Biophysical Journal, Volume 110

Supplemental Information

Relative Orientation of POTRA Domains from Cyanobacterial Omp85

Studied by Pulsed EPR Spectroscopy

Reza Dastvan, Eva-Maria Brouwer, Denise Schuetz, Oliver Mirus, Enrico Schleiff, and Thomas F. Prisner

Relative orientation of POTRA domains from cyanobacterial Omp85 studied by pulsed EPR spectroscopy

Reza Dastvan^{1,2,‡,#}, Eva-Maria Brouwer^{3,‡}, Denise Schuetz^{1,2}, Oliver Mirus³, Enrico Schleiff^{2-4,*} and Thomas F. Prisner, ^{1,2,*}

1 Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, 2 Cluster of Excellence Macromolecular Complexes, 3 Molecular Cell Biology of Plants, 4 Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany

Supporting Figures

Supporting Figure 1. EPR on singly-labeled POTRA domains.

Supporting Figure 2. Impact of cryoprotectants and freezing conditions on PELDOR results.

Supporting Figure 3. Intra-POTRA domain distance constraints of individual POTRA domains.

Supporting Figure 4. Comparison of background-corrected PELDOR time traces of intra-POTRA domain distances of individual POTRA domains with simulated intramolecular dipolar evolution functions.

Supporting Figure 5. Comparison of intra-POTRA domain distance distributions generated by various methods.

Supporting Figure 6. Root Mean Square Fluctuations (RMSFs) for individual POTRA domains.

Supporting Figure 7 Multiple sequence alignment of POTRA domains of *ana*Omp85 and *ec*BamA.

Supporting Figure 8. PELDOR data analysis of inter-POTRA domain distances.

Supporting Figure 9. Comparison of experimentally obtained inter-domain distance distributions with distributions generated by MMM and MtsslWizard.

Supporting Figure 10. Comparison of inter-POTRA domain PELDOR time traces generated by MMM and MtsslWizard with experimental traces.

Supporting Figure 11. Comparison of experimentally obtained inter-POTRA domain distance distributions with distance distributions generated by rotamer libraries from Sezer and Hubbell.

Supporting Figure 12. Comparison of inter-POTRA domain PELDOR time traces generated by rotamer libraries from Sezer and Hubbell.

Supporting Figure 13. Comparison of experimentally obtained inter-POTRA domain distance distributions with those generated by rotamer libraries optimized for chi1 and chi3 angles from Sezer.

Supporting Figure 14. Comparison of inter-POTRA domain PELDOR time traces generated by rotamer libraries optimized for chi1 and chi3 angles from Sezer.

Supporting Figure 15. Comparison of simulated PELDOR time traces from rigid body refinement with experimental traces.

Supporting Figure 16. Comparison of simulated distance distributions from MD simulations and rigid body refinement.

Supporting Figure 17. Orientational space of POTRA domains of *in silico* spin-labeled Alr2269 sampled by MD simulations and Rosetta.

Supporting Figure 18. Predicted flexibility in POTRA domain pair *ana*P1-*ana*P2.

Supporting Tables

Supporting Table S1. Oligonucleotides used for QuickChange PCR

Supporting Table S2. Comparison of PELDOR distance constraints with X-ray structure, MD and the best refined model of either rigid body or Rosetta refinement.

Supporting Table S3. Comparison of simulated distance constraints obtained for different rotamer libraries.

Supporting Table S4. Structural similarities of POTRA domains of anaOmp85 and BamA.

Supporting Table S5. Angles and scores of top 100 Rosetta models.

Supporting References

Supporting Figure 1. EPR on singly-labeled POTRA domains. POTRA domain P2 was labeled at position V370. (A) A monotonously decaying signal was observed, indicating the absence of specific inter-molecular interactions. (B) The cw-spectrum is indicative of a slow motion regime, and thus a hindered flexibility of the SL at this position.

Supporting Figure 2. Impact of cryoprotectants and freezing conditions on PELDOR results. (A, B) Effect of different cryoprotectants on PELDOR measurements of the labeled mutant I292C/V370C. The background-corrected PELDOR time traces (A) and obtained distance distributions for different hydrophobic or hydrophilic cryoprotectants (B) is shown for 30% DMSO (red, 3.3±0.2 nm), 30% ethylene glycol (green, 3.4±0.2 nm), and 25% Ficoll 70 (blue, 3.3±0.3 nm). (C, D) Effect of different freezing procedures on PELDOR measurements of the I292C/V370C mutant. The background-corrected PELDOR time traces (C) and obtained distance distributions (D) for fast freezing of the samples by freeze-quench technique: with 30% glycerol (green, 3.2±0.2 nm), without glycerol (red, 3.2±0.4 nm). Likewise, no change was observed for different pH values (6–8, 3.3±0.2 nm; data not shown), and ionic strength (125–500mM NaCl, 3.3±0.2 nm; data not shown).

Supporting Figure 3. Intra-POTRA domain distance constraints of individual POTRA domains. (A) The crystal structure of the anaOmp85 POTRA domains indicating the spinlabeled residues. (B) The primary and background-corrected PELDOR time traces for measurements on the intra-domain double mutants with fits from Tikhonov regularization (cyan). The 3D backgrounds are shown in red.

Supporting Figure 4. Comparison of background-corrected PELDOR time traces of intra-POTRA domain distances of individual POTRA domains with simulated intramolecular dipolar evolution functions. (A) Background-corrected PELDOR time traces generated on X-ray structure by MMM in 298 K mode (red), 175 K mode (green) and mtsslWizard using thorough search and loose vdW restraints (blue). (B) Background-corrected PELDOR time traces generated on X-ray structure by MMM using rotamer libraries optimized for chi1 and chi2 angles from Sezer et al. (41) at 298 K (magenta) and 175 K (light green), as well as rotamer libraries from Hubbell et al. (58) (orange). (C) Background-corrected PELDOR time traces generated on X-ray structure by MMM in using rotamer libraries optimized for chi1 and chi3 angles from Sezer et al. (41) at 298K (violet) and 175K (dark green).

Supporting Figure 5. Comparison of intra-POTRA domain distance distributions generated by various methods. (A) Comparison of distance distributions generated on X-ray structure by MMM in 298 K mode (red), MMM in 175 K mode (green) and mtsslWizard using thorough search and loose vdW restraints (blue). (B) Comparison of distance distributions generated on X-ray structure by MMM using rotamer libraries optimized for chi1 and chi2 angles from Sezer et al. (41) at 298K (magenta) and 175K (light green) as well as rotamer library from Hubbell et al. (58) (orange). (C) Comparison of distance distributions generated on X-ray structure by MMM in using rotamer libraries optimized for chi1 and chi3 angles from Sezer et al. (41) at 298K (violet) and 175K (dark green).

Supporting Figure 6. Root Mean Square Fluctuations (RMSFs) for individual POTRA domains.

The RMSF was calculated for all C α atoms of each POTRA domain of *ana*Omp85 for the (A) wild-type REMD, (B) spin-labeled as well as (C) wild-type MD simulations. The residue indices correspond to the full-length protein.

Ana1_P1	221	VLVSEV-	L <mark>V</mark> R	- <mark>P</mark> QS <mark>G</mark> Q-		L	T <mark>P</mark> ELETÇ	VYNVI	R <mark>T</mark>	2 <mark>PG</mark> -		-RT <mark>I</mark>	TRS <mark>Q</mark> I	260
Ana1_P2	297	<mark>p</mark> vlskv-	E <mark>I</mark> QAN <mark>I</mark>	<mark>PG</mark> TI	1V	<mark>P</mark>	svl <mark>p</mark> qAt	ADEIF	R <mark>A</mark>	2 <mark>Y</mark> G-		-KII	NLRDI	338
Ana1_P3	379	-VVENIS	SVR <mark>F</mark> RNE-	<mark>G</mark> QI	DVNEQ <mark>C</mark>	GQ <mark>P</mark> IR	<mark>g</mark> rtqdyi	ITREV	E <mark>L</mark> B	K <mark>PG</mark> -		-QV F	NRNT	428
Ecol_P1	24	FVVKDI-	H <mark>F</mark> E	<mark>G</mark> L-			QRVAV <mark>G</mark> A	ALLSM	<mark>P</mark> V	R <mark>T</mark> G-		-DTV	NDED	59
Ecol_P2	92	<mark>pt</mark> iasi [.]	T <mark>F</mark> S	<mark>G</mark> N-			KSVKDDM	ILKQNL	eas <mark>gv</mark> i	R <mark>V</mark> G-		-ESI	DRTT	130
Ecol_P3	175	AEIQQI	N <mark>I</mark> V	<mark>G</mark> N-			HAFTTDE	LISHF	QL	RDE	/ <mark>p</mark> wwnvv <mark>g</mark> i	DRK	QKQKI	219
Ecol_P4	266	YKLS <mark>G</mark> V·	E <mark>V</mark> S	<mark>G</mark> N-			la <mark>g</mark> hsae	IEQL <mark>T</mark>	K <mark>I</mark> I	E <mark>PG</mark> -		-EL <mark>Y</mark>	N <mark>G</mark> TK	7301
Ecol_P5	347	F <mark>y</mark> vrki	R <mark>F</mark> E	<mark>G</mark> N-			DTSKDAV	LRREM	RQI	4E <mark>G</mark> -		-AWI	. <mark>g</mark> sdl	7382
						_	_							
Ana1_P1	261	QEDINA	IF <mark>G</mark> T	- <mark>G</mark> FF	<mark>s</mark> nvç	2AS <mark>P</mark> -	EDT <mark>P</mark> I	, <mark>G</mark> VRVS	F <mark>IVQP</mark> I	1 29	96			
Ana1_P2	339	QE <mark>GIKE</mark>	LTKRYQDÇ	2 <mark>GY</mark> ∭	-L <mark>A</mark> NVV	/ <mark>G</mark> A <mark>P</mark> Q	VSE	N <mark>G</mark> VT	L <mark>Q</mark> VAE	3 37	78			
Ana1_P3	429	QKDLQR	VF <mark>G</mark> T	- <mark>Glf</mark> -Ei	D- <mark>V</mark> NVS	SLD <mark>P</mark> -	<mark>G</mark> TD <mark>P</mark> T	KVNVV	VNVV <mark>e</mark> i	R 46	56			
Ecol_P1	60	SNTIRA	LFAT	- <mark>gnf</mark> -ei	D- <mark>V</mark> RVI	LRD		GDTLL	VQVK <mark>e</mark> i	R S	91			
Ecol_P2	131	ADIEK <mark>G</mark>	Ledfyysv	/ <mark>GKY</mark> SAS	s– <mark>v</mark> kav	/VT <mark>P</mark> -	L <mark>P</mark> RN	ir <mark>v</mark> dlk	LVFQ <mark>E</mark> (G 17	72			
Ecol_P3	220	A <mark>G</mark> DLET	LRSYYLDI	R <mark>gya</mark> rfi	1-ID <mark>S</mark> I	QVS-	-lt <mark>p</mark> dkk	GIYVT	VNIT <mark>E</mark> (G 26	53			
Ecol_P4	302	TKMEDD	IKKLL <mark>G</mark> RY	(<mark>gy</mark> ay <mark>p</mark> i	R− <mark>V</mark> Q <mark>S</mark> M	1 <mark>Р</mark> Е	-INDADK	TVKLR	VNVDA	3 34	14			
Ecol_P5	383	DQ <mark>G</mark> KER	LNRL	- <mark>GFF</mark> -EC	ſ− <mark>V</mark> d <mark>T</mark> e	DTQ	RV <mark>PG</mark> S <mark>P</mark> D	QVDVV	YKVK <mark>e</mark> i	R 42	21			

Supporting Figure 7 Multiple sequence alignment of POTRA domains of *ana***Omp85** and *ecBamA*. Sequence of individual POTRA domains *ana***Omp85** and *ecBamA* were cut out and a multiple sequence alignment (MSA) was constructed with MAFFT. The MSA was visualized with Jalview using the ClustalX color code (<u>www.jalview.org</u>) (1). Residues, which were mutated to cysteine and spin labelled in this study, are highlighted by a red box.

Supporting Figure 8. PELDOR data analysis of inter-POTRA domain distances. The primary and background-corrected PELDOR time traces for measurements on the inter-domain double mutants with fits from Tikhonov regularization (blue) are shown. The 3D-backgrounds are shown in red.

Supporting Figure 9. Comparison of experimentally obtained inter-POTRA domain distance distributions with distributions generated by MMM and MtssIWizard. Distance distributions generated on X-ray structure by MMM in 298 K mode (red), MMM in 175 K mode (green) and mtssIWizard using thorough search and loose vdW restraints (blue) are compared to the obtained distance distributions by Tikhonov regularization (black).

Supporting Figure 10. Comparison of inter-POTRA domain PELDOR time traces generated by MMM and MtsslWizard with experimental traces. Time traces generated on X-ray structure by MMM in 298 K mode (red), MMM in 175 K mode (green) were directly obtained from MMM software package. While time traces for distance distributions from mtsslWizard using thorough search and loose vdW restraints (cutoff 2.5Å, 5 clashes allowed) (blue) were obtained by ha home-written MATLAB[®] script.

Supporting Figure 11. Comparison of experimentally obtained inter-POTRA domain distance distributions with distance distributions generated by rotamer libraries from Sezer and Hubbell. Distance distributions generated on X-ray structure by MMM using rotamer libraries optimized for chi1 and chi2 angles from Sezer et al. 298 K (magenta) and 175 K (light green) as well as rotamer library from Hubbell et al. (orange).

Supporting Figure 12. Comparison of inter-POTRA domain PELDOR time traces generated by rotamer libraries from Sezer and Hubbell. Distance distributions are generated on X-ray structure by MMM using rotamer libraries optimized for chi1 and chi2 angles from Sezer et al. at 298 K (magenta) and 175 K (light green) as well as rotamer library from Hubbell et al. (orange).

Supporting Figure 13. Comparison of experimentally obtained inter-POTRA domain distance distributions with those generated by rotamer libraries optimized for chi1 and chi3 angles from Sezer. Distributions are generated on X-ray structure using MMM at 298K (violet) and 175K (cyan).

Supporting Figure 14. Comparison of inter-POTRA domain PELDOR time traces generated by rotamer libraries optimized for chi1 and chi3 angles from Sezer. Distance distributions are generated on X-ray structure by MMM using rotamer libraries optimized for chi1 and chi3 from Sezer et al. at 298K (violet) and 175K (cyan).

Supporting Figure 15. Comparison of simulated PELDOR time traces from rigid body refinement with experimental traces. Intramolecular dipolar evolution functions for rigid body refinement (dark yellow) are compared to the background-corrected experimental data (black).

Supporting Figure 16. Comparison of simulated distance distributions from MD simulations and rigid body refinement. Distance distributions for C α atoms from REMD simulation (violet), are rigid body refinement (dark yellow) are compared to experimentally-obtained data (black). In addition the distances obtained by Rosetta refinement are shown as orange lines. SL pair 259-448 was not included in the Rosetta refinement to avoid a potential clash with neighboring SLs 448, 457 and 460.

Supporting Figure 17 A-I. Orientational space of POTRA domains of *in silico* spinlabeled Alr2269 sampled by MD simulations and Rosetta. 2D contour plots show the frequency distribution of angular orientations of adjacent POTRA domain pairs of Alr2269 from MD simulations and Rosetta refinement. Just as in Fig. 5 the twist angle is plotted along the x axis and the swing angle along the y axis. (A-C) P2-P3. (D-F) P1-P3. (G-I) P1-P2. The top models from rigid body (filled black circles) and Rosetta (filled cyan circles) refinement are mapped onto the contour plots. In panels A-F, and I the top 25 and top 100 models are shown on the left and right panel, respectively. In panels G and H the upper panel holds the top 25 and the lower panel the top 100 models. In all plots the asterisk indicates the conformation of the respective domains in the X-ray structure.

Supporting Figure 18. Predicted flexibility in POTRA domain pair *ana***P1***-ana***P2**. An ensemble of MD structures on the outer contour line of the elliptic region in Fig. 5D, representing the most populated orientations of *ana*P1*-ana*P2 is shown superimposed onto *ana*P2 from two different viewpoints.

Supporting	Table	1. Oligonuo	cleotides	used for	QuickChange	PCR.
------------	-------	-------------	-----------	----------	-------------	------

NAME	SEQUENCE
V460C	TACAGACCCCACCAAGGTGAATGTGTGCGTAAATGTGGTAGAACGCAGCGTCGAC CACCACCACCACCACCACTGAGATCC
V457C	GGTACGGATCCCACCAAGTGTAATGTGGTGGTAAATGTGGTAG
L448C	GAAGACGTCAATGTTTCCTGTGACCCCGGTACAGACCCCACC
Q429C	GGTATTCAACCGCAACACCGTCTGCAAAGATCTACAACGCGTATTCGGGACAGG
V370C	AGGTTTCCGAAAATGGATGCGTCACCCTGCAAGTAGC
E344C	CAAGAAGGGATTAAGTGCTTAACCAAACGTTATCAAGACC
D337C,D351C	TTCTCAACTTGCGGTGTTTACAAGAAGGGATTAAGGAATTAACCAAACGTTATCAAtg CCAAGGTTACGTTCTCGCC
A319C	GGACTAACGTTCCCTCAGTACTACCCCAGTGTACTGCTGATGAAATTTTCCGCGC
I292C	CGAGTCAGCTTCTGTGTCCAGCCCAACCCCGTC
Q259C	GGACAACCACCCGTTCCTGTTTACAAGAAGATATCAACGCTATC
Q374C	CGCCAATGTTGTAGGaGCtCCCCAGGTTTCCGAAAATGGAGTTGTCACCCTGtgtGTA GCCGAAGGGGTCG
N256C	TTCCCAGTTACAAGAAGATATctgCGCTATCTTTGGCACAGGC

Supporting	g Tal	ble 2	. Co	mpari	son of I	PELDOF	R di	istance	cons	traints	wi	th X-ray
structure,	MD	and	the	best	refined	model	of	either	rigid	body	or	Rosetta
refinement	t.											

Pair	< r> PELDOR/ r _{pk} ^a	r> _{X-ray} ^b	< />/> MD ^c		Rosetta ^e
N265-I292	2.3/2.4 (0.3)	2.4 (0.4)	n.d.	n.d.	2.4
A319-D337	2.5/2.6 (0.4)	2.6 (0.4)	n.d.	n.d.	n.d.
A319-E344	2.1/2.0 (0.5)	2.0 (0.4)	n.d.	n.d.	2.0.
A319-V370	2.1/1.8, 2.3 (0.3)	2.1 (0.5)	n.d.	n.d.	1.8.
D337-D351	2.7/2.8 (0.4)	2.4 (0.5)	n.d.	n.d.	n.d.
E344-V370	2.5/2.4 (0.3)	2.7 (0.4)	n.d.	n.d.	2.9
Q429-V460	2.4/2.5 (0.2)	2.2 (0.4)	2.1 (0.4)	n.d.	2.5
I292-A319	4.5/4.6 (0.5)	4.7 (0.4)	4.7 (0.4)	4.7 (0.4)	4.6
I292-E344	4.2/4.2 (0.3)	4.0 (0.4)	4.0 (0.3)	4.0 (0.5)	4.2
I292-V370	3.3/3.4 (0.2)	3.1 (0.3)	3.2 (0.3)	3.0 (0.4)	3.3
N265-A319	3.5/3.4 (0.4)	4.1 (0.4)	4.2 (0.5)	3.7 (0.6)	3.4
N265-E344	2.3/2.4 (0.4)	2.8 (0.4)	2.9 (0.3)	2.3 (0.5)	2.3
N265-V370	3.0/3.0 (0.4)	3.1 (0.5)	3.3 (0.6)	3.0 (0.6)	2.9
Q259-A319	5.3/ 5.0 (0.8)	5.2 (0.4)	5.6 (0.3)	5.1 (0.4)	4.9
Q259-E344	4.3/3.5, 4.2 (1.3)	3.7 (0.4)	3.8 (0.4)	3.6 (0.5)	3.5
Q259-V370	4.5/4.5 (0.5)	4.3 (0.3)	4.7 (0.2)	4.3 (0.4)	4.5
Q374-Q259	3.8/3.8 (0.4)	3.9 (0.3)	n.d.	3.9 (0.4)	3.9
Q374-I292	3.0/3.0 (0.3)	3.3 (0.4)	n.d.	3.0 (0.3)	3.1
V460-A319	4.4/4.4 (0.3)	4.2 (0.4)	4.2 (0.3)	4.2 (0.5)	4.4
V460-E344	3.9/3.8, 4.3 (0.5)	3.9 (0.4)	4.1 (0.4)	4.1 (0.5)	3.8
V460-V370	4.6/4.6 (0.2)	4.3 (0.4)	4.8 (0.3)	4.5 (0.4)	4.5
Q429-A319	3.4/3.4 (0.6)	3.1 (0.5)	3.1 (0.5)	3.4 (0.6)	3.4
Q429-E344	2.9/2.8 (0.5)	2.7 (0.5)	2.9 (0.4)	2.7 (0.7)	2.9
Q429-V370	4.3/4.5 (0.4)	4.1 (0.4)	4.3 (0.3)	4.3 (0.4)	4.5
V460-I292	5.7/5.7 (0.6)	5.7 (0.4)	6.4 (0.3)	5.6 (0.5)	5.7
V457-Q259	4.1/4.2 (0.8)	4.1 (0.3)	4.6 (0.4)	4.2 (0.4)	4.2
L448-Q259	4.3/4.6 (0.7)	4.3 (0.4)	4.7 (0.5)	4.5 (0.4)	4.6

^a Distances in nm; < r > is the mean distance; r_{pk} is the main distance; the standard deviations are given in parentheses.

^b Distances are predicted by MMM in 298 K mode; the standard deviations are given in parentheses. ^c Distances are predicted from MD simulations of spin-labeled mutants.

^d Refined distances obtained from home-written script ^c Refined distances obtained from Rosetta

Pair	< <i>r</i> >X-ray MMM175K	< r>X-ray Mtssl- wizard	< r>X-ray Sezer12 175K	< r>X-ray Sezer12 298K	< r>X-ray Sezer13 175K	< <i>r</i> >X-ray Sezer13 298K	< r>X-ray Hubbell 298K
N265-I292	2.3 (0.4)	2.4 (0.4)	2.3 (0.4)	2.3 (0.4)	2.2 (0.4)	2.3 (0.4)	2.3 (0.3)
A319-D337	2.6 (0.4)	2.5 (0.4)	2.4 (0.4)	2.3 (0.5)	2.6 (0.4)	2.6 (0.4)	2.6 (0.3)
A319-E344	2.0 (0.4)	2.0 (0.4)	1.6 (0.4)	1.9 (0.4)	2.0 (0.3)	2.1 (0.4)	2.4 (0.3)
A319-V370	2.2 (0.4)	2.0 (0.5)	2.1 (0.5)	2.0 (0.5)	2.1 (0.4)	2.1 (0.5)	1.9 (0.4)
D337-D351	2.3 (0.4)	2.3 (0.4)	2.2 (0.4)	2.3 (0.5)	2.2 (0.6)	2.4 (0.5)	2.2 (0.3)
E344-V370	2.6 (0.3)	2.7 (0.3)	2.6 (0.4)	2.6 (0.4)	2.2 (0.5)	2.7 (0.4)	2.8 (0.2)
Q429-V460	2.2 (0.4)	2.2 (0.4)	2.2 (0.4)	2.1 (0.5)	2.1 (0.5)	2.3 (0.4)	2.3 (0.4)
I292-A319	4.6 (0.4)	4.6 (0.4)	4.6 (0.4)	4.5 (0.4)	4.7 (0.4)	4.7 (0.4)	4.4 (0.3)
I292-E344	3.9 (0.3)	4.0 (0.3)	4.2 (0.7)	4.0 (0.4)	3.6 (0.4)	4.0 (0.4)	4.0 (0.3)
I292-V370	2.8 (0.3)	3.1 (0.3)	2.9 (0.3)	3.3 (0.4)	3.1 (0.3)	3.1 (0.3)	3.0 (0.2)
N265-A319	3.9 (0.4)	4.1 (0.4)	3.8 (0.4)	3.9 (0.4)	4.1 (0.5)	4.0 (0.4)	3.6 (0.4)
N265-E344	2.7 (0.4)	2.8 (0.4)	3.0 (0.4)	2.9 (0.5)	2.6 (0.5)	2.8 (0.5)	2.4 (0.5)
N265-V370	2.9 (0.4)	3.2 (0.4)	2.9 (0.4)	3.1 (0.5)	3.1 (0.5)	3.1 (0.5)	2.5 (0.5)
Q259-A319	5.1 (0.3)	5.2 (0.3)	5.1 (0.3)	5.1 (0.4)	5.3 (0.3)	5.2 (0.4)	2.5 (0.6)
Q259-E344	3.6 (0.4)	3.8 (0.4)	4.0 (0.3)	3.7 (0.4)	3.7 (0.3)	3.7 (0.4)	3.5 (0.4)
Q259-V370	4.0 (0.3)	4.4 (0.3)	4.1 (0.3)	4.3 (0.3)	4.3 (0.3)	4.4 (0.3)	4.2 (0.3)
Q374-Q259	3.8 (0.2)	3.9 (0.3)	3.8 (0.3)	3.9 (0.4)	3.8 (0.4)	3.8 (0.4)	3.9 (0.3)
Q374-l292	3.1 (0.3)	3.2 (0.4)	3.2 (0.3)	3.3 (0.4)	3.3 (0.3)	3.3 (0.3)	3.4 (0.3)
V460-A319	3.9 (0.4)	4.2 (0.3)	3.8 (0.4)	4.2 (0.4)	4.1 (0.3)	4.3 (0.4)	4.4 (0.4)
V460-E344	3.8 (0.3)	3.9 (0.3)	4.0 (0.2)	3.8 (0.4)	3.9 (0.3)	4.0 (0.4)	4.0 (0.3)
V460-V370	4.2 (0.4)	4.2 (0.3)	4.2 (0.4)	4.3 (0.4)	4.4 (0.3)	4.4 (0.3)	4.0 (0.4)
Q429-A319	2.9 (0.6)	3.1 (0.5)	3.0 (0.6)	3.2 (0.5)	3.1 (0.5)	3.2 (0.5)	3.6 (0.4)
Q429-E344	2.7 (0.4)	2.7 (0.4)	2.9 (0.3)	2.7 (0.5)	3.0 (0.5)	2.7 (0.6)	2.8 (0.4)
Q429-V370	4.2 (0.4)	4.1 (0.4)	4.3 (0.4)	4.1 (0.4)	4.2 (0.4)	4.2 (0.4)	4.1 (0.4)
V460-I292	5.6 (0.3)	5.6 (0.3)	5.7 (0.4)	5.8 (0.4)	5.6 (0.4)	6.0 (0.4)	6.0 (0.3)
V457-Q259	4.1 (0.2)	4.0 (0.3)	4.2 (0.2)	4.0 (0.3)	4.1 (0.3)	4.0 (0.3)	3.8 (0.3)
L448-Q259	4.4 (0.3)	4.2 (0.4)	4.3 (0.3)	4.3 (0.4)	4.5 (0.4)	4.3 (0.4)	4.2 (0.4)

Supporting Table 3. Comparison of simulated distance constraints obtained for different rotamer libraries.

Supporting Table S4. Structural similarities of POTRA domains of anaOmp85 and ecBamA. For each POTRA pair (PDB: 3mc8, 5ayw) the C α RMSD [Å] after structural alignment with YASARA's MUSTANG plugin was determined. The background color gives the degree of similarity from white lowest similarity and black highest similarity.

	anaP2	anaP3	ecP1	ecP2	ecP3	ecP4	ecP5
anaP1	1.966	1.006	1.056	1.561	1.437	1.367	1.279
anaP2		1.707	2.009	2.023	1.597	1.665	1.888
anaP3			1.186	1.941	1.748	1.670	1.209
ecP1				1.443	1.490	1.463	1.300
ecP2					1.515	1.768	1.582
ecP3						1.580	1.503
ecP4							1.387

Supporting Table S5. Angles and scores of top 100 Rosetta models.

Twist and swing angles are given in columns 1-4 for adjacent POTRA domain pairs, in columns 5 and 6 for P1-P3. The last two columns hold the Rosetta score and the distance constraint score. ^a The score in column 7 was calculated by subtracting the atom pair constraint score from the total score. ^b The distance constraint score in column 8 was calculated as follows:

constraint score weight * number of constraints with a weight of 4 and in total 24 constraints.

Twist (P1- P2)	Swing (P1-P2)	Twist (P2- P3)	Swing (P2-P3)	Twist (P1-P3)	Swing P1-P3)	Rosetta scoreª	distance constraint score ^b
66.4	60.6	52.2	27.3	119.6	48.0	-427.232	0.9762
62.7	66.9	50.9	31.5	117.2	69.1	-428.915	0.9746
59.3	73.3	65.4	24.1	126.8	75.6	-433.18	0.9745
76.2	70.1	58.8	22.2	135.6	58.6	-426.902	0.9742
62.2	65.6	53.8	29.9	118.7	57.3	-424.715	0.9742
60.9	63.4	56.5	25.9	120.2	61.9	-431.877	0.974
45.0	67.2	60.9	19.6	106.6	72.4	-425.407	0.974
90.0	76.3	61.7	31.2	156.3	63.0	-434.098	0.974
50.7	62.4	63.5	24.3	116.2	66.7	-426.334	0.9739
68.8	65.6	59.7	34.6	132.5	65.2	-430.368	0.9739
60.7	65.3	58.5	33.1	123.6	63.4	-430.716	0.9737
79.5	73.6	53.3	25.9	135.9	65.0	-438.231	0.9736
71.3	69.7	60.3	33.9	135.0	59.9	-428.997	0.9734
42.8	54.9	56.3	30.0	103.3	64.2	-429.479	0.9734
77.3	71.5	62.9	31.9	142.2	64.3	-432.622	0.9734
59.0	67.5	53.4	29.1	115.3	60.4	-424.882	0.9731
60.4	68.9	53.2	28.2	116.4	64.4	-427.321	0.973
55.2	61.5	67.0	28.0	119.0	80.9	-434.847	0.9729
58.9	64.5	58.8	27.3	115.4	79.2	-430.594	0.9728
83.1	73.8	57.8	33.8	142.3	59.7	-431.497	0.9728
58.0	76.1	55.5	18.6	115.2	81.2	-427.361	0.9726
70.0	83.8	51.8	30.7	124.1	77.0	-424.906	0.9726
64.0	71.1	66.8	19.8	131.8	78.5	-446.642	0.9726
50.9	54.9	59.0	29.2	111.1	67.1	-438.485	0.9726
57.7	55.4	63.8	32.3	123.8	64.4	-427.586	0.9725
77.4	69.3	62.9	15.1	137.8	58.1	-426.479	0.9725
73.2	71.7	57.6	24.6	130.8	62.7	-435.525	0.9725
60.0	80.7	45.1	20.6	106.7	78.9	-424.411	0.9725
44.2	60.7	60.7	17.8	107.7	64.8	-428.938	0.9724
61.0	56.7	66.2	32.1	129.5	64.1	-425.634	0.9724
65.3	71.7	60.4	26.8	128.2	70.2	-430.184	0.9723
58.9	63.0	49.5	30.8	112.4	67.1	-435.095	0.9722
103.4	87.4	53.1	36.2	159.5	60.6	-438.027	0.9722
54.6	69.6	63.4	27.7	121.8	83.4	-429.475	0.9721
52.0	58.0	62.8	27.9	115.4	70.2	-426.927	0.9721
61.0	63.2	62.5	35.1	124.2	78.2	-433.354	0.972

72.4	66.6	51.3	34.5	126.4	55.6	-434,568	0.972
101.2	84.6	45.7	29.9	147.8	64.4	-435 971	0.9719
52.6	64.6	62.1	16.3	111.8	78.2	-430 736	0.9718
72.4	68.6	41.2	27.8	115.7	65.8	-400.700	0.0718
02.5	75.1	52.0	35.7	1/0.8	50.0	-429.313	0.9718
92.5	73.1	32.9	33.7	149.0	59.1	432.275	0.9710
75.5	77.0	49.5	21.2	125.0	00.9	-420.120	0.9710
41.4	59.2	63.0	22.1	108.8	70.9	-426.711	0.9718
69.1	65.9	48.5	28.9	119.7	57.6	-430.954	0.9717
49.4	64.5	55.3	26.0	107.6	68.2	-424.655	0.9717
65.9	74.2	57.2	27.6	125.2	79.6	-429.128	0.9717
60.4	63.0	57.6	32.7	121.8	63.8	-434.068	0.9717
84.7	72.7	56.0	32.9	145.7	61.8	-436.232	0.9716
71.6	75.8	53.1	34.3	128.0	60.3	-425.779	0.9716
61.7	66.0	45.1	33.2	110.2	52.8	-425.604	0.9716
76.3	70.4	52.8	32.2	131.8	57.3	-438.73	0.9715
55.5	63.9	64.0	23.5	121.7	60.7	-428.583	0.9714
62.6	69.4	62.5	30.5	128.2	70.1	-425.372	0.9714
79.9	74.1	49.3	33.0	132.9	64.9	-425 776	0.9714
59.1	65.9	50.6	40.3	117 1	52.9	-424 811	0.0713
52.0	53.7	60.8	37.3	110.1	62.0	426.632	0.0713
50.8	68.0	63.7	10.7	116.1	67.3	420.032	0.9713
30.8	00.9 57.7	64.1	19.7	107.5	07.3	-420.37	0.9713
40.2	50.1	04.1 59.0	21.5	107.5	04./	-424.908	0.9/12
53.5	58.5	58.3	25.5	111.8	70.1	-434.722	0.9712
90.9	/5.8	55.5	28.1	148.3	63.6	-434.23	0.9712
61.2	65.2	61.5	30.0	125.4	68.6	-427.366	0.9712
66.3	73.2	56.0	30.5	125.8	68.0	-436.535	0.9711
58.5	60.2	67.5	33.5	131.2	62.5	-424.536	0.9711
75.5	80.5	56.0	25.0	130.3	65.9	-431.546	0.9711
64.3	69.6	60.7	28.7	127.7	65.9	-428.73	0.9711
48.3	67.3	63.0	21.1	112.5	72.3	-426.236	0.971
81.8	76.8	54.1	30.8	141.7	63.3	-438.085	0.971
64.6	71.0	57.5	35.8	125.2	76.0	-425.252	0.9709
74.8	73.6	57.2	26.8	134.0	70.6	-436.696	0.9709
64.9	73.0	59.0	30.1	126.8	68.1	-430 512	0.9709
85.3	78.9	52.4	36.6	135.2	53.2	-429 014	0.9709
63.0	67.9	59.0	31 /	126.1	67.8	-426.678	0.0708
67.8	67.6	55.6	18.0	120.1	62.4	-420.070	0.9700
77.0	76.6	59.0	30.2	120.0	70.0	427.619	0.9707
51 Q	70.0	50.4	30.2	109.9	70.9 51.5	424.022	0.9707
01.0	09.4	00.0	45.5	122.1	01.0	-424.932	0.9707
61.0	61.4	37.8	25.1	101.5	63.7	-429.830	0.9707
/6.8	79.3	55.3	28.5	137.6	69.3	-425.145	0.9706
55.5	66.1	59.8	34.5	120.0	68.6	-424.392	0.9705
72.4	67.1	59.0	33.6	136.2	63.4	-434.194	0.9705
70.1	63.1	59.7	33.8	134.1	60.8	-424.863	0.9705
65.6	69.7	58.7	17.4	126.0	71.4	-435.61	0.9704
61.7	64.2	56.9	30.4	121.8	65.5	-425.225	0.9704
104.5	83.5	56.6	34.5	163.2	56.7	-434.33	0.9704
64.1	67.2	59.1	27.0	125.8	64.1	-433.017	0.9704
68.4	72.9	39.8	34.0	110.6	55.7	-427.262	0.9704
73.5	72.6	48.6	27.6	124.0	71.0	-432.072	0.9704
83.7	75.1	55.4	32.4	144.5	63.8	-431.852	0.9704
69.4	66.5	55.2	30.3	128.3	61.9	-428 559	0 9704
37.0	55 1	57.2	33.3	99.2	66.5	-424 334	0.9704
90.4	83.1	50.6	37.5	146.4	61.0	-433 805	0 9703
46.0	73.3	71.0	27.7	120.5	86.4	-424 000	0.0703
67.7	72.0	57.0	40.2	120.0	64.0	426 102	0.0700
75.0	12.0	07.Z	40.3	100.7	04.0	-420.102	0.9703
/5.6	/2.0	40.3	29.5	124.4	07.5	-430.156	0.9703
52.3	60.3	55.9	31.8	112.4	63.3	-428.166	0.9703
44.2	58.6	56.0	28.0	103.9	69.2	-428.226	0.9702
55.5	65.2	64.5	19.9	121.4	60.1	-426.885	0.9702
69.9	67.2	58.9	29.7	130.4	71.1	-428.71	0.9702
59.2	64.0	63.6	39.1	128.7	55.1	-424.386	0.9701
64.7	73.9	60.6	25.9	127.1	76.5	-430.707	0.9701
96.0	79.8	52.2	42.9	150.7	53.1	-424.451	0.9701

Supporting References

1. Waterhouse, A. M., J. B. Procter, D. M. A. Martin, M. Clamp, and G. J. Barton. 2009. Jalview Version 2 a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189-1191.