are part of the same bimodal distribution. While only

portant to note that the distributions of cells remain constant within each

the high stress region, red cells continuously switch to blue and die. (C)

ress levels are low. When stress levels are high, all surviving cells remain

n high and low stress. (E) Cartoon showing the environmental transition

s shown. To see this figure in color, go online.
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as discussed below. A gamma distribution arises from a two-
state model of gene expression, where the promoter can be
ON or OFF and the protein is expressed in bursts (32). We
used the differential evolution algorithm to select the shape
and rate parameters of the distributions (Materials and
Methods). It is possible for the algorithm to evolve tight dis-
tributions, where there is little variation in protein levels, or
broad distributions, where there is wide variation. We chose
the upper and lower limits of the gamma distribution param-
eters to match in vivo values measured in bacteria (28).
Importantly, we note that it is possible to evolve parameters
such that the two gamma distributions collapse to a unimo-
dal distribution. For example, if the weight of the second
gamma distribution is zero, there will be only a single, un-
imodal population. Thus, the weighted sum of two gamma
distributions allows a flexible representation where both un-
imodal and bimodal protein distributions with broad or nar-
row shapes can be evolved.

We also compared the ability of cells to sense environ-
mental changes. In the case where cells cannot sense stress
levels (Fig. 1 B), a bimodal population of cells grows well in
the low stress environment, with cells in the low protein
expression state growing faster than those in the high protein
expression state. Individual cells within the population sto-
chastically switch between the two states. When the envi-
ronment changes and cells enter the high stress conditions,
all the cells in the low expression state die off, but those
with high expression survive. Because the cells do not sense
their environment they continue to stochastically switch be-
tween phenotypic states. When this happens in the high
stress environment, the cells that enter the low protein
phenotype die. When conditions switch back to the low
stress environment, the population can regrow, again with
stochastic switching between the phenotypic states. Impor-
tantly, we assume fast switching rates, which results in iden-
tical distributions of phenotypes in low and high stress
conditions (Materials and Methods). The sensing case is
similar (Fig. 1 C), but once cells are in the high stress envi-
ronment they do not switch to the low protein phenotype.
The underlying protein distributions are shown in Fig. 1,
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B and C. In low stress conditions, the population exhibits
a bimodal distribution with stochastic switching regardless
of whether there is sensing or not. This is required, even
with sensing, because we assume that the time required to
sense and respond to a stress is long enough that any cells
in the low protein phenotype will be killed by the stressor.
The difference between the no sensing and sensing cases ap-
pears in the high stress conditions, where cells that can sense
have no reason to switch to the low protein phenotype.

We also tested a broad range of environmental transition
properties. We modified the ratio between the time spent in
high and low stress (Fig. 1 D) and the environmental transi-
tion rate (Fig. 1 E). See Materials and Methods for a full
description of the model and parameters.
Bimodality is evolved for a wide range of
environmental conditions

Initially, we tested different environmental conditions, vary-
ing both the ratio of high to low stress and the rate of tran-
sition between environmental states. For each pair of values,
we used the differential evolution algorithm to optimize the
distribution of protein levels. We then recorded the relative
sizes of the two evolved gamma distributions, comparing
the ratio of cells exhibiting the high protein expression
phenotype to the low protein phenotype. We found that
two strategies were evolved: either the entire population
was adapted to the high stress condition (darkest purple in
Fig. 2, A and B) or a bimodal population with a resistant sub-
population appeared (light purple). A unimodal population
with low protein expression (white) was never evolved,
because resistant cells are required to survive the transition
from low to high stress. With no sensing, bimodal distribu-
tions are evolved in the cases where the ratio of high to low
stress is small because most of the time cells are in low
stress conditions with rare excursions to the high stress envi-
ronment (Fig. 2 A). The fraction of resistant cells depends
only on the ratio of the stresses, and not on the environ-
mental transition rate. This is because the growth rate of a
population without sensing is constant for each stress
Ratio High:Low Stress
10-2 10-1 100 101

FIGURE 2 Bimodality is evolved in many envi-

ronmental conditions. (A and B) The ratio of cells

with high to low protein expression is plotted as

a function the ratio of high to low stress and the

environmental transition rate. Representative pro-

tein histograms show unimodal (dark purple) and

bimodal (light purple) distributions. (A) For popu-

lations with no sensing, bimodality is evolved

when the ratio of high to low stress is small. The

actual protein distributions for all ratios of high

to low stress for a single environmental transition

lved for a large region of environmental parameters and depends on both

t of sensing is plotted as a function of the ratio of high to low stress, reaching

as the difference in growth rate between the sensing and no sensing pop-

ental transition rate of 10. Note that if the evolved distribution is unimodal,

in color, go online.
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condition, in contrast with the sensing case, where the
growth rate changes during the time in high stress conditions
as the cells adapt (Fig. 2 B). With sensing, the population
can afford to lose a higher fraction of cells due to the sudden
appearance of the stressor, because the remaining cells will
adapt to the stress. Thus, with sensing, a higher fraction of
the population can be devoted toward growing well in low
stress, and bimodality is evolved under most environmental
conditions.

To quantify the benefit of sensing, we measured the
growth rate for populations of cells that were allowed to
sense the environment, and for populations where sensing
was prohibited. In all cases, sensing outperformed no
sensing. However, the degree to which there was a benefit
to sensing depended upon the ratio of high to low stress in
the environment (Fig. 2 C). In the extreme cases where cells
are mostly in stressed or unstressed environments, there is
little advantage to sensing because conditions are well
known. In contrast, when the time spent in each environ-
ment is symmetric, sensing has a distinct advantage. The
highest benefit to sensing is achieved for moderately asym-
metric environments, where the optimal strategy for the
no-sensing population is a unimodal distribution with high
protein levels, while the sensing population can rely on a
bimodal distribution of phenotypes. Importantly, in our
model the no-sensing case assumes fast switching rates.
More generally, a nonsensing population could evolve an
optimal switching rate to maximize its growth rate
(19,20). Thus, this value corresponds to an upper bound
on the benefit of sensing. The metric we use here to measure
the benefit of sensing can be translated into the amount of
time it would take a population with sensing to overtake a
population without sensing in a competitive growth experi-
ment (Supporting Material and Fig. S1).

We next relaxed our requirement that the protein distribu-
tion be the weighted sum of two gamma distributions. We
allowed the evolution of any type of distribution with no
restrictions, finding equivalent results to the two gamma
distribution case (Fig. S2). For the case of two well-defined
environments, we found that bimodality is evolved for a
large range of fluctuating environments.

In our initial tests, we assumed that the stressor was
strong enough that it killed off all cells with low protein
expression. We next asked whether our results were depen-
dent on whether the stressor was weak or strong. We define
a weak stressor as a toxin that inhibits growth for cells
that do not have high levels of protein expression, in contrast
to a strong stressor that kills these cells (Supporting Mate-
rial). When they target bacteria, weak stressors are known
as bacteriostatic, and strong stressors are bactericidal. Our
results with weak stressors show that with no sensing, the
evolved strategy is unimodal for nearly all environmental
conditions (Fig. S3). Populations have low protein expres-
sion for all but the largest ratio of high to low stress. This
corresponds to the case where the cells stay latent until
the stressor has passed. A unimodal distribution with high
protein expression is evolved only when the time spent in
high stress conditions is large. Between these two survival
strategies, i.e., unimodal adapted to low stress and unimodal
adapted to high stress, bimodality is evolved for a very small
region of the environmental parameter space. For the case
with sensing, the optimal strategy is always to stay latent un-
til the stressor is sensed. This is expected because the
stressor only inhibits growth, and thus it is possible to adapt
to it even if the toxin appears abruptly. Because the growth
rate in high stress conditions is very small even when the
population is perfectly adapted, staying latent is almost as
good as adapting to the stress. Therefore the benefit of
sensing is lower than in the case with a strong stressor,
where cells die off if they do not adapt to the stress condi-
tions. The evolved distributions with no restriction have
equivalent results. Consistent with previous findings (35),
our results show that bimodality is primarily beneficial
when the strength of the stressor is strong.
Bimodality is beneficial for populations of cells
growing in two well-defined stress conditions

We next asked under what environmental conditions
bimodal populations outperform unimodal populations. To
do this, we evolved distributions by restricting protein levels
to follow either two weighted gamma distributions as before
(we refer to this as 2g ), or one gamma distribution (1g ), as
shown in Fig. 3 A. We evolved the optimal distributions for
1g and 2g given identical stress environments. Because it is
possible for the 2g distribution to recover a single gamma
distribution, the 2g case is always better than or equal to
the 1g case. We calculated the growth rate for the evolved
strategies with the 1g and 2g restrictions as a function of
the ratio of high to low stress and the environmental transi-
tion rate. For the no-sensing case, the optimal strategy de-
pends only on the ratio of the stresses. When the ratio of
high to low stress is large, the optimal strategy for both
the 1g and 2g cases is a unimodal distribution adapted to
high stress, so there is no benefit to bimodality. As the stress
ratio decreases, there is a sudden transition where the 2g
distribution switches from a unimodal population to a
bimodal population containing a subpopulation of cells
with high protein expression while most cells have low
expression. For the 1g case to maintain a sufficient number
of cells in the high protein phenotype under the same envi-
ronmental conditions, many cells must express intermediate
protein levels. Cells with intermediate protein expression
provide no benefit to the population because they are not
capable of surviving sudden stress, and also impose a
modest burden on the growth of the population. As the stress
ratio is further reduced, the difference between the two dis-
tributions diminishes as fewer cells need to maintain a high
protein phenotype. This phenomenon is visible in the exam-
ples of evolved histograms (Fig. 3 B).
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A B C FIGURE 3 Bimodality provides higher fitness

than unimodality when the environment has two

alternating states. (A) We compared conditions

where we restricted protein levels to be either the

weighted sum of two gamma distributions (2g) or

a single gamma distribution (1g). (B and C) The

benefit of bimodality is plotted as a function of

the ratio of high to low stress and the environ-

mental transition rate. (B) For populations with

no sensing, there is a benefit to bimodality when

the ratio of high to low stress is small, which is re-

flected in differences in the evolved distributions.

(C) For populations with sensing, the benefit of

bimodality depends on both the ratio of high to low stress and the environmental transition rate. The benefit is measured as the difference in growth rate

between the strategies evolved with 2g and 1g restrictions (Fig. S1 and the Supporting Material). To see this figure in color, go online.
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For the sensing case, bimodality is beneficial in environ-
ments with relatively symmetric levels of high and low
stress (Fig. 3 C). Because the population is able to adapt
to high stress conditions, the evolved distribution depends
now on the time spent in low stress conditions and the num-
ber of transition events. Therefore, the benefit depends on
both the ratio of stresses and the environmental transition
rate. In Fig. 2, we show that sensing increases the parameter
region where bimodality is evolved. However, when the
population is able to sense the environment, the growth in
high stress conditions is equal for both the unimodal and
bimodal cases because they adapt to the stress in an identical
way. Therefore, the benefit of bimodality is generally lower,
though still positive, for sensing populations than for popu-
lations without sensing.
Increased variability in the environment
decreases the benefit of bimodality

Although we found that bimodal distributions outperform
unimodal distributions for a wide range of environmental
conditions, we wondered whether this effect was due to
the binary nature of the stresses (either low or high).
We hypothesized that variability in the environment would
decrease the benefit of bimodality. To test this, we intro-
duced noise in the two stress levels (Materials and Methods,
Fig. 4 A) and recalculated the benefit of bimodality, quanti-
fying the difference in growth rates between the evolved
distributions with the 2g and 1g restrictions. As noise in-
creases, strategies with more cells in the elevated protein
expression state are favored because less time is spent in
the complete absence of a stressor. For the highest levels
of noise, both 1g and 2g cases evolve unimodal distribu-
tions (Fig. S4). Consequently, we found that for both no-
sensing and sensing populations (Fig. 4, B and C), the
benefit of bimodality decreased as noise in the environment
increased.

We also asked whether considering only two stress envi-
ronments was leading to the observed benefits in bimodality.
To test this, we increased the number of environmental
states by adding an environment with medium stress and
2284 Biophysical Journal 110, 2278–2287, May 24, 2016
measured the benefit of bimodality as a function of the
time spent in this intermediate environment (Fig. 4 D).
Similar to simulations with increasing levels of noise, we
found that for both no-sensing and sensing populations
(Fig. 4, E and F), the benefit of bimodality decreased as
the time in the intermediate environment increased. Two
factors contribute to this decrease: First, if the cells are
not able to sense their surroundings, both 1g and 2g cases
evolve identical unimodal distributions when the time in
the medium stress environment is large (Fig. S4). Second,
if the cells are able to sense and adapt to the environment,
the growth rate in medium stress conditions is identical
for both the 1g and 2g cases because cells adapt perfectly
to the medium stress condition, therefore the evolved distri-
bution does not depend on the time spent in the medium
stress environment. Thus, we find that under realistic sce-
narios, such as environments with noise or more than two
discrete stress levels, unimodal distributions perform just
as well as bimodal distributions.

We finally asked whether using the 2g distribution was
limiting how well the evolved strategies could perform in
the intermediate environment. In principle, a trimodal distri-
bution could provide the optimal conditions for three envi-
ronments. To test this, we removed the 2g restriction and
allowed the distribution to evolve freely without any require-
ments on its shape. Even under these nonrestrictive condi-
tions, the populations evolved only unimodal or bimodal
distributions (Fig. S5). In fluctuating environments the
advantage of bimodality comes from the ability to survive
the sudden transition from low to high stress, which is not
necessary for an intermediate stress state. Therefore, even
with more than two distinct stress levels, it is only necessary
to evolve two levels of protein expression: one that ensures
survival in the highest level of stress, and a second that opti-
mizes growth in low stress. We observe this in evolved distri-
butions (Fig. S5) where cells either have protein levels
sufficient to survive high stress or they have protein levels
that are optimized for growth in the low and medium stress
environments. The location of this latter peak depends
upon the time spent in the intermediate environment. We
note that in the presence of three mutually exclusive



A B C

D E F

FIGURE 4 The benefit of bimodality is reduced when environmental variation increases. (A) Cartoon showing increasing noise in the stress levels. (B and

C) The benefit of bimodality is reduced for both (B) no sensing and (C) sensing populations as noise increases. Dots correspond to the replicate with highest

evolved growth rate out of three independent simulations (Materials and Methods). (D) Cartoon showing the presence of an intermediate, medium stress

environment. (E and F) The benefit of bimodality is reduced for both (E) no sensing and (F) sensing populations as the time in the intermediate environment

increases. In (B) and (E), the benefit results for stress ratios 10�1 to 101 are all zero, and thus are hidden behind the 101 line. To see this figure in color, go

online.
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environments (as opposed to different levels of the same
stressor), nonsensing populations would need to evolve tri-
modality to survive sudden environmental changes.
CONCLUSIONS

Populations of cells live in the presence of intermittent,
time-varying stressors. Cells have mechanisms to survive
the appearance of a stressor, but the cost associated with
stress resistance can be high. Thus, cells need to balance
high growth rates in the absence of the stressor with survival
when a stressor appears abruptly in the environment. A
possible strategy is to diversify the population, allowing
some cells to grow well when no stress is present, while
others have high enough protein expression that they can
survive, hedging against the sudden appearance of a stressor.
Phenotypic diversity within the population can be achieved
through multimodal distributions of protein levels, or
through a broad, continuous distribution of proteins.

Here, we compared bimodal and unimodal distributions
that can result from diversity in gene expression, asking
under what conditions bimodality is beneficial. We used a
differential evolution algorithm to evolve optimal or near-
optimal distributions of proteins for different environmental
conditions. We varied the time spent in high and low stress,
the environmental transition rate, the sensing capabilities of
the cells, noise in the concentration of the stressor, and the
number of stress levels. Because protein expression typi-
cally follows a gamma distribution in vivo, we initially
restricted the evolved distributions to be either a single
gamma distribution or the weighted sum of two gamma dis-
tributions. We used the difference in growth rate between
the two alternatives to assess the benefit of bimodality,
finding that while bimodality evolved for a wide range of
conditions if the environment has only two well-defined
states, this benefit disappears in the presence of noise or
when the time spent in an intermediate environmental state
increased.

A potential limitation of our model is the assumption of
fast stochastic switching between phenotypes. This assump-
tion results in the independence between the environment
transition rate and the evolved distributions in the no-
sensing case, as seen in Figs. 2 A and 3 B. Under more real-
istic conditions, populations can adapt their switching rates
to the environment transition rates (19,20). With adapted
switching rates, the population will be enriched in the
Biophysical Journal 110, 2278–2287, May 24, 2016 2285
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phenotypes that grow faster. Because populations of cells
can further improve their fitness by tuning the switching
rate, the benefit of sensing that we calculate corresponds
to an upper bound. However, the expected effect of our
assumption will be small, because the majority of the
growth comes from the time in the low stress state. Here,
we explore a large range of parameters, exploring optimal
distributions without limiting ourselves to two environments
and phenotypes. In the future, it will be interesting to
explore the effect of including switching rates in the model.

Our results raise the question of what benefits are pro-
vided by bimodality, given realistic environmental condi-
tions. One benefit may be longer autocorrelation times in
the protein levels that bimodality can provide. Unimodal
distributions in stress resistance levels can be the result
of random fluctuations in gene expression (32). The half-
life of these fluctuations is typically 1–3 generations
(36,37). On the contrary, the time spent in each phenotypic
state with a bimodal system can be large, extending for
many generations (38). An example of bimodal protein
expression in E. coli is persistence, where fewer than 1%
of cells in the population are in a resistant, nongrowing
state that is tolerant to antibiotics (4). The switch between
the growing and latent states is stochastic, and cells can
stay in each state for many generations (39,40). The advan-
tage of bimodality in this case may come from the
extended time the cells spend in the resistant state. One
alternative to bimodality that could achieve longer stress
resistance times would be to couple a unimodal distribution
with sensing. In this case, cells could use noisy gene
expression to survive a sudden stress shock, and then adapt
to it. However, maintaining the sensing machinery may be
costly if the stressor is only rarely encountered. In this
study, we evolved distributions of protein levels, but our re-
sults do not specify how these distributions are achieved.
Bimodality can be generated by genetic networks, such
as through the use of positive feedback (38). The presence
of these additional genetic control elements can add evolu-
tionary and maintenance costs, which we have not included
in our model. Unimodal distributions are more straightfor-
ward to generate, as noise in gene expression is sufficient
to produce a continuum of resistance levels (38). In gen-
eral, if the cost of maintaining the architecture required
to generate bimodal distributions is higher than the benefit
acquired, bimodality will not be evolved. In the future, it
will be interesting to link the regulatory architecture
required to generate protein distributions to the results pre-
sented here.

We conclude that bimodal protein expression patterns can
be beneficial under certain conditions, such as when envi-
ronmental states are well defined and the number of states
is small. However, under realistic environmental conditions
with noise and uncertainty in stress levels, unimodal protein
distributions are often sufficient to provide diversity within
the population that can ensure survival.
2286 Biophysical Journal 110, 2278–2287, May 24, 2016
SUPPORTING MATERIAL

Supporting Materials and Methods and seven figures are available at http://

www.biophysj.org/biophysj/supplemental/S0006-3495(16)30175-8.
AUTHOR CONTRIBUTIONS

J.G.-B. conceived and designed the experiments with input from M.J.D;

J.G.-B. performed the experiments and analyzed the data; and J.G.-B.

and M.J.D. wrote the article. All authors gave final approval for publication.
ACKNOWLEDGMENTS

We thank Maggie Eppstein for helpful comments on the differential evolu-

tion algorithm. We also thank Nicholas Rossi and Imane El Meouche for

their critical reading of the article.

This research was supported by the National Science Foundation (grant No.

1347635).
REFERENCES

1. Simons, A. M. 2011. Modes of response to environmental change and
the elusive empirical evidence for bet hedging. Proc. Biol. Sci.
278:1601–1609.

2. Leibler, S., and E. Kussell. 2010. Individual histories and selection in
heterogeneous populations. Proc. Natl. Acad. Sci. USA. 107:13183–
13188.

3. Meyers, L. A., and J. J. Bull. 2002. Fighting change with change: adap-
tive variation in an uncertain world. Trends Ecol. Evol. 5347:551–557.

4. Keren, I., N. Kaldalu,., K. Lewis. 2004. Persister cells and tolerance
to antimicrobials. FEMS Microbiol. Lett. 230:13–18.

5. Fauvart, M., V. N. De Groote, and J. Michiels. 2011. Role of persister
cells in chronic infections: clinical relevance and perspectives on anti-
persister therapies. J. Med. Microbiol. 60:699–709.

6. Grossman, A. D. 1995. Genetic networks controlling the initiation of
sporulation and the development of genetic competence in Bacillus
subtilis. Annu. Rev. Genet. 29:477–508.
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Supplementary Information

Supplementary Methods

Weak stressor

We distinguished between two strengths of the stressor: strong, where the cells with low levels of

protein expression are killed in the presence of high concentrations of the stressor and weak, where

the stressor stops cell division for cells with low protein expression. The growth rate for a weak

stressor is calculated by

λP,S =


cth−c(P,S)

cth
if c(P, S) < cth

0 if c(P, S) ≥ cth.
(1)

Fitness function

We assume fast switching rates, which produces identical distributions of phenotypes in low and

high stress conditions. At equilibrium, the growth of a population depends on the fraction of cells

at each protein level. The ratio of final to initial number of cells in one generation is

N1/N0 =
∑
P

xP 2λP,S , (2)

where N0 and N1 are the initial number of cells and the number of cells after one generation (1).

xP is the fraction of the population in the protein state P and λP,S is the growth rate of cells in the

protein state P and stress level S. The values of P correspond to the protein levels {0− 100, 100−

200, ..., 9900− 10000} molecules. Because the population stays in equilibrium, the total growth is

Nt/N0 =

(∑
P

xP 2λP,S

)t
, (3)

where t is the time spent in equilibrium conditions measured in generations. Note that the popu-

lation grows if the value of the sum is greater than 1.
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For the case with two environments, the ratio of final to initial cells is determined by

Nt/N0 =

(∑
P

xP 2λP,Sl

)tl
·

(∑
P

xP 2λP,Sh

)th
, (4)

where tl and th are the times spent in low and high stress conditions. Sl and Sh are the low and

high stress conditions. Instead of calculating the product of ratios, we record the logarithm of the

products of ratios

log (Nt/N0) = tl log

(∑
P

xP 2λP,Sl

)
+ th log

(∑
P

xP 2λP,Sh

)
. (5)

As the fitness function in our differential evolution algorithm, we use

R =
log (Nt/N0)

tl + th
, (6)

which corresponds to the geometric growth rate. In the special case where no cells survive (λP,Sh
=

−1 for all values of P), we set R to −1. When some cells survive, R evaluates to a number between

0 and 1, where 0 indicates that the population is not growing at all and 1 indicates that it is growing

optimally.

Sensing case

When cells are able to sense the environment, they can adapt their distribution in high stress

conditions. The switching rates between protein states are on the order of the doubling time.

Thus, we assumed one generation is required to sense and adapt to the environment.

The log of the ratio of final to initial number of cells in this case is calculated as

log (Nt/N0) = tl log

(∑
P

xP 2λP,Sl

)
+ log

(∑
P

xP 2λP,Sh

)

+(th − 1) log

(∑
P

yP 2λP,Sh

)
,

(7)

where xP is the fraction of cells in protein level P adapted to the low stress environment and yP

is the fraction of cells adapted to the high stress environment. We obtained the distribution of yP
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values by evolving the optimal unimodal distribution in fixed high stress conditions. The first term

in this equation describes the population in low stress, the middle term describes the population

during the one generation after the transition from low to high stress, and the final term describes

the population during the time in high stress.

Differential evolution algorithm

We used the Python differential evolution code (2), available online at http://www1.icsi.berkeley.

edu/∼storn/code.html. We modified it to use the Python module numpy, which allows for fast

operations on vector objects. Differential evolution finds optimal or near-optimal solutions by

iteratively improving a set of candidate solutions based on their fitness. For example, in the 2γ

case, differential evolution evolves the six parameters a1, b1, w1, a2, b2, and w2.

Initialization of the population

The population was set to 40 trial vectors, following recommendations for good performance of the

differential evolution algorithm from (3).

For the 1γ distribution, the initial population was set by creating vectors {a, b} in the range

a = [0.5, 100], b = [10, 400]. For the full algorithm, we used bounds [0.5, 100] for a and [10, 4000]

for b to allow for parameters in the range of experimentally derived values from (4). The difference

between the initialization ranges and bounds were empirically found to provide better convergence

of the algorithm.

For the 2γ distribution, the initial population was created in the range a1 = [0.5, 2], b1 =

[10, 400], w1 = [0, 1], a2 = [2, 100], b2 = [10, 400], and w2 = [0, 1]; with bounds a1 = [0.5, 100],

b1 = [10, 4000], w1 = [0, 10], a2 = [0.5, 100], b2 = [10, 4000], and w2 = [0, 10]. The difference between

the initialization ranges allows the two gamma distributions to start with proteins distributed

between low and high protein expression levels to allow the evolution of bimodality.

For the case with no restriction on the protein distribution, we evolved the fraction of the

population at each protein level, p(P ), directly with an initialization and bound range [0, 1]. The

3
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range has little effect on performance, since the final p(P ) values are normalized to
∑

P p(P ) = 1.

Given the large number of parameters, we initialized the population with 400 trial vectors, which

we found to improve convergence.

Evolution and parameters

For each trial vector xi in the population, a mutant vector vi was created using the DE/rand/1/bin

method (2), which combines three random trial vectors in the population, xr1 , xr2 , and xr3 , ac-

cording to

vi = xr1 + F · (xr2 − xr3), (8)

where the multiplier F was chosen randomly from the range [0.5, 2], since these values have been

shown to improve convergence, especially when the fitness function is noisy (3).

If the population had not converged after 50 generations (see termination description below),

the algorithm was switched from DE/rand/1/bin to DE/best/1/bin (2), and the mutant vector was

created as

vi = xbest + F · (xr1 − xr2), (9)

where xbest is the trial vector with highest fitness in the population. This change in the method

allows for a more refined search in the latter parts of the evolution.

The mutant vector vi is combined with the ith trial vector, xi, in the population using 90% of

the values in vi and 10% of the values in xi, i.e. the crossover rate is 0.9, as suggested by Price and

Storn in the case of parameter dependence (3). The resulting vector, ui, substitutes xi for the set

of trial vectors if it allows for a higher fitness value than xi.

Termination

The algorithm was allowed to run for 500 generations, or until convergence. Convergence was

defined as being achieved if the difference between the mean fitness of the population and the

fitness of all candidate solutions was within 10−10 fitness units.

4



Supplementary Text

Fitness function

After a transition time, and while the environment is constant, the distribution of protein states

in a population is at equilibrium (5, 6). The equilibrium depends on the growth rates λP,S and

the switching rates between protein states (6). Here, we evolve the distribution of protein levels in

the population that yields the highest growth rate. Therefore, we indirectly evolve the switching

rates that produce that equilibrium. Furthermore, we assumed that the switching rates were on the

order of the doubling time of a cell, which produces fast transition times, consistent with memory

observed in the level of proteins in vivo (7, 8). One concern is that the distribution of protein levels

may change during the time in high stress, i.e. fewer cells may leave the resistant state than were

leaving before the stress appeared. However, this effect is only pronounced when the switching

rates are low compared with the differences in growth rates between cells (6). For our simulations,

the maximum difference in growth rates is one order of magnitude below the doubling time of the

cell, and therefore we assumed that the fraction of cells that leave the resistant state is constant

through the different environmental conditions.

Differences in growth rates and relationship to time for one population to overtake

another

Provided the population is growing, the growth rate is normalized to be between 0− 1, where the

value 1 corresponds to one cell division in the fastest possible cell division time.

The growth of cells is given by the equation

Nt = N02
R·t,

where Nt is the final number of cells, N0 is the initial number of cells, t is time that the population

has been growing, and R is the growth rate.
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The benefit of sensing or bimodality is measured in points as the difference in growth rate mul-

tiplied by 100, with units (generations)-1. For example, the ratio of cells between two populations

1 point apart is given by

2(x+0.01)t

2(x)t
= 20.01·t.

Therefore, the time until the more fit condition represents 90% of the population (in other words,

the ratio of more to less fit cells is 90:10, or 9) corresponds to

9 = 20.01·t

log2(9) = 0.01 · t

t = 317 generations.

For E. coli, a generation corresponds to about 38 minutes in rich media (9), and therefore 317

generations is 8.4 days.

Supplementary Figures
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Figure S1: Relationship between difference in growth rate and time for population
displacement. The time required for a fast growing population to displace a slow growing one
is plotted as a function of the difference in growth rate between the two populations. Displace-
ment is defined as achieved when the more fit condition represents 90% of the population. See
Supplementary Text for additional discussion.
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