
Supplementary Text

April 14, 2016

1 Network modelling

1.1 Mathematical formalism

We use simplified phenotypic models of transcriptional networks similar to [1] . Activity of tran-
scriptional kernels is a function of both activator and repressor concentrations. Transcriptional
regulations are modeled by Hill functions. We assume that an ”OR” function is implemented
for activators, while repressors act multiplicatively. For instance if kernel m is activated by two
activators A1 and A2 and repressed by one repressor R, corresponding transcriptional activity is

tm = ρmMAX

(
An

1

An
1 +A∗n1

,
Am

2

Am
1 +A∗m2

)
R∗k

Rk +R∗k
(1)

where A1, A2, R are concentrations of corresponding proteins, n,m, k Hill coefficients, A∗1, A∗2, R∗
Hill thresholds, and ρm the maximum transcriptional activity. Full differential equation for corre-
sponding protein P with transcriptional activity tm is

dP

dt
= tm − δpP + ∆P

∂2P

∂x2
(2)

where δp is degradation constant associated to P and ∆P diffusion constant. For the results
described here diffusion does not matter and can safely be taken to 0.

Typically, gap genes positioning can be well captured with one kernel tm per gap gene. For pair-
rule genes (eve, ftz) we need to have several independent stripe kernels. These kernels were modelled
as independent ’genes’, and then combined with a max function to represent the corresponding pair-
rule gene. In particular, this allows us to study evolution of individual kernels and thus infer kernel
homologies.

Considering eve as an example, each stripe kernel is described by Equations 1-2 with the
appropriate activators and inhibitors and zero diffusion constant. The output of each module is
then fed through an additional Michaelis-Menten expression to normalize the various kernels to a
common scale and the result combined with the same ”OR” function as before.

teve = MAX(
[eve2]n1

[eve2]n1 + Cn1
1

,
[eve5]n2

[eve5]n2 + Cn2
2

,
[eve3&7]n3

[eve3&7]n3 + Cn3
3

,
[eve4&6]n4

[eve4&6]n4 + Cn4
4

) (3)

1

Figure ST1: The individual modules of eve, depicted in grey, activate the final common eve pattern,
in red.

d[eve]

dt
= teve + ∆[eve]

∂2eve

∂x2
− δ[eve] (4)

and similarly for ftz. This is illustrated on Figure ST 1 for eve. Initial parameters were adjusted
by hand to give relative gap genes/stripe positioning corresponding to the observed Drosophila
phenotype.

1.2 Idealized Drosophila network

The starting point of all our simulations is an idealized version of the Drosophila network.
Maternal genes are the Input of our system, and define two gradients : an anterior one, bcd in

Drosophila, and a posterior one, cad, repressed by bcd . bcd does not exist outside of Drosophila,
so for evolutionary simulations, we will assume that this anterior maternal gradient corresponds
to another maternal gene (such as otd, which has been simply replaced by bcd in the evolutionary
pathway leading to Drosophila [2]). To fully define downstream positional information, we need to
account for two other posterior gradients tailless and huckebein (tll and hkb, see below).

For gap genes, we make the following minimal assumptions, consistent with experimental data
:

• hb anterior domain is activated by bcd. hb posterior domain regulations are still not fully
resolved. This is a case where we need to assume that some positional information is trans-
mitted by posterior gap genes, and we will thus assume hb posterior domain is activated by
a generic posterior gap genes (we chose tll as suggested in [3]), and repressed by another
posterior gap gene such as hkb [4].

• gt is assumed to be activated by bcd anteriorly and by cad posteriorly [5], and repressed by
Kr.

2

• kni is activated by bcd and repressed by hb [5] [6]

• Kr is activated by bcd and repressed by both gt [7, 8] and hb [9]

This chosen set qualitatively and minimally recapitulates the anterior-posterior order of expres-
sion of gap genes in our simplified model. While there are other known mutual repression betweeen
gap genes (e.g. kni is known to repress hb), they are not crucial to define the relative positioning
of the domains and for simplicity we have not included them.

Regulation of pair-rule genes are described in the main text. The parameters were chosen to
establish an initial profile that was similar to the qualitative profile in the Drosophila embryo.

We simulate our embryo as a linear array of 200 cells. The profiles of bcd, tll, and hkb are fixed
to match Drosophila and do not evolve in time. All other genes are initialized to zero and are
integrated until they reach a steady profile. Evolution only acts on interactions downstream of bcd,
tll, and hkb.

For simulations with ”sliding” stripes, we slowly slide those inputs numerically with time to-
wards the anterior for a total drift of 20 cells. See Section 3 below for descriptions of actual
parameters and code.

2 Network evolution

Evolution algorithm used is identical to the one used in previous works, reviewed in [10,11] (code is
available upon request). It proceeds with a typical population of 50 networks. Differential equations
are integrated, then networks are ranked based on their fitness (see below), and only half of the
population is retained, duplicated and mutated for the next generation. For mutations, we only
allow parameter variations. In particular, network topology is conserved.

Selective pressure is encoded in a fitness function that is minimized, by analogy with energy in
physics. Below we describe the fitnesses used.

2.1 Fitness 1: from Drosophila to Anopheles

To find an evolutionary pathway between Drosophila and Anopheles, we require that

• network has to maintain to at least 7 stripes, since this is consistent with both the initial and
final profiles.

• if ftz is simulated, the model must alternate expression of the segmentation genes eve and
ftz.

Thus if either of those conditions are not met, the network is irrelevant and assigned a high (i.e.,
poor) score.

The embryo is modeled as a linear array of cells indexed by an integer i, i = 0 being the
anterior, i = N = 200 the posterior. Expressing the concentrations of gt(i) in cell i , we compute
diffgt =

∑
i>N/2 gt(i)

2. Since there is no giant in the posterior of the mosquito [12], we want to
minimize this sum.

3

Similarly for hb we compute the difference between the current profile hb(i) and a predefined
profile (qualitatively similar to Anopheles) hbano(i) diffhb =

∑
i>N/2(hb(i) − hbano(i))

2.
Finally, the difference of the current eve profile and the initial eve profile in the anterior can

be added to the fitness with a similar term diffeve, to keep a regular eve profile in the anterior
(i < N/2, which corresponds to eve 2-4 stripes with our choice of coordinates).

The fitness score (to be minimized) used for simulations in the main text of the paper is:

Score = C1diffgt+max(C2∗diffhb, C3∗diffeve)+

{
0 if ftz/eve alternation and ≥ 7stripes

1000 otherwise
(5)

The different constants C1, C2 and C3 are there to scale the strength of each individual compo-
nent of the score. Different values of the constants were tested across many simulations but do no
yield strong differences as long as C1 ∼ C2. For the simulations shown in the main text, the values
actually used were of C1 = C2=1, C3=0.01 without ftz (C3 can actually be taken to 0 without
changing results qualitatively for those cases) and C3 = 1 with ftz. Note that when simulations
were conducted without ftz, the condition of alternating the stripes was removed and the rest of
the fitness was maintained.

With the values of C1, C2, C3 given above, around 10% of the simulations gave “successful”
results, i.e. gave an evolutionary pathway with more than 7 stripes, hb more anterior than in initial
network and no gt in the posterior. The remainder failed to converge in the allotted time. The
important point is that our simulations always succeed in the same way as presented in the main
text, via duplication of a posterior eve stripe and elimination of eve5.

2.2 Fitness 2: Last common ancestor to Drosophila

In that case, starting with presumptive ancestor, we define idealized fly profiles for each of the gap
genes (respectively knifly(i), Krfly(i), gtfly(i) and hbfly(i) and for each gap gene define a mean
square deviation score similar to what is done above, e.g. for hb diffhb =

∑
i(hb(i) − hbfly(i))2.

We sum contributions of all gap genes to define diffgap. Similar to the previous case, a high score
was attributed if less than 7 stripes of eve were observed in the embryos profile, i.e.

Score = diffgap +

{
0 if ≥ 7stripes

1000 otherwise
(6)

3 Parameters and codes for networks

Evolutionary simulations generate an enormous amount of possible parameters and networks. To
illustrate this, we include in Supplementary Materials a complete set of C codes corresponding to
the evolved networks commented in the main text. Those codes were automatically generated by
our Python evolutionary code, and allow for simple simulations of kernels dynamics.

4

Each subdirectory is named after a Figure from the main text, and contains C codes named
with corresponding panels. For instance Fig6B.c contains parameters for networks of Fig. 6B, and
integrates corresponding equations. We include python scripts plot_name_of_pair_rule_gene.py
encoding a simple graphical python tool to visualize the corresponding integrated profile. To run
these simulations, the code should be simply compiled and run, and python plotting tool allows
visualization, e.g. :

gcc Fig6B.c

./a.out

python plot_eve_ftz.py

should display a pop-up window with profiles corresponding to Fig. 6B. Code also creates a file
named “Buffer0” containing values for each gene as a function of time and position, that is used to
generate the plot.

Differential equations corresponding to the kernels are encoded in the function derivC() in
each of the C program. This function computes derivatives of the different variables ds (the cor-
respondence between index of ds and actual genes is in the list called List_Genes.txt in each
corresponding directory). As an example, function derivC()for the initial network we used for
Drosophila in Fig6A.c is :

void derivC (double s [] , double history [] [NSTEP] [NCELLTOT] , int step , double ds [] , double ←↩
memories [] , int ncell) {

int index ; f o r (index=0;index<SIZE ; index++) ds [index]=0;// initialization
double increment=0;
double rate=0;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗ degradation rates ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
rate=1.000000∗s [0] ;
increment=rate ;
ds [0]−=increment ;
rate=1.000000∗s [1] ;
increment=rate ;
ds [1]−=increment ;
rate=1.000000∗s [2] ;
increment=rate ;
ds [2]−=increment ;
rate=1.000000∗s [3] ;
increment=rate ;
ds [3]−=increment ;
rate=1.000000∗s [4] ;
increment=rate ;
ds [4]−=increment ;
rate=1.000000∗s [5] ;
increment=rate ;
ds [5]−=increment ;
rate=1.000000∗s [6] ;
increment=rate ;
ds [6]−=increment ;
rate=1.000000∗s [7] ;
increment=rate ;
ds [7]−=increment ;
rate=1.000000∗s [8] ;

5

increment=rate ;
ds [8]−=increment ;
rate=1.000000∗s [9] ;
increment=rate ;
ds [9]−=increment ;
rate=1.000000∗s [1 0] ;
increment=rate ;
ds [10]−= increment ;
rate=1.000000∗s [1 1] ;
increment=rate ;
ds [11]−= increment ;
rate=1.000000∗s [1 2] ;
increment=rate ;
ds [12]−= increment ;
rate=1.000000∗s [1 3] ;
increment=rate ;
ds [13]−= increment ;
rate=1.000000∗s [1 4] ;
increment=rate ;
ds [14]−= increment ;
rate=1.000000∗s [1 5] ;
increment=rate ;
ds [15]−= increment ;
rate=1.000000∗s [1 6] ;
increment=rate ;
ds [16]−= increment ;
rate=1.000000∗s [1 7] ;
increment=rate ;
ds [17]−= increment ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Transcription rates ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
int k , memory=−1;
memory=step−0;
i f (memory>=0){

rate=MAX (1 . 000000 ,0 . 000000) ∗HillR (history [0] [memory] [ncell] , 0 . 3 00000 , 5 . 0 00000) ;
increment=rate ;
ds [1]+= increment ;

}
memory=step−0;
i f (memory>=0){

rate=MAX (1 .000000∗ MAX (HillA (history [0] [memory] [ncell] , 0 . 5 00000 , 9 . 0 00000) , HillA (←↩
history [6] [memory] [ncell] , 0 . 4 00000 , 3 . 0 00000)) , 0 . 000000) ∗HillR (history [7] [←↩
memory] [ncell] , 0 . 4 50000 , 6 . 0 00000) ;

increment=rate ;
ds [2]+= increment ;

}
memory=step−0;
i f (memory>=0){

rate=MAX (1 .000000∗ MAX (HillA (history [0] [memory] [ncell] , 0 . 7 00000 , 10 . 000000) , HillA (←↩
history [1] [memory] [ncell] , 0 . 6 00000 , 10 . 000000)) , 0 . 000000) ∗HillR (history [4] [←↩
memory] [ncell] , 0 . 9 00000 , 3 . 0 00000) ∗HillR (history [6] [memory] [ncell←↩
] , 0 . 2 30000 , 7 . 0 00000) ;

increment=rate ;
ds [3]+= increment ;

}
memory=step−0;
i f (memory>=0){

rate=MAX (1 .000000∗ HillA (history [0] [memory] [ncell] , 0 . 3 50000 , 10 . 000000) , 0 . 000000) ∗←↩
HillR (history [2] [memory] [ncell] , 0 . 8 00000 , 4 . 0 00000) ∗HillR (history [3] [memory] [←↩
ncell] , 0 . 1 00000 , 1 . 0 00000) ;

6

increment=rate ;
ds [4]+= increment ;

}
memory=step−0;
i f (memory>=0){

rate=MAX (1 .000000∗ HillA (history [0] [memory] [ncell] , 0 . 2 40000 , 10 . 000000) , 0 . 000000) ∗←↩
HillR (history [2] [memory] [ncell] , 0 . 1 00000 , 2 . 0 00000) ∗HillR (history [4] [memory] [←↩
ncell] , 0 . 6 00000 , 4 . 0 00000) ∗HillR (history [6] [memory] [ncell] , 0 . 2 00000 , 5 . 0 00000) ;

increment=rate ;
ds [5]+= increment ;

}
memory=step−0;
i f (memory>=0){

rate=MAX (1 .000000∗ HillA (history [0] [memory] [ncell] , 0 . 4 50000 , 10 . 000000) , 0 . 000000) ∗←↩
HillR (history [3] [memory] [ncell] , 0 . 2 00000 , 10 . 000000) ∗HillR (history [4] [memory] [←↩
ncell] , 0 . 3 00000 , 10 . 000000) ;

increment=rate ;
ds [8]+= increment ;

}
memory=step−0;
i f (memory>=0){

rate=MAX (1 . 000000 ,0 . 000000) ∗HillR (history [6] [memory] [ncell] , 0 . 3 50000 , 10 . 000000) ∗←↩
HillR (history [2] [memory] [ncell] , 0 . 5 50000 , 10 . 000000) ∗HillR (history [5] [memory] [←↩
ncell] , 0 . 0 18000 , 10 . 000000) ;

increment=rate ;
ds [9]+= increment ;

}
memory=step−0;
i f (memory>=0){

rate=MAX (1 . 000000 ,0 . 000000) ∗HillR (history [6] [memory] [ncell] , 0 . 2 50000 , 7 . 0 00000) ∗←↩
HillR (history [5] [memory] [ncell] , 0 . 5 00000 , 10 . 000000) ∗HillR (history [2] [memory] [←↩
ncell] , 0 . 1 00000 , 7 . 0 00000) ;

increment=rate ;
ds [10]+= increment ;

}
memory=step−0;
i f (memory>=0){

rate=MAX (1 .000000∗ HillA (history [0] [memory] [ncell] , 0 . 0 80000 , 2 . 0 00000) , 0 . 000000) ∗←↩
HillR (history [4] [memory] [ncell] , 0 . 3 00000 , 10 . 000000) ∗HillR (history [3] [memory] [←↩
ncell] , 0 . 0 70000 , 10 . 000000) ∗HillR (history [6] [memory] [ncell] , 0 . 2 50000 , 5 . 0 00000)←↩
;

increment=rate ;
ds [11]+= increment ;

}
memory=step−0;
i f (memory>=0){

rate=MAX (1 .000000∗ HillA (history [0] [memory] [ncell] , 0 . 1 00000 , 10 . 000000) , 0 . 000000) ∗←↩
HillR (history [2] [memory] [ncell] , 0 . 2 50000 , 7 . 0 00000) ∗HillR (history [6] [memory] [←↩
ncell] , 0 . 2 90000 , 7 . 0 00000) ∗HillR (history [5] [memory] [ncell] , 0 . 1 30000 , 5 . 0 00000) ;

increment=rate ;
ds [12]+= increment ;

}
memory=step−0;
i f (memory>=0){

rate=MAX (1 .000000∗ HillA (history [0] [memory] [ncell] , 0 . 1 00000 , 10 . 000000) , 0 . 000000) ∗←↩
HillR (history [6] [memory] [ncell] , 0 . 4 30000 , 10 . 000000) ∗HillR (history [3] [memory] [←↩
ncell] , 0 . 0 80000 , 7 . 0 00000) ∗HillR (history [4] [memory] [ncell] , 0 . 7 00000 , 7 . 0 00000) ∗←↩
HillR (history [5] [memory] [ncell] , 0 . 0 30000 , 7 . 0 00000) ;

increment=rate ;
ds [13]+= increment ;

7

}
memory=step−0;
i f (memory>=0){

rate=MAX (1 .000000∗ HillA (history [0] [memory] [ncell] , 0 . 1 00000 , 10 . 000000) , 0 . 000000) ∗←↩
HillR (history [6] [memory] [ncell] , 0 . 1 50000 , 7 . 0 00000) ∗HillR (history [4] [memory] [←↩
ncell] , 0 . 1 00000 , 10 . 000000) ∗HillR (history [3] [memory] [ncell←↩
] , 0 . 4 60000 , 10 . 000000) ;

increment=rate ;
ds [14]+= increment ;

}
memory=step−0;
i f (memory>=0){

rate=MAX (1 .000000∗ MAX (MAX (MAX (HillA (history [1 1] [memory] [ncell] , 0 . 7 00000 , 5 . 0 00000)←↩
, HillA (history [9] [memory] [ncell] , 0 . 7 00000 , 5 . 0 00000)) , HillA (history [1 0] [memory←↩
] [ncell] , 0 . 7 00000 , 5 . 0 00000)) , HillA (history [8] [memory] [ncell←↩
] , 0 . 7 00000 , 5 . 0 00000)) , 0 . 000000) ;

increment=rate ;
ds [15]+= increment ;

}
memory=step−0;
i f (memory>=0){

rate=MAX (1 .000000∗ HillA (history [7] [memory] [ncell] , 0 . 0 10000 , 10 . 000000) , 0 . 000000) ∗←↩
HillR (history [2] [memory] [ncell] , 0 . 0 40000 , 10 . 000000) ∗HillR (history [1 5] [memory←↩
] [ncell] , 0 . 3 00000 , 10 . 000000) ∗HillR (history [6] [memory] [ncell←↩
] , 0 . 1 00000 , 10 . 000000) ;

increment=rate ;
ds [16]+= increment ;

}
memory=step−0;
i f (memory>=0){

rate=MAX (1 .000000∗ MAX (MAX (MAX (HillA (history [1 2] [memory] [ncell] , 0 . 7 00000 , 5 . 0 00000)←↩
, HillA (history [1 3] [memory] [ncell] , 0 . 7 00000 , 5 . 0 00000)) , HillA (history [1 6] [←↩
memory] [ncell] , 0 . 7 00000 , 5 . 0 00000)) , HillA (history [1 4] [memory] [ncell←↩
] , 0 . 7 00000 , 5 . 0 00000)) , 0 . 000000) ;

increment=rate ;
ds [17]+= increment ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Protein protein interactions ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Phosphorylation ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
float total ;
}

Kernel parameters for this network are summarized in Table 1 to illustrate correspondence
between C code and parameters.

References

[1] Paul François, Vincent Hakim, and Eric D Siggia. Deriving structure from evolution: metazoan
segmentation. Molecular Systems Biology, 3:9, December 2007.

[2] Jeremy Lynch and Claude Desplan. Evolution of Development: Beyond Bicoid. Current
Biology, 13(14):R557–R559, July 2003.

8

Regulated by

Gene expression bcd tll hkb cad hb gt Kr kni eve

cad 0.3/5 - - - - - - - -

hb 0.5/9(+) 0.4/3(+) 0.45/6 - - - - - -

gt 0.7/10(+) 0.23/7 - 0.6/10(+) - - 0.9/3 - -

Kr 0.35/10(+) - - - 0.8/4 0.1/1 - - -

kni 0.24/10(+) 0.2/5 - - 0.1/2 - 0.6/4 - -

eve2 0.45/10(+) - - - - 0.2/10 0.3/10 - -

eve3&7 - 0.35/10 - - 0.55/10 - - 0.018/10 -

eve4&6 - 0.25/7 - - 0.1/7 - - 0.5/10 -

eve5 0.08/-2(+) 0.25/5 - - - 0.07/10 0.3/10 - -

ftz1&5 0.1/10(+) - - - - 0.46/10 0.1/10 - -

ftz2&6 0.1/10(+) 0.29/7 - - 0.25/7 - 0.13/5 - -

ftz4 - 0.1/10 0.01/10(+) - 0.04/10 - - - 0.2/10

Table 1: Gene network parameters for Drosophila. Each interaction is tabulated as the
(concentration threshold)/(hill coefficient). Hill coefficients indicate repressions unless they are
followed by a (+) which indicates an activation.

[3] J S Margolis, M L Borowsky, E Steingŕımsson, C W Shim, J A Lengyel, and J W Posakony.
Posterior stripe expression of hunchback is driven from two promoters by a common enhancer
element. Development (Cambridge, England), 121(9):3067–3077, September 1995.

[4] J Casanova. Pattern formation under the control of the terminal system in the Drosophila
embryo. Development (Cambridge, England), 110(2):621–628, October 1990.

[5] G Struhl, P Johnston, and P A Lawrence. Control of Drosophila body pattern by the hunchback
morphogen gradient. Cell, 69(2):237–249, April 1992.

[6] Dorothy E Clyde, Maria S G Corado, Xuelin Wu, Adam Paré, Dmitri Papatsenko, and Stephen
Small. A self-organizing system of repressor gradients establishes segmental complexity in
Drosophila. Nature, 426(6968):849–853, December 2003.

[7] X L Wu, R Vakani, and Stephen Small. Two distinct mechanisms for differential positioning of
gene expression borders involving the Drosophila gap protein giant. Development (Cambridge,
England), 125(19):3765–3774, October 1998.

[8] M Capovilla, E D Eldon, and V Pirrotta. The giant gene of Drosophila encodes a b-ZIP DNA-
binding protein that regulates the expression of other segmentation gap genes. Development
(Cambridge, England), 114(1):99–112, January 1992.

[9] Dmitri Papatsenko and Michael Levine. The Drosophila gap gene network is composed of two
parallel toggle switches. PLoS ONE, 6(7):e21145, 2011.

9

[10] Paul François. Evolution in silico: from network structure to bifurcation theory. Advances in
experimental medicine and biology, 751:157–182, 2012.

[11] Paul François. Evolving phenotypic networks in silico. Seminars in cell & developmental
biology, 35:90–97, November 2014.

[12] Yury Goltsev, William Hsiong, Gregory Lanzaro, and Michael Levine. Different combinations
of gap repressors for common stripes in Anopheles and Drosophila embryos. Developmental
Biology, 275(2):435–446, 2004.

10

	Network modelling
	Mathematical formalism
	Idealized Drosophila network

	Network evolution
	Fitness 1: from Drosophila to Anopheles
	Fitness 2: Last common ancestor to Drosophila

	Parameters and codes for networks

