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Figure S1, related to Table 1. Canonical proteins with surface-critical and known ligand-binding 
sites.  Left panels show sites that are scored highly (i.e., surface-critical residues, in red). Right panels show 

residues (yellow) that directly contact ligands, based on the holo structure (see Table S1). PDB IDs: (A) 

3PFK; (B) 1EFK; (C) 4AKE; (D) 2HNP; (E) 1CD5; (F) 3JU5; (G) 1BKS; (H) 1XTT; (I) 1NR7; (J) 3D7S; 

(K) 1E5X; (L) 1J3H. 
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Figure S2, related to Figure 4. Summary statistics for surface-critical sites.  
Panel (A) shows the distribution of the number of surface-critical sites per complex without applying 
thresholds, with complexes represented in biological assembly files downloaded from the PDB. Without 
applying thresholds to the list of ranked surface-critical sites, the protein is often covered with an excess of 
identified critical sites. Distributions of the numbers of distinct surface-critical sites per domain and per 
complex are given in panels (B) and (C), respectively. 
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Figure S3, related to Figure 6. Pipeline for identifying alternative conformations throughout the 
PDB. 
(A) Pipeline for identifying distinct conformations and critical residues: Top to bottom: BLASTClust is 
applied to the sequences corresponding to a filtered set of structures, thereby providing a large number of 
sequence-identical sets of proteins (i.e., “sequence groups”). For each sequence-identical group, a multiple 
structure alignment is performed using STAMP. The example shown here is adenylate kinase. Using the 
pairwise RMSD values in this structure alignment, the structures are clustered using the UPGMA 
algorithm, and K-means with the gap statistic (δ) is performed to identify the number of distinct 
conformations. The plot at left identifies 2 as the optimal value for K: the solid line represents δ(K) values 
at each value of K, and the dotted line represents δ(K+1) – sk+1 for each value of K (see Supplemental 
Experimental Procedures section 3.2-b for details). The structures that exhibit multiple clusters (i.e., those 
with K > 1) are then taken to exhibit multiple conformations. Finally, surface-critical (bottom-left) and 
interior-critical (bottom-right) residues are identified on those proteins determined to exist as multiple 
conformations.  (B) Energy landscapes to describe distributions of different conformations. Energy 
landscape theory may be used to describe the relative populations of alternative biological states and 
conformations (for instance, active/inactive, or holo/apo). In the apo state, the landscape may take the form 
of the red curve, resulting in most proteins favoring the conformation shown in red. Once binding to ligand, 
the landscape becomes reconfigured to take the shape in the cyan curve, thereby shifting the distribution of 
conformations to that shown in cyan. One may use multiple structure alignments for domains or proteins to 
identify these distinct biological states in a database of structures. The schematized dendrogram represents 
the partitioning of these structures by a metric such as RMSD. The example shown is a multiple structure 
alignment of adenylate kinase. SCOP IDs of the apo domains: d4akea1 and d4akeb1; those of the holo 
domains: d3hpqb1, d3hpqa1, d2eckb1, d2ecka1, d1akeb1, and d1akea1. (C) Intuition behind the k-means 
algorithm with the gap statistic. The objective is to identify the ideal number of clusters to describe the 
observed data of 60 points (in blue). This entails defining how well-clustered our observed data appears 
(given an assigned number of clusters, K) relative to a null model consisting of a randomly distributed set 
of 60 points (grey) that fall within the same variable ranges as the observed data. Further details are 
provided by Tibshirani et al, 2001. The distributions of the number conformations (i.e., “K”) for domains 
and chains are given in (D) and (E), respectively. Only proteins for which K exceeds 1 (for chains) are 
included in our dataset of multiple conformations. (F) Distinct proteins in our dataset within the context of 
high-quality X-ray structures in the PDB that we structurally aligned. A set of distinct proteins is such that 
no pair shares more than 90% sequence identity. (G) A single annotated entry from our database of 
alternative conformations. The clustering for the protein adenosylcobinamide kinase is shown. Two distinct 
conformations are represented in the ensemble of structures. The measure kf designates the fraction of 
times that the optimal value of K (here, K=2) was obtained out of 1000 simulations in which the algorithm 
(K-means with the gap statistic) obtained this particular value of K. The high kf value (0.969) signifies that 
these structures are very well clustered into two groups. n designates the number of distinct structures (PDB 
chains in this case) in the multiple structure alignment. pf designates the fraction of times (out of 1000 
simulations of running Lloyd’s algorithm, the standard K-means algorithm) that this particular set of 
structure-group assignments were assigned. In this this example, for all 1000 simulations, 1C9K_C and 
1C9K_A were clustered in one group, and 1CBU_A, 1CBU_B, 1CBU_C clustered together. Within each 
cluster (the two clusters shown as two red boxes), the chain preceding the “::” tag designates the cluster 
representative (i.e., the structure closest to the Euclidean centroid of the cluster). The last field gives the 
RMSD values between cluster representatives. See the header information within Data S1 for further 
details. 
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Figure S4, related to Figure 4. Shifts in allele frequency distributions from 1000 Genomes (panels A 
and B) and ExAC (panels C and D) datasets using two-sample Kolmogorov-Smirnov tests. 
Cumulative distribution functions for (A) mean DAF values of surface-critical and non-critical residues (p-
val = 0.159); (B) mean DAF values of interior-critical and non-critical residues (p-val = 1.79e-4); (C) mean 
MAF values of surface-critical and non-critical residues (p-val = 9.49e-2); (D) mean MAF values of 
interior-critical and non-critical residues (p-val = 1.75e-4). All p-values are based on tow-sample KS tests. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CD
F 

(m
ea

n 
D

AF
, 1

00
0 

G
en

om
es

)
CD

F 
(m

ea
n 

M
AF

, E
xA

C)

Mean DAF

Mean MAF

A B

C D



! !

 
 
Figure S5, related to Figure 7. Evaluating pathogenicity using PolyPhen scores for critical- and non-
critical residues, as identified by ExAC 
Left: Distributions (64 structures) of mean PolyPhen values on surface-critical residues (red) and non-
critical residues (blue). Right: Distributions (70 structures) of mean PolyPhen values on interior-critical 
residues (red) and non-critical residues (blue). Overall mean values and p-values are given below plots. 
Note that higher PolyPhen scores denote more damaging variants.  
 
 
 
 

 
 
Figure S6, related to Figure 7. Evaluating pathogenicity using mean SIFT scores for critical- and 
non-critical residues, as identified by ExAC 
Left: Distributions (63 structures) of mean SIFT values on surface-critical residues (red) and non-critical 
residues (blue). Right: Distributions (65 structures) of mean SIFT values on interior-critical residues (red) 
and non-critical residues (blue). Overall mean values and p-values are given below plots. Note that lower 
SIFT scores denote more damaging variants. 
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2 – Supplemental Tables 
!

HOLO$ APO$
1ake%(AP5)% 4ake%
3cep%(G3P,!IDM,!PLP)% 1bks%(PLP)%
1hor%(AGP,%PO4,%[&%16G%in%pdb%1HOT])% 1cd5%
2c2b%(SAM,%[&%LLP%in%pdb%2c2g])% 1e5x%
1gz3%(ATP,!FUM,$OXL)% 1efk%(MAK)%
1atp%(ATP)% 1j3h%
1hwz%(GLU,%GTP,!NDP%[&%ADP%in%PDB%1NQT])% 1nr7%
1xtu%(CTP,!U5P)% 1xtt%(ACY,%U5P)%
1aax%(BPM%[&%892%in%PDB%1T49])% 2hnp%
7at1%(ATP,%MAL,%PCT%[&%CTP%in%PDB%1RAC],%[&%PAL%in%PDB%1D09])% 3d7s%
3ju6%(ANP,%ARG)% 3ju5%
6pfk%(PGA%[&%F6P!+!ADP!in%PDB%4PFK])% 3pfk%(PO4)%
 

 
Table S1, related to Table 1. Set of 12 canonical proteins, organized by state (apo or holo) 
These 12 proteins were chosen to constitute the canonical set for several reasons: the allosteric mechanisms 
of their natural ligands are well understood, and both the holo and apo states for each system are available 
and clearly distinguishable; in addition, these proteins have been extensively investigated in the contexts of 
both binding leverage and allostery in general. Ligands are given in parentheses (those in bold text 
designate the ligands used to define residues involved in ligand-binding interactions). 
 
 
 
 
 

 

n!
Mean!fract.!Of!ligandH!

binding!sites!captured!

6% 0.56%
5% 0.59%
4% 0.65%
3% 0.69%
2% 0.79%
1% 0.84%

 

Table S2, related to Table 1. Capturing known-ligand binding sites at varying thresholds 
Here, n designates the number of residues within a surface-critical site that overlap with known ligand-
binding residues. For the calculations reported above and in the main text, this value is taken to be n=6. 
Because each surface-critical site typically has 10 residues, and never has more than 10 residues, this 
criterion enforces that a majority of surface-critical residues within a given site overlap with known ligand-
binding residues in order to be counted as a site match. However, as this threshold (n) is relaxed to lower 
values, the fraction of captured known ligand-binding sites improves rapidly, suggesting that surface-
critical sites generally lie close to known ligand binding sites in many cases. 
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Concordance!Between!Community!Detection!Methods:!!GN!vs.!Infomap!

Protein$(PDB,$#$residues)$ Community$Detection$Method:$$GN$|$InfoMap$

!

Modularity!
#!

Communities!

#!Critical!!

Residues!

%!of!GN!critical!

residues!matching!

those!in!Infomap!

(expected)!

tRNA%synthetase%(1N78,%542)% 0.71%%|%%0.68% 14%%|%%25% 47%%|%%109% 0.28%(0.20)%
Adenylate%kinase%(4AKE,%428)% 0.73%%|%%0.70% 11%%|%%20% 39%%|%%%%82% 0.90%(0.19)%
Arginine%Kinase%(3JU5,%728)% 0.72%%|%%0.69% 12%%|%%28% 41%%|%%142% 0.22%(0.19)%
Tyrosine%Phosphatase%(2HNP,%278)% 0.59%%|%%0.59% %%7%%|%%15% 27%%|%%%%70% 0.26%(0.25)%
Phosphoribosyltransferase%(1XTT,%846)% 0.72%%|%%0.68% %%9%%|%%32% 36%%|%%174% 0.22%(0.21)%
cAMP^dep.%PK%(1J3H,%332)% 0.66%%|%%0.64% 11%%|%%19% 36%%|%%%%78% 0.33%(0.23)%
Anthranilate%synthase%(1I7Q,%1418)% 0.75%%|%%0.69% 12%%|%%46% 51%%|%%288% 0.31%(0.20)%
Malic%enzyme%(1EFK,%2212)% 0.81%%|%%0.72% 17%%|%%70% 74%%|%%425% 0.18%(0.19)%
Threonine%synthase%(1E5X,%884)% 0.73%%|%%0.69% 13%%|%%36% 43%%|%%192% 0.28%(0.22)%
G^6^P%Deaminase%(1CD5,%1596)% 0.79%%|%%0.72% 18%%|%%54% 58%%|%%266% 0.16%(0.17)%
Phosphofructokinase%(3PFK,%1276)% 0.76%%|%%0.68% 10%%|%%51% 45%%|%%307% 0.24%(0.24)%
Tryptophan%synthase%(1BKS,%1294)% 0.77%%|%%0.69% 10%%|%%46% 41%%|%%284% 0.24%(0.22)%

Means$ 0.73$$$|$$$0.68$ 12.0$$|$$36.8$ 44.8$$|$$201.4$ 0.3$
 
Table S3, related to Figure 2. Comparing the two network module identification algorithms GN & 
Infomap 
Though both GN (values to the left of “|” symbols throughout the table) and Infomap (values to the right) 
decompose networks to give similar modularity, the number of communities, and hence the number of 
critical residues connecting communities, is substantially larger when decomposing networks using 
Infomap than using GN. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



! !

3 - Supplemental Experimental 

Procedures 
3.1  Identifying Potential Allosteric Residues 

Allosteric residues are predicted both on the surface and within the protein interior. In this study, 
these two sets of predicted allosteric residues are termed “surface-critical” and “interior-critical” residues, 
respectively. Notably, allosteric sites on the surface play mechanistic roles that are generally different from 
those within the interior: while surface sites often function as the source points or sinks of allosteric signals, 
the interior acts to transmit such information. Thus, different approaches are needed for selecting these two 
sets of residues. For both, biological assembly files from the PDB are used as the input to our analysis 
(Berman et al., 2000). 
 
3.1-a  Identifying Surface-Critical Residues 

Allosteric signals may be transmitted over large distances by a mechanism in which the allosteric 
ligand has a global effect on a protein’s functionally important motions. For instance, introducing a bulky 
ligand into the site of an open pocket may disrupt large-scale motions if those motions normally entail that 
the pocket become collapsed over the course of a motion (Figure 1A). Such a modulation of the global 
motions may affect activity within sites that are distant from the allosteric ligand-binding site. We point the 
reader to work by Mitternacht and Berezovsky for a more detailed discussion regarding the binding 
leverage method (Mitternacht and Berezovsky, 2011), though a general overview of the approach, along 
with a detailed discussion of the changes we have implemented, are given below. 
 
3.1-a-i  Monte Carlo Simulations & Parameterization to Identify Candidate Allosteric Sites on the 
Surface 

The surface of most proteins is a highly dense patchwork of pockets, ridges, protrusions, and 
clefts. Throughout this complex topology, there are many potential sites that may confer allosteric 
regulation upon binding by natural or artificial ligands. Thus, as a first step to identifying surface-critical 
sites, we aim to identify surface pockets that are capable of accommodating small ligands. These candidate 
allosteric sites are generated by Monte Carlo (MC) simulations in which a simple flexible ligand 
(comprising of 4 “atoms” linked by bonds of fixed length 3.8 Angstroms, but variable bond and dihedral 
angles) explores the protein’s surface. The number of MC simulations is set to 10 times the number of 
residues in the protein structure, and the number of MC steps per simulation in our implementation is set to 
10,000 times the size of the simulation box, as measured in Angstroms. The size of this simulation box is 
set to twice the maximum size of the PDB along any of the x, y or z-axes. Apo structures were used when 
probing protein surfaces for putative ligand binding sites in the canonical set of proteins. 

Throughout the MC simulation, a simple square well potential (i.e., modeling hard-sphere 
interactions) is used to model the attractive and repulsive energy terms associated with the ligand’s 
interaction with the protein surface. In the unmodified implementation of the method, these energy terms 
depend only on the ligand atom’s distance to alpha carbon atoms in the protein – other heavy atoms or 
biophysical properties are not considered. 

Our approach and set of applications differ from those previously developed in several key ways. 
When running MC simulations to probe the protein surface and generate candidate binding sites, we use all 
heavy atoms in the protein when evaluating a ligand’s affinity for each location. By including all heavy 
atoms (i.e., as oppose to using the protein’s alpha carbon atoms exclusively), our hope is to generate a more 
selective set of candidate sites. Indeed, the use of alpha carbon atoms alone leaves ‘holes’ in the protein 
which do not actually exist in the context of the dense topology of side chain atoms. Thus, by including all 
heavy atoms, we hope to reduce the number of false positive candidate sites, as well as more realistically 
model ligand binding affinities in general. 
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In the original binding leverage framework, an interaction between a ligand atom and an alpha 
carbon atom in the protein contributes -0.75 to the binding energy if the interaction distance is within the 
range of 5.5 to 8 Angstroms. Interaction distances greater than 8 Angstroms do not contribute to the 
binding energy, but distances in the range of 5.0 to 5.5 are repulsive, and those between 4.5 to 5.0 
Angstroms are strongly repulsive (distances below 4.5 Angstroms are not permitted). However, given the 
much higher density of atoms interacting with the ligand in our all-heavy atom model of each protein, it is 
necessary to accordingly change the energy parameters associated with the ligand’s binding affinity.  

The determination of how these parameters should be changed in an all-heavy atom model is 
fundamentally a problem of optimization. Thus, how are these parameters optimized in the potential 
function? We determined which combination of parameters best predicts known ligand binding sites in 
threonine synthase (1E5X), phosphoribosyltransferase (1XTT), tyrosine phosphatase (2HNP), arginine 
kinase (3JU5), and adenylate kinase (4AKE). Specifically, the parameters to be optimized include (1) the 
ranges of favorable and unfavorable interactions (i.e., the widths of the potential function) and (2) the 
attractive and repulsive energies themselves (i.e., the depths and heights of the potential function). 

For well depths, we tested models using several attractive potentials, ranging from -0.05 to -0.75, 
including all intermediate factors of 0.05. For well widths, we first tried using the cutoff distances 
originally used (attractive in the range of 5.5 to 8.0 Angstroms, repulsive in the range of 5.0 to 5.5, and 
strongly repulsive in the range of 4.5 to 5.0). However, these cutoffs, which were originally devised to 
model the ligand’s affinity to the alpha carbon atom skeleton alone, were observed to be inappropriate 
when including all heavy atoms. Thus, in addition to sampling various well widths, we also performed the 
simulations using revised sets of distance cutoffs. The optimized set of parameters were as follows (here, 
Dlig-prot designates the distance, in Angstroms, between a ligand atom and a protein atom): 

 
             widths      depths & heights 

 ∞   >  Dlig-prot  ≥  4.5: Energy = 0 
4.5  >  Dlig-prot  ≥  3.5: Energy = - 0.35 (attractive) 
3.5  >  Dlig-prot  ≥  3.0: Energy = +10 (repulsive) 
3.0  >  Dlig-prot  ≥  0.0: Energy = +10000 (strongly repulsive: effectively prohibited) 

 
In addition to optimizing these parameters within the potential function, we also determined that 

setting the number of MC steps to 10,000 times the size of the simulation box (see above) provided the best 
convergence across multiple simulations on the same protein – that is, this number of steps better enabled 
us to recapture the same set of sites when running the simulations multiple times. 
 
3.1-a-ii  Binding Leverage Calculations 

Once candidate pocket sites are identified using the protocol outlined above, an obvious question 
is whether these sites can function allosterically by influencing global low-frequency motions of the 
protein. In order to rank the candidate sites by the degree to which they can impart such allosteric 
properties, the binding leverage associated with each candidate site is calculated. 

First, normal modes analysis is applied to generate a model of the protein’s low-frequency 
motions (alternatively, one may use direct displacement vectors between two structures; see Supplemental 
Experimental Procedures section 3.2-c). To generate these modes, we use the alpha carbon atoms in 
building the protein’s elastic networks. Using default parameters, we take the top 10 (lowest-frequency) 
available non-trivial Fourier normal modes generated using the Molecular Modeling Toolkit (MMTK) 
(Hinsen, 2000). Specifically, these 10 low-frequency modes are produced using the “representative 
structures” within each cluster of a multiple structure alignment (for details on representative structures, see 
Supplemental Experimental Procedures section 3.2-b). Note that this exact same method for producing the 
modes was also used in the identification of interior-critical residues (see below). 

Once the 10 modes are produced, each of the candidate sites is then scored based on the degree to 
which deformations in the site couple to the low-frequency modes; that is, those sites which are heavily 
deformed as a result of the normal mode fluctuations (Figure 1A, top-right) receive a high score (termed 
the binding leverage for that site), whereas shallow sites with few interacting residues (Figure 1A, bottom-
left) or sites that undergo minimal change over the course of a mode fluctuation (Figure 1A, bottom-right) 
receive low binding leverage scores. Specifically, the binding leverage score for a given site is calculated as 
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Here, the outer sum is taken over the 10 modes, and the pair of inner sums are taken over all pairs of 
residues (i,j) such that the line connecting the pair lies within 3.0 Angstroms of any atom within the 
simulated ligand. The value ∆dij(m) for each residue pair (i,j) represents the change in the distance between 
residues i and j when this distance is calculated using mode m. Thus, one may think of binding leverage as 
qualitatively predicting the extent to which a surface pocket is deformed when the protein undergoes 
conformational transitions. Note that, in the original formalism, the binding leverage includes a constant 
term (ĸ/2). Of course, this constant does not affect the prioritized ordering of the identified sites, and is thus 
not reported in the formula here. 
 
 
3.1-a-iii  Defining & Applying Thresholds to Select High-Confidence Surface-Critical Sites 

As discussed in the main text, without applying thresholds to the list of ranked surface sites that 
remain after running the binding leverage calculations, a very large number of sites would occupy the 
protein surface (Figure S2A). Thus, it is necessary to trim and process this list. To do so, we borrow from 
principles in energy gap theory (Bryngelson et al., 1995). Details regarding the calculations for establishing 
a threshold on the number of sites are given here. 

For each of the N candidate binding sites in what we call “pre-processed ranked list of sites” 
(produced by the procedure outlined above), we calculate the value ∂BL(j)/∆BL. Here, j is the jth site to 
appear in the pre-processed ranked list of sites, with this list of sites being ranked in descending order of 
each site’s binding leverage score (see above). ∂BL(j) is defined as the difference in the binding leverage 
scores of the jth site and the (j-1)th site in the ranked list. Because the list of sites is organized in descending 
order of binding leverage scores, ∂BL(j) ≥ 0. ∆BL is a constant defined as: 
 

∆BL  =  maxbinding_leverage_score  –  minbinding_leverage_score 
 
∆BL is thus the difference in the binding scores associated with the very top site and very bottom site in this 
ranked list. Qualitatively, a large value for ∂BL(j)/∆BL indicates that there is a large drop in binding 
leverage scores in going from site j to site (j-1) within the pre-processed ranked list. 

We consider sites with the highest ∂BL/∆BL (i.e., the top 5.5%). Thus, we take site j if there is a 
very large gap in binding leverage scores between sites j and (j-1). The lowest-occurring site within this 
considered list of high ∂BL/∆BL values demarcates a threshold beyond which we reject all lower sites 
within the pre-processed ranked list, leaving only the “processed ranked list of sites”. 

We then go up from to bottom through the top of this processed ranked list of sites, and for each 
site, we determine the Jaccard similarity with all sites above. If the Jaccard similarity with any site above 
exceeds 0.7, then the lower site is removed from the processed ranked list. The final list obtained after 
performing these Jaccard similarity filters is taken to represent the set of surface-critical sites on a structure. 

In counting the final number of truly distinct surface-critical sites for any given structure, we 
remove redundant sites within the set of surface-critical sites obtained in the process above, as some of the 
sites within this set may still exhibit considerable mutual overlap. A site i within the list of surface-critical 
sites is said to be redundant if it is assigned a redundancy score that exceeds 0.4, where 

 
redundancy_score(i)  =  | {Rsite_i!}!!� {Rsites>i} |  /  Nres_i 

 
Here, {Rsite_i} is the set of residues in site i, {Rsites>i} is the union of residues in all accepted sites above site 
i in the list of sites, Nres_i is the number of residues in site i, and the |…| notation in the denominator of this 
ratio is meant to designate the number of residues in the indicated intersection. If this redundancy score is 
less than 0.4, then site i is considered to be truly distinct from all other sits, and it is included in the list of 
distinct sites. If the redundancy score exceeds 0.4, then the site overlaps with another site on the surface, 
and it is thus rejected from the set of accepted distinct sites. Finally, the total number of sites in the 
accepted set of sites is taken as the number of distinct sites for a structure. 
 
 
 

�� ij
 i     j

¨dbinding leverage  =  2

��������������ij(m)
 i     j

¨dbinding leverage  =  2

m=1

  10



! !

3.1-a-iv  Known Ligand-Binding Sites at the Surface 
Known ligand-binding residues of an apo structure are taken to be those within 4.5 Angstroms of 

the ligand in the corresponding holo structure (Table S1). Within the canonical set of proteins, surface-
critical sites overlap with an average of 56% of the known-ligand binding sites (Table 1). It has previously 
been shown that the sites in aspartate transcarbamoylase (PDB ID 3D7S) are especially difficult to identify 
(Mitternacht and Berezovsky, 2011); excluding aspartate transcarbamoylase results in finding an average of 
61% of known biological ligand binding sites. In addition, we emphasize that many of the “false positives” 
(sites predicted to be important allosterically, but do not correspond to known ligand binding sites) may 
nevertheless function as latent allosteric sites. Such sites potentially may impart allosteric properties 
through previously uncharacterized ligands or through artificial ligands (such as drugs targeted to specific 
proteins). 
 
3.1-b Identifying Interior-Critical Residues 

As discussed, allosteric residues within the protein interior often act to transmit signals. The 
identification of such residues is accomplished by a network formalism (Figure 1B), wherein the objective 
is to identify network nodes (i.e., residues) that are essential for communication between communities (i.e., 
groups of highly inter-connected residues of the contact map). This first entails representing a protein 
structure as a network of interacting residues, and then weighting the connections (edges) between these 
residues using information about inferred protein motions. Once the edges are weighted, the network is 
decomposed into distinct modules, and the residues that are identified as being important for inter-module 
communication are identified as the interior-critical residues. The details of this formalism are provided 
here. 
 
3.1-b-i  Network Formalism and Weighting Scheme 

The network representing interacting residues is first constructed. An edge between residues i and 
j is drawn if any heavy atom within residue i is located within 4.5 Angstroms of any heavy atom within 
residue j, and we exclude the trivial cases of pairs of residues that are adjacent in sequence, which are not 
considered to be in contact within the network. 

Network edges are then weighted on the basis of correlated motions of the interacting residues, 
with these motions provided by the same ANMs that had been used in the identification of surface-critical 
residues (as with the identification of surface-critical residues, it is also possible to model conformational 
changes by using information regarding pairs of distinct conformations; see Supplemental Experimental 
Procedures section 3.2-c). Again, the 10 lowest-frequency non-trivial modes are produced using the 
“representative structures” (see discussion in Supplemental Experimental Procedures section 3.2-b) within 
each cluster of a multiple structure alignment for a given protein. We emphasize that, although ANMs are 
more coarse-grained than molecular dynamics, our use of ANMs is motivated by their much faster 
computational efficiency, which is a required feature for our database-scale analysis. 

The edge weighting scheme is performed as follows: an “effective distance” Dij for an edge 
between interacting residues i and j is set to Dij = −log(∣Cij∣), where Cij designates the correlated motions 
between residue i and j: 

 
Cij  =  Covij  /  √(⟨ri

2⟩⟨rj
2⟩) 

 
where 
 

Covij  =  ⟨ri ! rj⟩$
 

Here, ri and rj designate the vectors associated with residues i and j (respectively) under a particular mode. 
The brackets in the term ⟨ri ! rj⟩ indicate that we are taking the mean value for the dot product ri ! rj over 
the 10 lowest-frequency non-trivial modes. 

An example may help to clarify this. If two interacting residues exhibit a high degree of correlated 
motion, then the motion of one may tell us about the motion of the other, suggesting a strong flow of 
energy or information between the two residues, resulting in a low value for Dij: a strong correlation (or a 
strong anti-correlation) between nodes i and j result in a value for ∣Cij∣ that is close to 1. This gives a low 
value for Dij (−log(∣Cij∣) ≈ 0). Thus, given a strong correlated motion, this effective distance Dij between 
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residues i and j is very short. This small Dij means that any path involving this pair of residues is likewise 
shorter as a result, thereby more likely placing this pair of residues within a shortest path, and more likely 
rendering this pair a bottleneck pair. In sum, this edge-weighting scheme is such that a high correlation in 
motion results in a short effective distance, thereby more likely rendering this a bottleneck pair of residues.  

In the opposite scenario, for interacting residues with poor correlation values (Cij ≈ 0), a large 
effective distance Dij results, thereby making it more difficult for the pair of residues to lie within shortest 
paths or within the same community. 

Once all connections between interacting pairs of residues are appropriately weighted and the 
communities are assigned using the Girvan-Newman (GN) algorithm (Girvan et al., 2002) with these 
effective distances, a residue is deemed to be critical for allosteric signal transmission (i.e., an interior-
critical residue) if it is involved in the highest-betweenness edge connecting two distinct communities. A 
given edge’s betweenness is taken to be the number of shortest paths involving that edge, where a path 
length is the sum of its associated effective edge distances (see above). The shortest distance between each 
NC2 pair of nodes in the network of N residues is calculated with the Floyd–Warshall algorithm. See Figure 
2 for examples of community partitions and associated interior-critical residues. 
 
3.1-b-ii  Decomposing Proteins into Modules Using Different Algorithms 

We use the GN formalism to identify the community structure of networks as part of our 
framework to identify interior-critical residues. By identifying the “community structure”, we are referring 
to the problem of finding the optimal partitioning of a network into different “modules” (i.e., communties), 
such that each node within a module is highly connected to other nodes within the same module, and 
minimally conntected to other nodes in outside modules. However, although we employ GN, many other 
algorithms have been devised to identify community structure. 

In a study comparing different algorithms (Lancichinetti and Fortunato, 2009), an information 
theory-based approach (Rosvall and Bergstrom, 2007) was shown to be one of the strongest methods. This 
approach (termed “Infomap”) effectively reduces the network community detection problem to a problem 
in information compression: the prominent features of the network are extracted in this compression 
process, giving rise to distinct modules; further details are provided in (Rosvall and Bergstrom, 2007). 

Perhaps surprisingly, even though both GN and Infomap achieve similar network modularity (with 
GN being slightly better), Infomap produces at least twice the number of communities relative to that of 
GN when applied to protein structures, and it thus generates many more interior-critical residues (Table 
S3). Within the set of 12 canonical proteins, GN and Infomap generate an average of 12.0 and 36.8 
communities, respectively. This corresponds to an average of 44.8 and 201.4 interior-critical residues when 
using GN and Infomap, respectively. Thus, given that GN produces a more selective set of residues for 
each protein, we use GN throughout our analyses. 

Although the critical residues identified by GN do not always correspond to those identified by 
Infomap, the mean fraction of GN-identified interior-critical residues that match Infomap-identified 
residues is 0.30 (the expected mean, based on a uniformly-random distribution of critical residues 
throughout the protein, is 0.21, p-value=0.058). Furthermore, we observe that obvious structural 
communities are detected when applying both methods: a community generated by GN is often the same as 
that generated by Infomap, and in other cases, a community generated by GN is often composed of sub-
communities generated by Infomap. In addition, the modularity from the network partitions generated by 
GN and Infomap are comparable. For the 12 canonical systems, the mean modularity for GN and Infomap 
is 0.73 and 0.68, respectively. GN modularity values are consistently at least as high as those in Infomap 
because GN explicitly optimizes modularity in partitioning the network, whereas Infomap does not. 

Together, these results suggest that both GN and Infomap generate similar partitions. Roughly, the 
set of interior-critical residues identified by GN partially constitute a subset of those identified with 
Infomap. If these sets of residues were completely different, then the choice between GN and Infomap 
would be difficult, as the results in our downstream conservation analyses would then be highly sensitive to 
our community detection method of choice. Given that the two residue sets are not disjoint, our choice of 
GN over infomap was largely guided by the fact that GN is far more selective in identifying important 
network elements (i.e., interior-critical residues), as evidenced in Table S3. In contrast, Infomap generates a 
much less selective set of interior-critical residues. 
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3.1-c  STRESS (STRucturally-identified ESSential residues) 
We have developed an easy-to-use web tool in order to enable those in the structural biology 

community to identify surface- and interior-critical residues within their own proteins of interest. Our 
server has been designed to be both user-friendly and highly efficient. 

We use local searching supported by hashing to perform a local search in each sampling step of 
the Monte Carlo simulations, which takes constant time. This approach brings down the asymptotic 
computational complexity by an order of magnitude, relative to a simpler implementation without 
optimization (Figures 3B and 3C). The time complexity of the core computation, Monte Carlo sampling, is 
O(|T||S|), where T and S are simulation trials and steps for each trial, respectively. After carefully profiling 
and optimizing for speed (with optimizations introduced through changes in the workflow, data structures, 
numerical arithmetic, etc.), a typical case takes ~30 minutes on a E5-2660 v3 (2.60GHz) core. 

In terms of operation, our tool utilizes two types of servers: front-end servers that handle incoming 
HTTP requests and back-end servers that perform algorithmic calculations (Figure 3A). Communication 
between these two types of servers is handled by Amazon's Simple Queue Service (SQS). When our front-
end servers receive a new request, they add the job to the queue and then return to requests immediately. 
Our back-end servers poll the queue for new jobs and run them when capacity is available. Amazon's 
Elastic Beanstalk offers several features that enable us to dynamically scale our web application. We use 
Auto Scaling to automatically adjust the number of back-end servers backing our application based on 
predefined conditions, such as the number of jobs in the queue and CPU utilization. Elastic Load Balancer 
automatically distributes incoming network traffic. This system ensures that we are able to handle varying 
levels of demand in a reliable and cost-effective manner. Since we may have multiple servers backing our 
tool simultaneously (some handling HTTP requests and some performing calculations, any of which may 
be terminated at any time by Auto Scaling), it is important that our servers are stateless. We thus store input 
and output files remotely in an S3 bucket, which is accessible to each server via RESTful conventions. The 
corresponding source code and README files are made available through Github 
(github.com/gersteinlab/STRESS). 
 
 

3.2  High-Throughput Identification of Alternative 
Conformations 
 There are many proteins within the PDB for which multiple distinct conformations are available. 
In many cases, a large number of structures may represent a relatively small number of conformations. We 
have sought identify such alternative conformations using a structural clustering scheme as part of our 
framework for identifying critical residues. The purpose of developing this clustering scheme is three-fold: 
 

1) We are interested in those structures that exhibit distinct conformations, as we are focusing on 
cases for which pronounced conformational change plays an essential role in allostery. 

2) The clustering scheme ultimately enables us to perform an important control. Namely, it enables 
us to address the question: are the results robust to alternative methods of inferring information 
about conformational change? ANMs provide only one means of defining the vectors for predicted 
conformational change. However, another approach is to use the direct displacement vectors from 
the crystal structures of alternative conformations. This alternative constitutes a method that we 
term “absolute conformational change” (ACT) in the manuscript. 

3) ANMs constitute the bulk of our analysis, so we must be confident that the structures analyzed are 
suitable: if a given protein is not believed to undergo significant conformational change, it may 
not be appropriate to apply ANMs, as the ANMs can incorrectly predict large-scale 
conformational change where no such change is believed to occur.  

 
An overview of our pipeline is provided in Figure S3A. Broadly, we perform MSAs for thousands of 

structures, with each alignment consisting of sequence-identical groups. Within each alignment, we cluster 
structures using RMSD to determine the distinct conformational states. We then use models of protein 
conformational transitions to identify surface- and interior-critical residues. 
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3.2-a  Database-Wide Multiple Structure Alignments 
 FASTA files of all SCOP domains were downloaded from the SCOP website (version 2.03) (Fox 
et al., 2014; Murzin et al., 1995). We first worked with domains to probe for intra-domain conformational 
changes, as better alignments are generally possible at the domain level. For all other analyses reported, all 
results are based on groups of structures that are 100% sequence identical. We removed structures with 
resolution values poorer than 2.8, as well as any PDB files with R-Free values poorer than 0.28. STAMP 
(Russell and Barton, 1992) and MultiSeq (Roberts et al., 2006) were used to generate the multiple structure 
alignments (MSAs). For each MSA, the final output is a symmetric matrix representing all pairwise RMSD 
values, which are then used as input to the K-means module (below). 
 
3.2-b  Identifying Distinct Conformations within an MSA 

For each MSA produced in the previous step, the corresponding matrix of pairwise RMSD values 
describes the degree and nature of structural heterogeneity among the crystal structures. The objective is to 
use this data in order to identify the biologically distinct conformations represented by an ensemble of 
structures. Our framework relies on a modified version of the K-means clustering algorithm, termed K-
means clustering with the gap statistic (Tibshirani et al., 2001). A priori, performing K-means clustering 
assumes prior knowledge of the number of clusters (i.e., “K”) to describe a dataset, and the gap statistic 
enables one to identify the optimal number of clusters intrinsic to a complex or noisy dataset. Given 
multiple resolved crystal structures for a given domain, this method estimates the number of 
conformational states represented in the ensemble of structures. 

As a first step toward clustering the structure ensemble of N structures, we use multidimensional 
scaling (MDS) to convert an N-by-N matrix of pairwise RMSD values into a set of N distinct points, with 
each point representing a structure in (N-1)-dimensional space. The values of the N-1 coordinates assigned 
to each of these N points are such that the Euclidean distance between each pair of points is the same as 
that corresponding pair’s RMSD value in the original matrix. 

We point the reader to the work by Tibshirani et al for details governing how we perform K-
means clustering with the gap statistic, as well as more details on the theoretical justifications of this 
approach (Tibshirani et al., 2001). However, an overview is provided here. Assume that the data takes the 
form of 60 data points, with each point represented in 2D space. 

1) Start by assuming that the data can be represented with K clusters. Perform standard K-means 
clustering on the data to assign each point to one of K clusters. Then, for each cluster k (which contains 
data points in the set Ck) measure Dk, which describes the ‘density’ of points within cluster k: 
 

 
 

 
2) Calculate an overall normalized score W to describe how well-clustered the resultant system has 

become when assigning all 60 data points to the K clusters (nk denotes the number of points in cluster k):  
 

 
 

3) Given our data, how well does this number of assigned clusters K actually represent the ‘true’ 
number of clusters, relative to a null model without any apparent clustering? To address this, produce a null 
distribution of 60 randomly (i.e., uniformly) distributed data points that lack any clear clustering such that 
the randomly placed points lie within the same bounding box of the observed data. 

4) Repeat step (3) M times, and each time a random null distribution is produced, calculate Wnull(K) 
(assuming K clusters), just as W is calculated for the observed data. Then calculate the meanM{log(Wnull(K))} 
for these M null distributions. The meanM{log(Wnull(K))} measures how well random systems (with the same 
number of data points and within the same variable ranges as the observed data) can be described by K 
clusters. The M log(Wnull(K)) values produced by the null models have a standard deviation that is ultimately 
converted to sk; see (Tibshirani et al., 2001) for details: 

 
sk  =  σ(k)√(1 + 1/B) 
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5) Calculate the gap statistic δ(K), given K clusters. This measures how well our observed data 
may be described by K clusters relative to null models containing the same number of points and within the 
same variable ranges. A high δ(K) signifies that our data is well-described using K clusters. Assuming K 
clusters, the gap statistic is given as:  

   
δ(K)  =  meanM{log(Wnull(K))} – log(W) 

 
 6) Obtain successive values δ(K+1), δ(K+2), δ(K+3), etc. by incrementing the value for K and 
repeating the steps (1) - (5). The optimal K is the first (i.e., lowest) K such that δ(K) >= δ(K+1) – sk+1: 
 

Koptimal = {K| δ(K) >= δ(K+1) – sk+1} 
 

We confirmed that these Koptimal values accurately reflect the number of clusters by manually 
studying dozens of MSAs. We also examined several negative controls, such as CAP, an allosteric protein 
that does not undergo conformational change. We identified a vast array well-studied allosteric domains 
and proteins. There may be many factors driving conformational change, and those cases for which the 
change is induced by the binding to a simple ligand (i.e., a simple consideration of apo or holo states) 
constitute only a very small subset of the conformational shifts observed in the PDB. The gap statistic 
performed well in discriminating crystal structures that constitute such a diverse set. 

Each structure is assigned to its respective cluster using the assigned optimal K-values as input to 
Lloyd’s algorithm (i.e., standard K-means clustering). For each sequence group, we perform 1000 K-means 
clustering simulations on the MDS coordinates, and take the most common partition generated in these 
simulations to assign each structure to its respective cluster.  We then select a “representative structure” 
from each of the assigned clusters. This representative  is the member with the lowest Euclidean distance to 
the cluster mean, using the coordinates obtained by MDS (see description above). These cluster 
representatives are then taken as the distinct conformations for this protein, and they are used for the 
binding leverage calculations and networks analyses (below). 
 
3.2-c  Models of Conformational Change via Displacement Vectors 
from Alternative Conformations 

Unless otherwise specified, we use normal modes analysis to model conformational change. 
However, one potential concern with this approach is that normal modes may not faithfully represent 
plausible conformational changes. To evaluate the robustness of different means for inferring motions 
(especially those results relevant to the conservation of critical residues), we also model conformational 
change using vectors connecting pairs of corresponding residues in crystal structures of alternative 
conformations. We term this approach “absolute conformational transitioning” (ACT). This more direct 
model of conformational change is especially straightforward to apply to single-chain proteins (applying 
ACT on a database scale to multi-chain complexes would introduce confounding factors related to chain-
chain correspondence between such complexes when each complex has multiple copies of a given chain). 
 
3.2-c-i  Inferring Protein Conformational Change Using Displacement Vectors from Alternative 
Conformations 

Given a particular protein, how are these ACT vectors defined to find critical residues? We discuss 
a hypothetical example consisting of a multiple structure alignment of 8 sequence-identical structures. 
Starting with the protein’s alignment using all 8 structures, we determine the optimal number of clusters 
represented by the alignment using the K-means algorithm with the gap statistic (see the above 
Supplemental Experimental Procedures section 3.2-b). Suppose that these 8 structures may be grouped into 
2 distinct clusters (4 structures in cluster A, and 4 in cluster B). As discussed in Supplemental Experimental 
Procedures section 3.2-b, a representative structure is taken from each of these two clusters (structure A 
and structure B). These two representatives are taken to constitute the alternative conformations for the 
protein. As an alternative to using ANMs, we may use structure A and structure B to infer information 
about the protein’s global conformational shifts by assigning a displacement vector to each residue (for 
instance, residue Y140), where the displacement vector is simply defined by the two corresponding 
residues in the different structures within the structure alignment (i.e., Y140 within structure A of the 
structure alignment and Y140 within structure B of the structure alignment). Because the structures are 
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sequence-identical, each residue in one of these two representative structures matches a residue on the other 
representative. If each structure represents a sequence-identical 200-residue protein, then 200 ACT vectors 
represent the conformational change. These 200 ACT vectors for the protein may then be used to identify 
surface- and interior-critical residues (see below), and downstream analysis on these residues is then 
performed. 
 
3.2-c-ii  Identifying Surface-Critical Residues Using Vectors from Alternative Conformations 

All preliminary steps performed when identifying surface-critical residues using normal modes 
(such as the MC search) are the same as those when using ACT vectors, with the important difference, of 
course, being the use of these ACT vectors as oppose to using eigenvectors when inferring motion. Thus, 
when using ACT vectors, the binding leverage score for a given site is simply calculated as: 
 

 
 
where the sum is taken over all pairs of residues (i,j) such that the line connecting the pair lies within 3.0 
Angstroms of any atom within the simulated ligand, and the value ∆dij for each residue pair (i,j) represents 
the change in the distance between residues i and j when this distance is calculated in alternative crystal 
structure. Thus, for each residue, the 10 vectors provided by the normal modes are simply replaced by the 
single ACT vector that defines the change in position of that residue when going from the protein 
conformation given by one representative structure to the conformation given by the other representative. 
 
3.2-c-iii  Identifying Interior-Critical Residues Using Vectors from Alternative Conformations 

When identifying interior-critical residues, ACT vectors may be produced in the exact same way 
that they are produced when identifying surface-critical residues. When identifying interior-critical 
residues, the inferred conformational changes are used in order to assign weights within the residue contact 
maps. In the scheme in which normal modes are used, these weights are assigned by averaging over to 10 
sets of vectors given by the 10 modes. However, when using ACT vectors, there is only one vector for each 
residue (i.e., the vector defining the “displacement” defined by two structures). Thus, when using ACT 
vectors, the weight parameters are calculated as 

 
Cij  =  Covij  /  √(|ri|2$*$|rj|2) 

 
where 
 

Covij  =  ri ! rj$
 
Here, ri denotes the vector that defines the change in position for residue i when going from one 

representative conformation to the other. 
 

3.2-c-iv  Using Vectors from Alternative Conformations Recapitulates Results Using Normal Modes  
When we use ACT vectors to apply the modified binding leverage framework for these proteins, 

we again observe that our surface-critical residues are significantly more conserved than are non-critical 
residues (Figure 6A), and the same trend is also observed when ACT vectors are applied in our dynamical 
network analysis for identifying interior-critical residues (Figure 6B). The fact that ACT vectors produce a 
similar set of results to those obtained using normal modes analysis suggests that our approach is robust to 
different methods for inferring protein conformational change. We note that there are too few human 
single-chain proteins to perform a reliable analysis in which conservation is evaluated using 1000 Genomes 
or ExAC data – for instance, only 9 (16) structures are such that 1000 Genomes (ExAC) SNVs overlap with 
interior-critical residues. 
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3.3  Evaluating Conservation of Critical Residues 
Using Various Metrics and Sources of Data 

How conserved are the surface- and interior-critical residues identified, relative to other residues 
in the protein? Certainly, allosteric residues are known to exhibit conservation, and we should expect that 
the critical residues identified exhibit strong conservation. Conservation may be measured across diverse 
evolutionary time scales. Metrics for selective constraint that correspond to long evolutionary time scales 
entail sequence comparisons across diverse species. At the other extreme, metrics for short-term 
evolutionary conservation entail analyzing multiple genomes from within the same species (e.g., multiple 
human genomes). In order to evaluate the relative conservation of the critical residues identified in this 
study, we measure conservation using both types of measures, and demonstrate that, as expected, critical 
residues are under stronger evolutionary constraint relative to other regions of the protein. 
 
 
3.3-a  Conservation Across Species 

All cross-species conservation scores represent the ConSurf scores, as downloaded from the 
ConSurf Server (Ashkenazy et al., 2010; Celniker et al., 2013; Glaser et al., 2003; Landau et al., 2005), in 
which ConSurf scores for each protein chain are normalized to have a mean ConSurf score of 0 (the 
ConSurf score variance is 1 for each chain). Low (i.e., negative) ConSurf scores represent a stronger degree 
of conservation, and high (i.e., positive) scores designate weaker conservation. We perform cross-species 
conservation analysis on those proteins for which ConSurf files are available from the ConSurf server, and 
all ConSurf scores were calculated using default parameters, listed here: 

 
 

 Homolog search algorithm: CSI-BLAST 
 Number of iterations: 3 
 E-value cutoff: 0.0001 
 Proteins database: UniRef-90 
 Maximum homologs to collect: 150 
 Maximal %ID between sequences: 95 
 Minimal %ID for homologs: 35 
 Alignment method: MAFT-L-INS-i 
 Calculation method: Baysian 
 Calculation method: JTT 
 
 

Each individual point within the cross-species conservation plots (e.g., Figures 4B, 4F, and 6) 
represents data from one structure: the value of the point for any given structure represents the mean 
conservation score for all residues within one of two classes: the set of N critical residues within a protein 
structure (surface or interior) or a randomly-selected set of N non-critical residues (with the same “degree”, 
see below) within the same structure. The randomly selected non-critical set of residues was chosen in a 
way such that, for each critical residue with degree k (k being the number of non-adjacent residues with 
which the critical residue is in contact, see below), a randomly selected non-critical residue with the same 
degree k was included in the set. The distributions of non-critical residues shown are very much 
representative of the distributions observed when re-building the random set many times. 

Note that the degree (i.e., k) of residue j is defined as the number of residues which interact with 
residue j, where residues adjacent to residue j in sequence are not considered, and an interaction is defined 
whenever any heavy atom in an interacting residue is within 4.5 Angstroms of any heavy atom in the 
residue j. We use degree as a measure of residue burial for several reasons. This metric for burial is 
consistent with our networks-based analysis for identifying interior-critical residues, as well as our use of 
residue-residue contacts in building networks for producing the ANMs. In addition, degree is also an 
attractive metric because it is discrete in nature, thereby allowing us to generate null distributions of non-
critical residues with the exact same degree distribution. 
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3.3-b  Measures of Conservation Amongst Humans from Next-
Generation Sequencing 

All SNVs intersecting protein-coding regions that result in amino acids changes (i.e., 
nonsynonymous SNVs) were collected from the phase 3 release of The 1000 Genomes Project (McVean et 
al., 2012). VCF files containing the annotated variants were generated using VAT (Habegger et al., 2012). 
For nonsynonymous SNVs, the VCF files included the residue ID of the affected residue, as well as 
additional information (such as the corresponding allele frequency, the ancestral allele, and the residue 
type). To map the 1000 Genomes SNVs on to protein structures, FASTA files corresponding to the 
translated chain(s) of the respective transcript ID(s) were obtained using BioMart (Smedley et al., 2015). 
FASTA files for each of the PDB structures associated with these transcript IDs (the PDB ID-transcript ID 
correspondence was also obtained using BioMart) were generated based on the ATOM records of the PDB 
files. For each given protein chain, BLAST was used to align the FASTA file obtained from BioMart with 
that generated from the PDB structure. The residue-residue correspondence obtained from these alignments 
was then used in order to map each SNV to specific residues within the PDB. As a quality assurance 
mechanism, we confirmed that the residue type reported in the VCF file matched that specified in the PDB 
file. 
 ExAC SNVs were downloaded from the ExAC Browser (Beta), as hosted at the Broad Institute. 
SNVs were mapped to all PDBs following the same protocol as that used to map 1000G SNVs, and only 
non-synonymous SNVs in ExAC were analyzed. When evaluating SNVs from the ExAC dataset, minor 
allele frequencies (MAF) were used instead of DAF values. The ancestral allele is not provided in the 
ExAC dataset – thus, analysis is performed for MAF rather than DAF. However, we note that little 
difference was observed when using AF or DAF values with 1000 Genomes data, and we believe that the 
results with MAF values would generally be the same as those with DAF values. We also highlight the 
attractive feature of recapitulating the general conservation trends observed using a separate matric. 

When analyzing both 1000 Genomes and ExAC data, we consider only those structures in which 
at least one critical and one non-critical residue intersect a non-synonymous SNV. This enables a more 
direct comparison between critical and non-critical residues, as comparisons between two different proteins 
would rely on the assumption of equal degrees of selection between such proteins. 

Each individual point within the intra-human conservation plots (e.g., Figures 4C, 4D, 4G, and 
4H) represents data from one structure: the value of the point for any given structure represents the mean 
score (DAF or MAF, for 1000 Genomes or ExAC SNVs, respectively) for all critical (red bars) or non-
critical (blue bars) residues to intersect SNVs. 

The fraction of rare SNVs intersecting a particular “protein annotation” (described below) is 
defined to be the ratio of the number of rare non-synonymous SNVs in that annotation to the total number 
of non-synonymous SNVs intersecting that annotation. An annotation for a given protein is simply the set 
of residues within a particular category, such as the set of all surface-critical residues (or alternatively the 
set of all interior-critical residues, or the set of non-critical residues). We define the term “rare” to mean 
that a 1000 Genomes SNV has a DAF value below a certain threshold – for instance, variable thresholds 
ranging from DAF = 0.05% to 0.50% are evaluated in Figures 5A and 5C. An SNV in ExAC is defined to 
be rare if it has a MAF value below a certain threshold – variable thresholds ranging from MAF = 0.05% to 
0.50% are evaluated in Figures 5B and 5D.  

If a particular annotation, such as the set of surface-critical residues, has a rare SNV, then this 
rarity may potentially be a consequence of purifying selection acting to remove a deleterious SNV from the 
population pool (thereby making it rare). Such an annotation may thus be sensitive to sequence changes, 
and would thus be conserved. If there is a high fraction of such rare SNVs within the annotation, it provides 
further confidence to the claim that the annotation is conserved. Thus, a high fraction of rare SNVs is used 
as a signature for stronger conservation. Supporting this intuition, previous studies have observed that 
conserved genomic regions within the human population harbor higher fractions of rare SNVs (Khurana et 
al., 2013; McVean et al., 2012; Tennessen et al., 2012). 
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