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Supplemental Information 

 
 
Acquisition of MRI data 

Sixty-four gradient-weighted volumes were acquired using a spin-echo echoplanar imaging 

(EPI) sequence with the following parameters: b-value, 1000 s/mm2; 65 consecutive axial slices 

of thickness 2.4 mm; 104 × 104 image matrix with an in-plane voxel resolution of 2.4 × 2.4 mm; 

field of view, 25 × 25 cm; repetition time, 8.4 s; echo time, 88 ms; flip angle, 90°. Additionally, a 

separate T2-weighted (i.e. b = 0) volume was acquired before acquisition of the diffusion-

weighted volumes. Gradient directions were isotropically distributed on the half-sphere. Head 

movement and artifacts attributable to eddy currents were corrected using FSL software. 

Gradient directions were not adjusted to account for slight rotations of the gradient-weighted 

volumes performed to correct for head movement. The mean signal-to-noise ratio (SNR) of the 

diffusion-weighted images was 28.3 ± 0.7, where the standard deviation was computed over all 

diffusion weighted images. Subjects were imaged in no particular order. To serve as a quality 

control measure, the amount of head rotation between the initial reference volume (no gradient 

weighting) and each of the 64 subsequent gradient-encoded volumes was estimated from the 

rotation matrices computed to correct for head movement. These 64 estimates of head rotation 

were averaged for each subject to yield an average estimate of head rotation. The average 

estimate of head rotation was not different between controls and patients (rotation patients: 0.6 

± 0.4°, rotation controls: 0.7 ± 0.3°, d.f. = 104, t = 1.0, p = 0.31). 

 

Whole-brain tractography 
Any voxel with fractional anisotropy exceeding a predefined threshold (0.3) was classified as 

white-matter. For each voxel classified as white-matter, a streamline was initialized from the two 

opposing directions of the principal eigenvector. Each streamline was propagated using the 

FACT algorithm (1,2). Propagation was terminated if either a minimum angle threshold of 50° 

was violated or if a voxel was encountered with fractional anisotropy (FA) below 0.2. At each 

increment, the direction of propagation was parallel to the orientation of the eigenvector closest 

to the current streamline endpoint. The two opposing streamlines initialized from each voxel 

were then joined at their point of initialization to yield a single streamline. Each streamline was 

normalized to MNI space using the nonlinear warp computed during the preprocessing stage. 

This resulted in a whole-brain tractographic map in MNI space for each subject comprising a 
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total of 56114 ± 6245 streamlines, where the standard deviation was computed over all 

subjects. Tractographic maps were viewed with the TrackVis software (http://www.trackvis.org). 

Note that streamline tractography introduces two distinct kinds of distal bias. The first kind of 

bias gives rise to a positive association between the number of streamlines interconnecting a 

pair of nodes and the distance by which the pair is separated. This “positive” bias arises due to 

the fact that a longer fiber bundle encompasses a greater number of white-matter voxels, and 

thus implies a greater number of streamlines are seeded in comparison to a shorter fiber 

bundle. The second kind of bias gives rise to a negative association between the number of 

streamlines interconnecting a pair of nodes and the distance by which the pair is separated. 

This “negative” bias arises due to the fact that a longer streamline must undergo a greater 

number of forward propagations. At each forward propagation, there is a chance that the 

streamline is steered off course due to a noisy estimate of the local propagation direction. Given 

that a longer streamline undergoes a greater number of forward propagations, the risk of a 

streamline being steered off course increases with its length. It is not clear if these two kinds of 

bias cancel each other out.   

 

Fiber tract network model 
Grey-matter nodes were defined using the automated anatomical labeling (AAL) parcellation 

atlas (3). Subcortical and cerebellum nodes were omitted, resulting in a total of 82 cortical 

nodes exclusively modeling cortico-cortical connectivity. The corticospinal tracts and cortico-

subcortical connectivity was not modeled. 

The tractographic maps were utilized to determine if a pair of nodes was connected via a 

link in the graph model. Specifically, an 82 × 82 connectivity matrix, denoted as A herein, was 

populated for each subject. To populate A, only streamlines with endpoints residing in different 

nodes were considered. Streamlines with both endpoints in the same node (self-loops), or 

streamlines with at least one endpoint residing in white-matter, the cerebellum or a subcortical 

structure were given no further consideration. For example, if a streamline was terminated 

before entering a node, due to encountering a voxel with FA below 0.2 or violating a minimum 

angle threshold of 50°, then that streamline was discarded and given no further consideration. 

Fiber bundles were considered linked to a node if one of the fiber bundle’s endpoints resided 

within that node (4). Similar procedures have been implemented elsewhere, for example, as in 

(4). Any streamline of length less than 20 mm was considered spurious and also given no 

further consideration. Note that while a genuine fiber may be less than 20 mm in length and 

thereby excluded by this threshold, opting for a conservative threshold ensures elimination of all 
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spurious streamlines, since it is unlikely that a spurious streamline can propagate for more than 

20 mm. The set of remaining streamlines therefore exclusively characterized cortico-cortical 

connections. Streamlines were significantly longer in controls (length patients: 4.7 ± 0.3 cm, 

length controls: 4.9 ± 0.3 cm, t = 2.7, p = 0.009). The total number of all streamlines (i.e. 

inclusive of streamlines less than 20 mm) was not significantly different between groups. 

To define an undirected and unweighted graph, the connectivity matrix A was binarized with 

respect to a given threshold T ≥ 0 to yield an adjacency matrix, denoted as A' herein. 

Specifically, Ai,j>T then A'i,j=1, otherwise A'i,j=0. Therefore, a link was drawn between two 

nodes if and only if they were connected via more than T streamlines. Graphs obtained over a 

range of binarizing thresholds that ensured full connectivity were considered. 

 

Network attributes 
Network organization was quantified in terms of nodal degree, efficiency, characteristic path 

length, clustering coefficient and small-worldness. These five attributes are defined and briefly 

discussed below. See (5-7) for further discussion. 

The degree of a node is simply the number of links that connect it to other nodes of the 

network. Node degree is the most fundamental network measure and most other measures are 

ultimately linked to node degree (5). 

The path length between two nodes is the minimum number of links that must be traversed 

to establish a connection (8). Unity path length indicates a pair of nodes is directly connected 

via a single link. The characteristic path length is the average path length across all possible 

node pairs. Characteristic path length was computed as the harmonic mean to sensibly deal 

with disconnected nodes (i.e. degree zero), which are of infinite path length (6). Note that path 

length is not related to the length of a streamline. Efficiency is simply the inverse of path length 

(9). Efficiency and path length are associated with how well a network supports parallel 

information transfer. 

If the nearest neighbors of a node are also directly connected to each other they form a 

cluster. The clustering coefficient quantifies the number of links that exist between the nearest 

neighbors of a node as a proportion of the maximum number of possible connections (5,10). 

High clustering is associated with robustness to node deletion and local efficiency of information 

transfer. 

A small-world network jointly supports efficient information transfer between distant nodes as 

well as nodes comprising local neighborhoods. While alternative models also offer efficient 

communication between distant nodes (i.e. randomly interconnected networks), they do not 
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jointly offer efficient local information transfer. The small-world network is therefore considered 

an attractive model for brain connectional architecture because it allows for both cortical 

integration (distant efficiency) as well as segregation (local efficiency). 

A network is said to be small-world if it demonstrates greater clustering than a comparable 

random graph, but approximately the same characteristic path length. These requirements can 

be assessed quantitatively with the small-world ratio (σ-ratio) of normalized clustering to 

normalized path length, which is greater than unity for a small-world network. Clustering and 

path length were normalized with respect to 103 random graphs that were matched in the 

number of nodes and degree distribution. The rewiring algorithm of (11), was used to generate 

each degree-matched randomization. 

 

Network-based statistic 
The network-based statistic (NBS) is a network-based equivalent of the suprathreshold 

cluster-based test (12,13) used in traditional neuroimaging studies. Suprathreshold cluster-

based tests threshold a statistic image using a predetermined primary threshold. The size of a 

connected suprathreshold cluster is then used to assess its significance. In particular, a 

corrected p-value for each suprathreshold cluster is calculated using the null distribution of the 

maximal suprathreshold cluster size. With the NBS, a suprathreshold cluster is analogous to a 

suprathreshold connected component, and thresholding is performed on network links rather 

than a statistic image. 

The NBS was implemented in the present study as follows. A primary threshold was first 

applied to the t-statistic computed for each link to define a set of suprathreshold links. Any 

connected components in the set of suprathreshold links and their associated size (number of 

links) were then determined. The significance of a component was assessed based on its size. 

In particular, a corrected p-value was calculated for each component using the null distribution 

of maximal connected components. The null distribution was derived empirically using a 

nonparametric permutation approach. A total of 5000 randomized groupings of controls and 

patients were generated. For each of these randomized groupings (permutations), a parametric 

t-statistic was computed independently for each link and the size of the maximal connected 

component in the set of suprathreshold links was determined. A corrected p-value for a 

connected component of size J found in the non-randomized data was then determined by 

finding the proportion of the 5000 permutations for which the maximal connected component 

was larger than J. 
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Associations with intelligence quotient 
A strong linear association was found in the control group between intelligence quotient and 

three key attributes of network organization; namely, global efficiency, path length and 

clustering coefficient. No such associations were found in the patient group (see Figure S2). 

The slope of the line (least squares fit) predicting each of these three attributes of network 

organization from intelligence quotient was tested for a difference between groups. Slopes were 

significantly different between controls and patients for all three attributes (Global efficiency: 

slope patients = 0.004 ± 0.01, slope controls = 0.05 ± 0.02, t = 2.1, p = 0.02; Path length: slope 

patients = -0.08 ± 0.58, slope controls = -1.92 ± 0.85, t = 1.8, p = 0.04; Clustering coefficient: 

slope patients = 0.005 ± 0.019, slope controls = 0.13 ± 0.034, t = 3.2, p = 0.001).  

 

Alternative NBS parameter settings 
To explore the sensitivity of the results to the NBS parameter settings, several alternative 

parameter combinations were investigated in an exploratory manner. As these secondary 

analyses were undertaken purely to examine the robustness of the findings to parameter 

settings, correction for multiple comparisons was not performed for each additional parameter 

combination investigated. Nodes comprising medial frontal and parietal/occipital regions were 

consistently observed for all parameter combinations considered. For some alternative 

parameter settings that still satisfied p < 0.05 corrected, the frontal subnetwork grew to include 

prefrontal nodes, and several nodes comprising the left temporal lobe emerged (see Figure S3). 

The NBS parameter settings used to generate Figure S3 were: Kavg = 1.5 and a streamline 

length threshold of 10 mm. 
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Figure S1. A voxel was classified as belonging to white-matter if its fractional anisotropy (FA) 

exceeded a predefined threshold. For all FA thresholds investigated, the number of voxels 

classified as white-matter was not significantly different between patients with schizophrenia 

and controls. A voxel was classified as belonging to white-matter if its fractional anisotropy 

exceeded a predefined threshold. For all FA thresholds investigated, the number of voxels 

classified as white-matter was not significantly different between patients with schizophrenia 

and controls. 
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Figure S2. No linear association was found in the patient group between intelligence quotient 

(IQ), estimated using the Wechsler Test of Adult Reading (WTAR), and three attributes of 

network organization; namely, I. global efficiency, II. characteristic path length and III. average 

clustering coefficient.  
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Figure S3. Schematic of the network that was impaired in schizophrenia (p = 0.01, corrected), 

derived using a different set of thresholds than used in Figure 5 (i.e. Kavg = 1.5 and a streamline 

length threshold of 10 mm) . Structures in the left temporal lobe emerged and the frontal 

subnetwork was augmented to include prefrontal nodes. Left: uniquely colored nodes and 

streamline representation of interconnecting fiber bundles. Anterior-posterior fibers: green, left-

right: red and superior-inferior: blue. Right: planar graph representation, where each node is 

depicted as a circle positioned at its node’s center of gravity. Note that the positioning of some 

nodes was slightly shifted from the true center of gravity to avert overlapping. Top: sagittal, left 

hemisphere. Bottom: axial. Node abbreviations: A. Left Superior Frontal, B. Right Superior 

Frontal, C. Left Supplementary Motor Area, D. Left Superior Medial Frontal, E. Right 

Supplementary Motor Area, F. Right Superior Medial Frontal, G. Right Superior Parietal, H. 
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Right Superior Occipital, I. Left Cuneus, J. Left Superior Occipital, K. Left Precuneus, L. Right 

Precuneus, M. Left Middle Temporal, N. Left Middle Occipital, O. Left Inferior Temporal, P. Left 

Fusiform, Q. Right Cuneus, R. Left Hippocampus, S. Left Middle Cingulum. 
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