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General MD Protocols

All MD simulations reported in this study were performed using the program NAMD2.1 The in-

teratomic interactions were described by the CHARMM272 force field employing the Lorentz-

Berthelot combining rules for interactions between non-bonded atoms and TIP3P water model.

CHARMM-compatible parameters for silicon oxide3 were used in the simulations of plasmonic

nanopores. The Lennard-Jones parameters for atoms of gold were: ε = -0.039 kcal/mol and Rmin/2

= 1.0368 Å.4 NBFIX corrections to the Lennard-Jones parameters were applied for specific ion

pairs as reported in ref. 5. All simulations employed periodic boundary conditions, 2–2–6 fs mul-

tiple timestepping, SETTLE algorithm to keep water molecules rigid,6 RATTLE algorithm to keep

rigid all other covalent bonds involving hydrogen atoms,7 a 7–8 Å cutoff for van der Waals and

short-range electrostatic forces, and the particle mesh Ewald (PME) method8 over a 1.0 Å resolu-

tion grid for long-range electrostatic interactions.
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Supplementary Figure S1. Distribution of temperature in all-atom MD simulations of locally-
heated plasmonic nanopores. (a) Local temperature map of the simulated plasmonic nanopore
system. In these simulations the bow tie temperature is set to 395 K whereas the temperature of
a 5 Å-thick slab of water at the opposite side of the membrane is set to 295 K. The cooled water
slab is parallel to the membrane. Regions of the system devoid of atoms (interior volumes of
the membrane and bow tie) are shown in grey. The dashed line indicates the center axis of the
plasmonic nanopore. (b) 1-D temperature profile sampled along the central axis of the plasmonic
nanopore (defined in panel a).
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Simulations of DNA Capture and Translocation

For simulations of DNA capture in a heated nanopore, we built an all-atom system that featured a

10 nm-thick SiO2 membrane with a nanopore, plasmonic gold bow tie nanoantenna residing on top

of the pore, and a short 20-bp piece of dsDNA, Figure 1 b. The membrane was built using the IN-

ORGANIC BUILDER plugin of VMD9 following the procedures described elsewhere.10 A nanopore

of an hourglass shape with the inner and outer diameters of 3.5 and 5 nm, correspondingly, was cut

from the membrane by removing atoms that satisfied the mathematical condition of the shape. We

also removed atoms of the membrane that were more than 0.3 nm away from the surface, which

made the membrane effectively hollow but still impermeable to water, ions, and DNA. By doing
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Supplementary Figure S2. Simulated temperature dependence of bulk electrolyte conductiv-
ity and open pore conductance. (a) Conductivity σ of 2 M KCl and 2 M LiCl bulk electrolyte
solutions as a function of temperature in all-atom MD simulations. The conductivity values were
extracted from the simulations of DNA in a bulk solution as j0/E, where j0 was the total ionic
current density in the bulk region (further that 22.5 Å from the DNA central axis) and E was the
magnitude of the applied electric field corresponding to a potential drop of 350 mV over 10 nm
distance. The simulation system used for these calculations is shown in Figure 3 a. The simulated
relative increase of bulk conductivity (σ395K−σ295K)/σ295K was 82% for KCl and 97% for LiCl.
(b) The simulated conductance G of a solid-state plasmonic nanopore (Figure 1 b) in the absence
of DNA for 2 M KCl and 2 M LiCl solutions as a function of the bow tie temperature. Dashed
lines show linear fits to the data. The simulated relative increase of the nanopore conductance
(G395K−G295K)/G295K was 59% and 48% for the KCl and LiCl solution, respectively. The tem-
perature dependence of the open pore conductance does not follow the temperature dependence of
the bulk electrolyte conductivity because the temperature of the solution in the nanopore volume
is considerably lower than the temperature of the bow tie, Figure S1.
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Supplementary Figure S3. Ionic current density as a function of the distance from the DNA
axis in (a–b) 2 M KCl, and (c–d) 2 M LiCl. A typical simulation system used for these calculations
is shown in Figure 3 a. To compute the current density profiles, the volume around the DNA
molecule was partitioned into 1 Å-wide radial bins centered on the DNA axis. The bin size Lz
along the DNA axis was 6 nm; the bins were centered on the midplane of the helix. The ionic
current in each bin was computed as I = ∑

i,t
qi∆zi/LzT , where qi and ∆zi were the charge and

displacement of ions along the z axis in the bin, T was the total simulation time, and summation ∑
i,t

was performed over all ions that populated the bin and over all frames of the MD trajectory. The
current density profiles were then obtained by dividing the total average current in each bin by the
cross-sectional (xy) area of the bin.

so, we significantly reduced the total number of atoms in the system while preserving description

of specific interactions between DNA and the membrane. The remaining membrane atoms were

then annealed3 applying a grid potential11 to maintain the prescribed shape. In all production

simulations of DNA capture and translocation, all SiO2 atoms were harmonically restrained to the

coordinates attained at the end of the annealing simulation.

The tips of the bow tie nanoantenna were cut from a ∼ 20 nm-thick gold membrane prepared

using the INORGANIC BUILDER plugin of VMD. The shape of the tips was chosen to reproduce

the experimental curvature of gold nano-triangles.12 As with the membrane, gold atoms that were

more that 0.3 nm away from the surface of the bow tie were removed. The annealing procedure
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was not applied to the gold atoms. In all production simulations, the gold atoms were harmonically

restrained to their initial coordinates.

A short 20-bp piece of a double stranded DNA molecule was prepared using the 3D-DART
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Supplementary Figure S4. Radial profiles of ion and water velocities near DNA. (a–c) The
average z-component of potassium (panel a), chloride (panel b) and water (panel c) velocities
in MD simulations of DNA in 2 M KCl solution as a function of the distance from the DNA
axis. (d–f) The average z-component of lithium (panel d), chloride (panel c) and water (panel f)
velocities in MD simulations of DNA in 2 M LiCl solution as a function of the distance from the
DNA axis. A typical simulation system used for these calculations is shown in Figure 3 a; the
applied electric field was 35 mV/nm directed along the z axis. The following three temperatures
of the bulk solutions were investigated: 295, 345 and 395 K. To compute the velocity profiles, the
volume around the DNA molecule was partitioned into 1 Å-wide radial bins centered on the DNA
axis. Along the DNA axis, the bin size was 6 nm; the bins were centered on the midplane of the
helix. The average velocity in each bin was determined by averaging over all particles present in
the respective bins and over all frames of the respective MD trajectory.
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Supplementary Figure S5. Simulated dependence of ion mobility on the distance from DNA
and temperature. (a–b) Radial profiles of cation mobility as a function of the distance from the
DNA axis in MD simulations of the DNA system shown in Figure 3 a. Data in panels a and b
were obtained for 2 M KCl and 2 M LiCl electrolyte solutions, respectively. (c) Temperature
dependence of the ion mobility in the bulk electrolyte region of the simulate system. Each data
point was obtained by averaging the radial mobility profiles (panels a and b) over the region located
more than 22 Å away from the DNA axis.

server.13 One strand of the molecule had the sequence: 5′-GACTATCTGCCCGTCTACTC-3′. The

molecule was placed concentrically with the nanopore (z) axis ∼ 10 nm above the pore entrance.

A set of harmonic constraints applied to the phosphorus atoms of the DNA via the TCLFORCES

feature of NAMD, restricting the motion of the molecule to translation along the z-axis and rotation

about that axis. The use of such constraints prevented non-specific interactions between DNA and

the solid-state membrane, singling out the effects of electrolyte composition and localized heating

on DNA capture and translocation process. Hydrogen bonds within the basepairs of the molecule

were enforced using the EXTRABONDS feature of NAMD. The equilibrium lengths of the hydrogen

bonds for the EXTRABONDS restraints were determined from the simulations of DNA where such

retratins were not applied.

A system containing the solid-state membrane, the gold bow tie nanoantenna, and the DNA

molecule was solvated using the SOLVATE plugin of VMD, producing a ∼ 13×18×38.5 nm3 sys-

tem, ∼ 0.52 million atoms in total. Ions were then added to the system using the AUTOIONIZE

plugin of VMD in the amounts necessary to produce neutral 2 M KCl and 2 M LiCl solutions.

Following assembly, each system underwent 1,200 steps of energy minimization using the

conjugate gradient method followed by ∼ 500,000 steps (∼ 1 ns) of equilibration in the NPT en-

semble (constant number of particles N, pressure P, and temperature T). During equilibration a

S – 6



Lowe-Andersen14 thermostat kept the temperature at 295 K, Nosé-Hoover Langevin piston pres-

sure control15 maintained the pressure at 1 atm by adjusting the system’s dimension along the z

axis.

Two sets of production simulations were performed for each electrolyte solution. In the first

set, the entire system was maintained at a uniform temperature of Teq = 295 K. In the second set,

the temperature of the gold bow tie was maintained at Tbt = 395 K by coupling its atoms to a

Langevin thermostat. Another, local Lowe-Andersen thermostat was activated in a 0.5 nm-thick

slab perpendicular to the z axis and was coupled to the water molecules only. A detailed description

of the implementation and application of such local thermostats with NAMD2 can be found in our

previous publications.16,17 In all simulations, a uniform electric field was applied normal to the

membrane producing a 350 mV voltage bias across the simulation system.18,19

Simulations of the Effective Force in a Heated Nanopore

To measure the effective force of the electric field on dsDNA in a heated nanopore, we combined

the previously described all-atom model of the solid-state membrane and the bow tie with a 77-

basepair dsDNA and each of the following three electrolyte solutions: 1 M KCl, 2 M KCl, and

2 M LiCl, Figure 4 a. Using a custom TCLFORCES script, each phosphorus atom of the DNA

molecule was restrained to remain at the surface of a virtual cylinder with a diameter of 2 nm via

a harmonic force acting within the x− y plane only; the spring constant of each harmonic restraint

was kr = 100 pN/Å. The script also harmonically restrained the CoM of all phosphorus atoms along

the vertical z axis to its initial location with a spring constant of kz = 152 pN/Å. The restraining

forces and the CoM coordinates were updated every 500 steps, or 1 ps. A transmembrane bias of

350 mV was applied across the system normal to the membrane. Similarly to our simulations of

DNA capture, two sets of simulations were performed for each electrolyte type: one at a uniform

temperature of 295 K and the other reproducing the local heating of the bow tie. Each system was

simulated for 50 ns. The water flow reached a steady state within the first 10 ns. For each condition,

the effective force was computed by averaging over the last 40 ns of the simulation trajectory.
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Supplementary Figure S6. Simulated dependence of normalized ion number density on the
distance from DNA and temperature. Radial profiles of number densities of K+ (panel a), Cl−

in KCl solution (panel b), Li+ (panel c), and Cl− in LiCl solution (panel d) are shown as functions
of the distance from the DNA axis. The profiles are normalized by the corresponding average ion
number density in the bulk region of the system (farther than 22 Å from the DNA axis). A typical
simulation system used for these calculations is shown in Figure 3 a; the applied electric field was
35 mV/nm directed along the z axis.

Simulations of DNA in Bulk Electrolytes

For our simulations of dsDNA in a uniformly heated bulk electrolytes, we used a 22-bp dsDNA

molecule extracted from a longer DNA molecule described in the previous section. The sequence

of nucleotides in one of the molecule’s strands was: 5′-TCTGCCCGTCTACTCGACTATC-3′. The

DNA molecule was solvated and neutralized by adding ions in the amounts necessary to produce

2 M KCl, 2 M LiCl, or 2 M NaCl solutions. All systems had a hexagonal cross-section in the

xy plane with a side of 5.2 nm, and initial length along the z axis of ∼ 10.5 nm. The systems

underwent energy minimization for 600 steps and 1 ns equilibration in the NPT ensemble with

the Nosé-Hoover Langevin piston pressure control set to one of the following three temperatures:

295, 345, and 395 K; the x−y cross-section of the system was kept constant among the systems at
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different temperatures. During these equilibration simulations the phosphorus atoms of DNA were

restrained within the xy plane to remain at the surface of a virtual cylinder with a diameter of 2 nm.

Upon equilibration, the systems’ dimensions along the z axis at 295, 345 and 395 K were: 10.7,

11.1, and 11.7 nm for 2 M KCl, 10.5, 10.9, and 11.5 nm for 2 M LiCl, and 10.4, 10.9, and 11.4 for

2 M NaCl.

In the production simulations, a homogeneous electric field parallel to the z axis was applied.

The magnitude of the electric field was chosen such that the electric potential drop was 350 mV

over 10 nm, similar to the potential drop in the plasmonic nanopore systems. To measure the effec-

tive force experienced by the DNA in solutions at different temperatures, all phosphorus atoms of
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Supplementary Figure S7. Radial profiles of water velocities near DNA in simulations with
suppressed water flows. (a–c) The average z-component of water velocity in 2 M solutions of KCl
(panel a), LiCl (panel b) and NaCl (panel c) in MD simulations as a function of the distance from
the DNA axis. Lines shows fits to data of the smooth-step function: vz = a−b tanh

( r−c
d

)
. Unlike

normalized mobility that changes from zero to unity, velocity values near the DNA and away from
it are independent parameters. As a result, four fitting parameters are necessary to fit the location
and width of the smooth step (parameters c and d) as well as velocity values near the molecule
and away from it (parameters a and b) independently. (d) The fits of a smooth-step function to
data from panels (a–c). The fits show that water velocity profiles at a given temperature are almost
identical in all three solutions and the difference does not exceed 0.5 Å/ns. Decay of water velocity
is only slightly smoother in NaCl than in the other two solutions at 345 and 395 K.
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the molecule were harmonically restrained to their initial coordinates in all three spatial directions

with a spring constant of kbulk = 10 pN/Å. The restraining forces were recorded every 50 steps, or

0.1 ps. Each system was simulated for 500 ns. Additional 220 ns-long simulations were performed

for each system under the water flow canceling protocol (described below in the Suppression of

Water Flow near DNA section).

Calculation of Ion Mobility near DNA

Simulations of DNA in bulk electrolyte solutions under a uniform electric field (see previous sec-

tion) were used to compute radial distributions of ion mobility. The position-dependent mobility

was calculated as20 µ = (v−u)/E, where v and u were the velocities of the ions and water, cor-

respondingly, parallel to the applied electric field ~E = E~z. The instantaneous velocities of the

ions and water molecules were averaged in concentric cylindrical shell bins that were defined as:

rn,min ≤ r < rn,max, where r =
√

x2 + y2 was the radial coordinate of an ion or a water molecule in

the x−y plane, rn,min = 0.3 ·n (nm) and rn,max = rn,min+0.3 (nm) were the minimum and maximum

radii of the n-th shell bin.

Suppression of Water Flow near DNA

A proportional-integral-derivative (PID) control mechanism was used to suppress the water flows

in simulations of DNA in bulk electrolyte. The PID controller was realized as a custom Tcl script

engaged by NAMD via its TCLFORCES feature. The controller virtually divided the space around

the molecule into concentric cylindrical shells aligned with the molecule’s axis and computed mean

water velocity in each of them every 1 ps. The outer radius of each cylindrical shell exceeded the

inner one by 0.3 nm. The cylindrical shell closest to the molecule had the inner diameter of

1.25 nm so that binding of ions to the DNA remained unaffected. The length of all shells along the

molecule’s axis was 6 nm and, therefore, did not exceed the length of the molecule.

Mean water velocity in the cylindrical shells was used to compute the three components of the

force applied by the PID controller. The proportional term was computed as FP = γ
(
vtarget− vwater

)
=
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−γ vwater, where vwater is the mean water velocity in a shell measured in Å/ps, vtarget ≡ 0Å/ps is

the target velocity, and coefficient γ was set to 0.01 kcal
molÅ

/ Å
ps . With such a coefficient, the PID con-

troller applied a force of 0.69 pN along the molecule’s axis to those water molecules that moved

along that axis at a speed of 1 Å/ps. The value of γ was chosen such that the proportional term

of the controller on its own provided significant flow compensation. Larger values of γ led to

occasional termination of simulations caused by high forces applied by the controller to water

molecules and, therefore, were avoided.

Computed mean water velocities in virtual cylindrical shells were recorded and used for the cal-

culation of the integral term of the controller as FI = ξ
1

Nrec

Nrec

∑
i

(
vtarget− vwater, i

)
=−ξ

1
Nrec

Nrec

∑
i

vwater, i,

where Nrec is the number of historical records of the water velocity in a cylindrical shell, vwater, i is

the i-th value of average water velocity in that shell (i runs from 1 to Nrec), vtarget ≡ 0Å/ps is the

target velocity for all shells, and coefficient ξ was set to 0.025 kcal
molÅ

/ Å
ps . The value of ξ was chosen

to provide optimal flow compensation. The derivative term of the controller was not engaged in

production simulations because of the high variability of the 1 ps-averaged velocity measurements.

Simulations of the Relative Bulk Solution Viscosities

To elucidate the dependence of the electrolytes’ viscosity on temperature and ion composition, we

simulated a cubic volume (∼ 5 nm on each side) of 2 M KCl and 2 M LiCl electrolyte solutions

at uniform temperature of 295, 345, or 395 K. In these simulations, a steered MD (SMD) feature

of NAMD was employed to pull a single water molecule along the z axis with a constant velocity

vpull = 10 nm/ns, Figure 4 f. The spring constant used in the constant velocity pulling SMD proto-

col was set to 100 pN/Å; no restraints were applied within the plane perpendicular to the direction

of pulling (the x− y plane in our simulations). The force Fpull required to maintain the pulling

velocity was recorded every 0.96 ps. To prevent the system from drifting in the direction of the

pulling, the CoM of the remaining atoms was harmonically restrainted to its initial position via a

harmonic spring (kspring = 100 pN/Å) using a custom TCLFORCES script. In the regime of low

pulling velocities, the pulling force exactly compensates the Stokes’ viscous drag: ~Fpull = -~Fdrag,
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which, according to the Stokes equation, is proportional to the product of the pulling velocity~vpull

and the solution viscosity η . Alternatively, one can write η ∼Fpull/vpull. Choosing the viscosity

of 2 M KCl solution at 295 K, ηKCl(295 K), as a reference, we characterized the viscosity at all

other electrolyte and temperature conditions by the ratio of the average pulling forces, Figure 4 g.

Calculation of Ion Residence Time near DNA

To compute the average residence time of ions near the DNA molecule, we used the method pre-

viously described in ref. 21. First, we selected all water molecules located within 3.1 Å of the

non-hydrogen atoms of the DNA. Next, we selected all cations and anions located closer than

3.4 Å (cations) or 3.7 Å (anions) from the selected water molecules. Following that, we compute

the lifetime of each specific water-ion pair using MD trajectories sampled every ∆ t = 9.6 ps. The

lifetime of a water-ion pair was defined as the product of ∆ t and (N−1), where N was the number

of consecutive frames the specific pair remained present according to the above selection proce-

dure. Because of thermal fluctuations, the absolute ion binding times determined using the above

method can depend on the sampling frequency of the MD trajectory. Nevertheless, the relative

changes of the ion binding time with temperature and ion type are independent of the trajectory

sampling frequency.

Conductance Blockades as a Function of Ion Mobility

Electrophoretic transport of a charged molecule such as DNA through a nanopore in a membrane

is accompanied by the suppression of the flow of ions that compete with the molecule for the

nanopore volume. This suppression of the ionic current is typically characterized by absolute and

relative conductance blockades. The absolute conductance blockade is defined as:

∆G =
∆I
Vt

=
Ib− I0

Vt
, (1)
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where Ib and I0 are the blockade and open pore currents, correspondingly, and Vt is the applied

transmembrane bias.

For a flow of ions in a bulk solution, the above formula has to be reformulated. We start by

noting that ionic current I can be written in the form of an integral of the current density over the

system’s volume:

I =
2π∫
0

dφ

∞∫
0

qn(r)v(r)r dr, (2)

where φ and r =
√

x2 + y2 are the azimuth and radial distance in a cylindrical coordinate system,

q, n, and v are the charge, number density and velocity of ions. Using Equation 2, we can rewrite

the current reduction ∆I as:

∆I = Ib− I0 = ∑

2π∫
0

dφ

∞∫
0

q(n(r)v(r)−n∞v∞)rdr, (3)

where the summation is performed over different ion types in the solution (e.g. K+, Li+, Cl−).

Noting that integration over φ yields a scaling factor of 2π and that Vt = ELz, where E is the

electric field magnitude and Lz is the dimension of the simulation system in the direction of the

applied field, we can rewrite Equation 1 as follows:

∆G =
Ib− I0

ELz
=

2π

Lz
∑q

∞∫
0

(
n(r)

v(r)
E
−n∞

v∞

E

)
rdr, (4)

where v/E = µ is the ion mobility. Away from the DNA, the ion number density n(r) and the ion

velocity v(r) return to their bulk solution values n∞ and v∞. We define distance R∗ such that:

n(r ≥ R∗) = n∞

v(r ≥ R∗) = v∞. (5)

For a DNA molecule in a bulk electrolyte, R∗ = 2.2 nm, see Figures S4 and S7. Integration over
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radial distance can be split into two regions
∞∫

0

=

R∗∫
0

+

∞∫
R∗

. Clearly, integration over the second

region (R∗→ ∞) yields 0, so we arrive at:

∆G =
2π

Lz
∑q

R∗∫
0

(n(r)µ(r)−n∞µ∞)rdr

=
2π

Lz
∑qµ∞n∞

R∗∫
0

(
n(r)
n∞

µ(r)
µ∞

−1
)

rdr

=
2π

Lz
∑qµ∞n∞

R∗∫
0

(n∗(r)µ∗(r)−1)rdr (6)

where µ∗ = µ/µ∞ and n∗ = n/n∞ are the normalized mobility (main text Figure 3 d–e) and the

normalized number density, Figure S 6, correspondingly. For 1:1 electrolyte solutions, the number

densities of the charge carriers in the bulk regions (n∞) are identical and can be moved outside

the summation. From Equation 6, one can immediately notice that temperature dependence of the

absolute conductance blockade comes from the variation of the ion mobility in the bulk solution

µ∞, which, unlike the number density n∞, does depend on the solution temperature, and the integral
R∗∫

0

(n∗(r)µ∗(r)−1)rdr. Note that the magnitude of the conductance blockade does not depend on

the precise value of R∗ as long conditions of Equations 5 are met. The absolute conductance

blockades computed using Equation 6 are shown in main text Figure 3 f.

The relative conductance blockade of a nanopore is defined as:

∆G
G

=
∆I
I0

=
Ib− I0

I0
. (7)

The relative blockade clearly depends on the absolute value of the nanopore conductance and,

therefore, on the physical dimensions of the nanopore. To elucidate the temperature dependence
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of the relative conductance blockade, let’s rewrite Equation 7 as:

∆G
G

=
2π ∑q

∫
(n(r)µ(r)−n∞µ∞)rdr

2π ∑q
∫

n∞µ∞rdr
=

∑qn∞µ∞

∫
(n∗(r)µ∗(r)−1)rdr

∑qn∞µ∞

∫
rdr

, (8)

where we purposefully omitted the integration limits as they require special consideration. The

expression inside the integral in the numerator is 0 for r > R∗, hence the integration can be limited

to a region where the mobility and the number density of ions deviate from their bulk values, i.e.

r ∈ [0;R∗). In the denominator, however, integration beyond R∗ does not yield zero so the upper

integration limit (R0) must be explicitly set. To enable comparison to the results of direct ionic

current calculations, Figure 3 c, we set R0 to 2.7 nm. Finally, we can write the expression for the

relative conductance blockade as:

∆G
G

=

∑qn∞ µ∞

R∗∫
0

(n∗(r)µ∗(r)−1)rdr

∑qn∞ µ∞

R0∫
0

rdr

=

∑qn∞ µ∞

R∗∫
0

(n∗(r)µ∗(r)−1)rdr

∑qn∞ µ∞

R2
0

2

(9)

The relative conductance blockades computed using Equation 9 are shown in main text Figure 3 g.

The above equation demonstrates that the relative blockade depends not only on the mobility of

ions in the bulk solution (µ∞) but also on the dependence of ionic mobility on the distance from

the DNA. Equation 9 allows us to model a situation when the normalized ion mobility does not

depend on temperature of the solution. For this purpose, we calculate ∆G/G using Equation 9

but, instead of using the actual normalized mobility profiles, we use the profiles obtained in the

simulations at 295 K. The relative conductance blockades obtained under such assumptions are

shown in Figure 3 g (filled symbols).
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