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Supporting Information File S1:  

Model description of the PDGF signalling network in PBN format 

 

  

This document provides a detailed description of the PBN models of PDGF signalling which are 

presented in the manuscript. The model descriptions are separated into 3 parts as follows: 

1) The core model structure with major intracellular signalling pathways 

2) The integration of crosstalk interactions which were proposed in literature 

3) The refined model structure after integrating data from additional experiment 

Please note that we applied the annotation ‘->’ to depict an activating interaction and ‘-|’ to 

depict an inhibitory interaction. 

 

Part 1: The core model structure with major intracellular signalling pathways 

 We built a core model structure of PDGF signalling comprising PDGFRα and its regulatory 

mechanisms together with the major downstream signalling pathways including MAPK, 

PI3K/AKT/mTOR, PLCγ/PKC pathways as well as STAT5. The core model topology is shown below: 

 

 

 

 From the top, we depicted the induction of PDGFRα-transgene by doxycycline (DOX) in our 

cell system. The regulatory mechanisms of mutated PDGFRα (mPDGFR, represented as ‘PDGFR’ in the 
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model) are governed by cytoplasmic phosphatase (PPX), protein tyrosine phosphatase shp2 (SHP2) 

and proteosomal degradation via ubiquitination promoted by c-Cbl (cCbl). The network topology of 

downstream signalling pathways comprises as follows: 

- MAPK pathway (SHP2 -> Grb2SOS/GabSOS -> Ras -> Raf1 -> MEK1,2 (MEK12) -> ERK1,2 

(ERK12)) 

- PI3K-AKT-mTOR pathway (PI3K -> PIP3 -> PDK -> AKT <-> mTOR) with basal activity of PTEN 

(bPTEN) inhibiting PIP3 and basal activity of PDK (bPDK) activating PDK. Note that PIP3 can 

also directly activate Akt. 

- PLCg-PKC pathway (PLCg -> IP3_DAG_Ca -> PKC) 

- STAT5 

According to this model topology, we formulated the model descriptions with Boolean rules 

as follows: 

=== PDGFR activation and regulatory mechanisms === 
% DOX:   rules=[rules; {'DOX = 1','1','C'}];                         
% PPX:   rules=[rules; {'PPX = ~PDGFR','1','C'}]; 
% cCbl:   rules=[rules; {'cCbl = PDGFR','1','C'}]; 
% PDGFR:  rules=[rules; {'PDGFR = DOX','1','D'}]; 

rules=[rules; {'PDGFR = DOX & ~cCbl','1','D'}]; 
rules=[rules; {'PDGFR = DOX & ~PPX','1','D'}]; 
rules=[rules; {'PDGFR = DOX & ~SHP2','1','D'}]; 

 
=== MAPK pathway === 
% SHP2:  rules=[rules; {'SHP2 = PDGFR','1','C'}]; 
% Grb2SOS:  rules=[rules; {'Grb2SOS = SHP2','1','C'}];  
% GabSOS:  rules=[rules; {'GabSOS = SHP2','1','C'}]; 
% Ras:   rules=[rules; {'Ras = Grb2SOS | GabSOS','1','C'}]; 
% Raf1:   rules=[rules; {'Raf1 = Ras','1','C'}]; 
% MEK12:  rules=[rules; {'MEK12 = MEK12_induce','1','C'}]; 
% MEK12_induce: rules=[rules; {'MEK12_induce = Raf1','1','C'}]; 
% ERK12:  rules=[rules; {'ERK12 = MEK12','1','C'}]; 

 
=== PI3K-AKT-mTOR pathway === 

      % PI3K_PDGFR:  rules=[rules; {'PI3K_PDGFR = PDGFR','1','C'}];             
      % prePI3K:  rules=[rules; {'prePI3K = PI3K_PDGFR','1','C'}]; 
      % PI3K:   rules=[rules; {'PI3K = prePI3K','1','C'}]; 

% bPTEN:   rules=[rules; {'bPTEN = 1','1','C'}]; 
% PIP3:   rules=[rules; {'PIP3 = PI3K','1','D'}]; 

rules=[rules; {'PIP3 = PI3K & ~bPTEN','1','D'}]; 
% bPDK:  rules=[rules; {'bPDK = 1','1','C'}]; 
% PDK:   rules=[rules; {'PDK = PIP3','1','D'}]; 

rules=[rules; {'PDK = bPDK','1','D'}]; 
% Akt:   rules=[rules; {'Akt = PIP3','1','D'}]; 

rules=[rules; {'Akt = PDK','1','D'}]; 
rules=[rules; {'Akt = MTOR','1','D'}]; 

% MTOR:  rules=[rules; {'MTOR = Akt','1','C'}]; 
 
       === PLCg-PKC pathway === 
      % PLCg:   rules=[rules; {'PLCg = PDGFR','1','C'}]; 

% IP3_CaIon_DAG: rules=[rules; {'IP3_CaIon_DAG = PLCg','1','C'}]; 
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% PKC_induce:  rules=[rules; {'PKC_induce = IP3_CaIon_DAG','1','C'}];             
    % PKC:   rules=[rules; {'PKC = PKC_induce','1','C'}]; 
        
        === STAT5 === 

% STAT5:  rules=[rules; {'STAT5 = PDGFR','1','C'}]; 
 
 Based on these assigned Boolean rules, there are a few important observations. First, the flags 

‘C’ and ‘D’ at the end of the Boolean rules are defined to correlate with the terms ‘Constant’ and 

‘Default’ respectively.  Once the flag ‘C’ is used, it means that the selection probability of that Boolean 

rule will be constant and the corresponding node (molecule) will not be optimised so all rules for this 

node need to have the flag ‘C’ then. This flag is exclusively applied for the nodes with only one input 

as the probability of activating or inhibiting such nodes have to be 1. In parallel, when a node has more 

than one incoming interaction, multiple Boolean rules can be assigned for such node and the 

respective node is typically optimised. The flag ‘D’ can be assigned throughout multiple Boolean rules 

on a single node to give a full boundary of the selection probability from 0 to 1 during the 

optimisation.1 With this flag assigned, each regulatory mechanism as coded in different Boolean rule 

will have an equal chance to dominate the other. In general, this assignment is defined once the 

influence from each interaction is unclear. For instance, the activation of Akt can be mediated by PIP3, 

PDK and mTOR but there is no prior information nor assumption whether one specific source of signal 

will be stronger than the others. 

 

 Another observation that should be noted is some molecules, i.e. MEK1,2, PI3K and PKC have 

intermediate nodes. These nodes represent the intermediate steps of signal transduction processes 

where multiple activating and inhibiting interactions take place. On the last observation on the 

inhibitory mechanisms, we applied 2 types of single perturbation to the system, i.e. additional YF point 

mutations to abrogate recruitment sites on the PDGFRα (dMAPK and dPI3K) and signalling inhibitors 

(Wortmannin and U0126) in the initial experiment. Based on our experimental observations and 

literature information, we found that the abrogation of tyrosine residue Y720F in dMAPK mutant also 

affects the binding of pPLCg to PDGFRα while Wortmannin has an additional off-target on PKC apart 

from inhibiting PI3K. To account for these inhibitory mechanisms without adding more nodes, we 

repeated the same Boolean rule for the activating interaction once and we set the second Boolean 

rule as 0 once the targeted molecule is inhibited. To illustrate our methodology, we provide an 

example of Boolean rules for the D842V-PDGFRα mutant without YF point mutation or signalling 

inhibitor (DV-WT) compared to the Boolean rules of D842V-PDGFRα-dMAPK mutant and Wortmannin 

treatment (DV-dMAPK-Wort.) as follows: 

 
 === DV-WT === 
            % SHP2:  rules=[rules; {'SHP2 = PDGFR','1','D'}]; 
                rules=[rules; {'SHP2 = PDGFR','1','D'}];                         
             % MEK12:  rules=[rules; {'MEK12 = MEK12_induce','1','D'}]; 
                rules=[rules; {'MEK12 = MEK12_induce','1','D'}];                                     
             % PI3K_PDGFR:  rules=[rules; {'PI3K_PDGFR = PDGFR','1','D'}]; 
                rules=[rules; {'PI3K_PDGFR = PDGFR','1','D'}];                         
             % prePI3K:  rules=[rules; {'prePI3K = PI3K_PDGFR','1','C'}]; 

                                                             
1 If the sum of optimised selection probabilities from multiple Boolean rules is larger than 1, the selection 
probability of each Boolean rule will be normalised to the sum of all probabilities in order to ensure that the sum 
of the selection probabilities will be 1. 
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             % PI3K:   rules=[rules; {'PI3K = prePI3K','1','D'}]; 
                rules=[rules; {'PI3K = prePI3K','1','D'}]; 
             % PLCg:   rules=[rules; {'PLCg = PDGFR','1','D'}]; 
                rules=[rules; {'PLCg = PDGFR','1','D'}]; 
             % PKC:    rules=[rules; {'PKC = PKC_induce','1','D'}]; 
                rules=[rules; {'PKC = PKC_induce','1','D'}]; 
 

 === DV-dMAPK-Wort. === 

            % SHP2:  rules=[rules; {'SHP2 = PDGFR','1','D'}]; 
                rules=[rules; {'SHP2 = 0','1','D'}]; % effect of dMAPK                         
             % MEK12:  rules=[rules; {'MEK12 = MEK12_induce','1','D'}]; 
                rules=[rules; {'MEK12 = MEK12_induce','1','D'}];                                     
             % PI3K_PDGFR:  rules=[rules; {'PI3K_PDGFR = PDGFR','1','D'}]; 
                rules=[rules; {'PI3K_PDGFR = PDGFR','1','D'}];                         
             % prePI3K:  rules=[rules; {'prePI3K = PI3K_PDGFR','1','C'}]; 
             % PI3K:   rules=[rules; {'PI3K = prePI3K','1','D'}]; 
                rules=[rules; {'PI3K = 0','1','D'}]; % effect of Wortmannin 
             % PLCg:   rules=[rules; {'PLCg = PDGFR','1','D'}]; 
                rules=[rules; {'PLCg = 0','1','D'}]; % effect of dMAPK 
             % PKC:    rules=[rules; {'PKC = PKC_induce','1','D'}]; 
                rules=[rules; {'PKC = 0','1','D'}]; % effect of Wortmannin 
 

 As demonstrated, the second rules of SHP2 and PLCg were changed to 0 to account for the 

inhibitory effect of dMAPK while the second rules of PI3K and PKC were also set to 0 to take the 

inhibitory effect of Wortmannin into consideration. A similar assignment was applied to the second 

rule of PI3K_PDGFR in order to account for the dPI3K effect, and it was also applied to the second rule 

of MEK12 in order to account for U0126 inhibition. With the methodology for the assignment of 

Boolean rules as demonstrated, we were able to generate the model structures of PDGF signalling 

which could represent the six experimental conditions within the training dataset and we 

subsequently applied them to perform model fitting accordingly. 

 

Part 2: The integration of crosstalk interactions which were proposed in literature 

 After we tried to fit the core model topology to the training dataset, we discovered that the 

model fitted to the data relatively well but there were still a few data points where could not be fitted. 

We hypothesise that a certain number of crosstalk interactions is required to explain all data points. 

Therefore, we built 9 additional model variants by adding the crosstalk interactions which were 

proposed in the literature to the core model topology one-at-a-time and we re-performed the 

optimisation on the model variants to the training dataset. The types and targets of the crosstalk 

interactions in the 9 model variants are shown as follows: 
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In terms of the implementation in the PBN model, one interaction was added to the core 

model topology (Part 1) for each model variant. For instance, the model variant with crosstalk number 

9 (PKC -> MEK12) has the following Boolean rules: 

% MEK12_induce: rules=[rules; {'MEK12_induce = Raf1','1','H'}]; 
rules=[rules; {'MEK12_induce = PKC','1','L'}]; 

  
Note that another set of flags ‘H’ and ‘L’ were used. As previous mentioned in the manuscript, 

we consider that the signals flow through canonical pathways stronger than flowing pass crosstalk 

interactions. Hence, we assign the flag ‘H’ (High) for the canonical interaction Raf1 -> MEK12 and the 

flag ‘L’ (Low) for the crosstalk interaction PKC -> MEK12. This assignment ensure that the boundary of 

the interaction(s) with the flag ‘H’ will always have higher selection probability compared to the 

interaction(s) with the flag ‘L’.  

 Among the pool of all model variants, one of the complex model variants that should be 

mentioned is the model variant with crosstalk number 1 (Ras -> PI3K). In this model variant, we 

introduce a new node called ‘PI3K_crosstalk’ coded as “rules=[rules; {'PI3K_crosstalk = Ras','1','C'}];” 

to account for this crosstalk interaction. Previously, we had the node ‘PI3K_PDGFR’ which represents 

PI3K signal after the activation by PDGFR. To integrate the signals, the successive node ‘prePI3K’ was 

assigned to represent PI3K signals which receive the inputs both from PDGFR and from crosstalk 

interaction(s) as depicted in following Boolean rules: 

             % prePI3K:  rules=[rules; {'prePI3K = PI3K_PDGFR','1','H'}]; 
                rules=[rules; {'prePI3K = PI3K_crosstalk','1','L'}]; 
  

Note that the information on canonical pathway versus crosstalk interaction is also applied 

here with the flags ‘H’ and ‘L’. Subsequently, the integrated signals of PI3K in ‘prePI3K’ node can 

further be inhibited by Wortmannin by setting the second rule of ‘PI3K’ node to 0 as explained above. 
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Part 3: The refined model structure after integrating data from the additional experiment 

After we performed the additional experiment (Figure 3) and we found that PKC activity is 

independent of the activation from PDGFRα, we added the node ‘bPKC’ to account for the basal 

activity of PKC with the following Boolean rules:  

% PKC_induce:  rules=[rules; {'PKC_induce = IP3_CaIon_DAG','1','D'}]; 
rules=[rules; {'PKC_induce = bPKC','1','D'}]; 

 
The updated model topology with the additional information on two new PKC inhibitors 

(GF109 and Gö6976) is shown in the figure below: 

 

 

  

Note that even if we performed an additional experiment with the two new PKC inhibitors, 

we only took the information from the experimental conditions which overlapped with the ones in 

the training dataset for modelling. With this regard, we only included pPKC substrates data on 

negative control, positive control (DV-WT) and DV-WT-Wortmannin conditions into the training 

dataset for final model refinement. 

After we fitted the refined model to the updated training dataset, we also performed an in 

silico analysis to investigate the importance of crosstalk interactions which were described in Step 2. 

This analysis revealed that only crosstalk interactions number 3 (PI3K -> Ras) or number 4 (PI3K -> 

MEK1,2) are important to fit the training dataset. Then, we proceeded with the final PBN model, i.e. 

the refined model plus the crosstalk interaction number 4 (PI3K -> MEK1,2) to evaluate the predictive 

power of the model. We found that the final model could predict the signalling profiles in the 

combined perturbation conditions within the validation dataset accurately. Hence, we concluded that 

our final PBN model is highly predictive. 


