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Metagenomic	
  sample	
  preparation	
  
	
  
Mock microbioal DNA, HM-277D Staggered v5.2H, was obtained from BEIresources. 

Gut microbiome DNA was isolated from the frozen feces of a healthy subject using 

PowerSoil DNA Isolation Kit (MO BIO Laboratories, Inc.). Both DNA samples were 

sequenced using Illumina Tru-seq synthetic long reads technique (three and seven 

libraries for mock and gut microbiome samples, respectively) and the standard shortgun 

technique, with each library sequenced on one full lane of HiSeq. All libraries were 

prepared according the manufacturer’s standard protocol. Shotgun sequence reads for 

both the mock and the gut metagenomic samples were subsampled at random to produce 

subsampled libraries containing the same amount of base pairs as the in the Tru-seq 

synthetic long read libraries. The results were assembled on the Illumina Basespace 

platform, according to standard protocol. 

 

We used Ovation Ultralow DR Multiplex Systems 1–8 (0330-32, NuGEN Technologies, 

Inc.) for whole genome library preparation. Briefly, 100 ng of intact gDNA was diluted 

into 120 μL of 1X low EDTA-TE buffer and transferred to Covaris snap cap microtube 

and Fragmented to 300 bp following Covaris recommended settings. Fragmented DNA 

was purified using Agencourt RNAClean XP bead, provided by Nugen Library 

preparation kit.  The sheared DNA was then subjected to end repair and adaptor ligation. 

Adaptor ligated libraries were purified with Agencourt RNAClean XP bead and 

amplified using 18 PCR cycle of 94°C for 30 sec, 60°C –for 30 sec, and 72°C for 1 min.  

Agencourt RNAClean XP bead was used for amplified Library Purification and libraries 

Fragment distribution was validated on Bioanalyzer DNA Chip 1000.  

 

  



Overview	
  of	
  the	
  Nanoscope	
  pipeline	
  	
  
	
  
In order to facilitate the analysis of synthetic long read data for in the context of 

metagenomics, we have developed a bioinformatics pipeline called Nanoscope (Figure 

1). Nanoscope takes as input a set of long read libraries together with optional (but highly 

recommended) short read libraries. It then performs a four-stage analysis of this data that 

includes de-novo assembly, variant calling and haplotyping, taxonomic identification, 

and abundance estimation.  

 

Nanoscope starts by invoking the Soapdenovo1 and Celera2 assemblers to independently 

assemble the short and long read libraries, before merging the results using Minimus23. In 

the next step, it invokes a variant calling and phasing algorithm called Lens to analyze the 

assembled contigs for strain variation. Lens reveals hundreds to thousands of sites where 

individual bacteria of the same strain differ from each other and then phases these 

variants into bacterial haplotypes. A typical contig might harbor more than a dozen 

different strain haplotypes, each of which may contain thousands of sequence variants. 

Variants and haplotypes are determined using a simple model (see the section on Lens 

below) that, unlike previous approaches4,5, does not make any assumptions on the length 

of sequencing reads or the ploidy of the organism; we have found that these factors may 

confuse existing bacterial variant callers and lead to suboptimal results. 

 

Finally, Nanoscope invokes the FCP software package6 to assign taxonomic labels to 

assembled contigs and to estimate bacterial abundances. The latter task is done by 

mapping short reads to assembled contigs and by aggregating the coverage over all 

contigs assigned to the same species. Computing abundances from short reads avoids 

certain biases inherent to synthetic long reads; mapping reads to contigs enables 

estimation of abundances for bacteria whose genomes are not present in standard 

databases. At each stage, Nanoscope uses the popular Quast tool7 to assess its 

performance and to generate reports. 

 



Nanoscope differs from existing metagenomic pipelines8,9 because it includes additional 

programs for dealing with synthetic long reads (most notably, the Celera and Minimus2 

assemblers). We modified the source code of some of these packages to handle longer 

genomic sequences (see below); all programs used by Nanoscope have also been tuned 

for longer read lengths. The source code of Nanoscope is publically available in an open-

source repository. 

	
  

De-­‐novo	
  assembly	
  
Short and long read libraries are first assembled using the Soapdenovo2 r240  (k-mer size 

of 51) and Celera 8.1 assemblers, respectively. The Soapdenovo 2 parameters we use are: 

$(SOAP) sparse_pregraph -K 51 -z 250000000 -R -s 
config.txt -p $(PROCESSORS) -o short 

$(SOAP) contig -g short -p $(PROCESSORS) 

$(SOAP) map -s config.txt -g short -p $(PROCESSORS) 

$(SOAP) scaff -g short –F -p $(PROCESSORS) 

The configuration script we use is: 

[LIB] 

reverse_seq=0 

asm_flags=3 

rank=1 

 

We use the following feature flags for the long read .frg library: 

$(CELDIR)/fastqToCA \ 

-nonrandom \ 

-reads $< \ 

-libraryname 0 \ 

-technology none \ 

-feature forceBOGunitigger 0 \ 

-feature doNotTrustHomopolymerRuns 0 \ 

-feature discardReadsWithNs 0 \ 

-feature doNotQVTrim 0 \ 



-feature deletePerfectPrefixes 0 \ 

-feature doNotOverlapTrim 0 \ 

-feature isNotRandom 0  

 

We use the following spec file for the Celera assembler (inspired by the spec file used for 

assembling the Sagrasso sea metagenome): 

overlapper = ovl 

unitigger = bogart 

merSize = 14 

ovlStoreMemory = 1192 

ovlHashBits=24 

ovlHashBlockLength = 20000000 

ovlRefBlockSize =  5000000 

ovlMinLen=1000 

cnsReuseUnitigs=1 

cnsReduceUnitigs=0 

 

frgCorrBatchSize = 200000 

ovlCorrBatchSize = 100000 

doFragmentCorrection=0 

utgGenomeSize = 40000000 

 

The resulting contigs are merged and deduplicated using a custom version of the CD-HIT 

4.6.1 package; overlaps between contigs are computed with a modified Mummer 3.23 

and the assemblies are merged with Minimus2.  

cat short.fasta long.fasta>ctgs.fasta 

 $(CDHIT)/cd-hit-est –i ctgs.fasta –o 
ctgs.filtered.fasta c 0.99 -M 3000 

$(AMOSDIR)/toAmos -s ctgs.filtered.fasta -o out.afg 

 $(AMOSDIR)/minimus2 out -D OVERLAP 500 

 



The modifications to CD-HIT 4.6.1 are a bugfix when dealing with short reads and an 

increase of MAX_SEQ (in cdhit-common.h) to 5000000. Mummer 3.23 was recompiled 

with make CPPFLAGS="-O3 -DSIXTYFOURBITS" in order to handle longer 

sequences. 

Variant	
  calling	
  and	
  haplotyping	
  
Long reads are realigned back to the contigs using BWA-mem 0.7.5a with default 

parameters; the Lens algorithm then detects strain-specific variants and places them into 

bacterial haplotypes (see below). Default parameters were used: 

python filter_by_cigar.py -i input.bam -o 
filtered.bam;  

samtools view -b -h -q 30 filtered.bam > 
filtered.q30.bam; 

python make_variants.py   -b filtered.q30.bam   -o 
variants.pos   --coverage-threshold 3   --frequency-
threshold 0.1   --qscore-threshold 15   --indels 

python make_reads.py   -b filtered.q30.bam   -v 
variants.pos   -r variants.reads   --qscore-
threshold 15 

python detect_subspecies.py -b filtered.q30.bam   -r 
variants.reads  -k haplotypes.txt  --cov-cutoff 2   
--cov-cutoff-percentage 0.75   --similarity-cutoff 
1.0   --overlap-cutoff 2 

 

Species	
  identification	
  
Next, the LCA algorithm from the FCP package is used for assigning taxonomic labels.  

$(FCPDIR)/BLASTN.py blastn ctgs.fasta ctgs.blastn.results 

$(FCPDIR)/LCA.py ctgs.blastn.results 1e-5 15 lca.results 

$(FCPDIR)/TaxonomicSummary.py ctgs.blastn.results 
lca.results lca.summary 

 
The reference database consists of all finished bacterial and archaeal genomes in the 

NCBI RefSeq database (ftp://ftp.ncbi.nih.gov/genomes/Bacteria/all.gbk.tar.gz). Given a 

taxonomic rank, Nanoscope defines the taxa present in the sample as all ones to which at 



least at least 5 contigs and at least 40,000 bp of sequence were assigned. This is 

implemented in the script select_present_taxa.py.  

 

Abundance	
  estimation	
  
Finally, short reads are aligned to assembled contigs with BWA-mem 0.7.5a with 

parameters ‘–T 30’ and the average coverage for each contig is computed. The coverage 

of each contig was computed using samtools idxstats. The coverage of a taxon that was 

determined to be present in the sample is defined to be the average coverage of all contigs 

greater than 10,000 bp that have been assigned to it. The abundance of a taxon is its 

normalized coverage. Abundance estimation is implemented in 

determine_abundances.py. 

$(PYTHON) $(BIN)/select_present_taxa.py \ 

   --tax lca.summary \ 

   --res ‘SPECIES’ \ 

   --bp-cutoff 40000  \ 

   --ctg-cutoff 5 \ 

   --present taxa.suspected 

$(SAMTOOLS) idxstats short-read-to-ctgs.bam > 
contg.coverages 

$(PYTHON) $(BIN)/determine_abundances.py \ 

   --taxa lca.summary \ 

   --ctgs lca.reults \ 

   --cov ctg.coverages \ 

   --res ‘SPECIES’ \ 

   --abundances taxa.abundances 

 

 

  



The	
  Lens	
  haplotyper	
  and	
  variant	
  caller	
  
	
  
Lens is a new variant calling and phasing tool specialized for metagenomes and synthetic 

long reads. It is based on algorithms that, unlike previous approaches4,5, do not make any 

assumptions on the length of sequencing reads or the ploidy of the organism; we have 

found that these factors may confuse existing bacterial variant callers and lead to 

suboptimal results (see below). At a high level, Lens does two things: starting from an 

alignment of long reads to assembled contigs (or to bacterial reference genomes), it first 

determines positions at which the reads and the reference differ; these positions are 

indicative of multiple closely related strains of the same bacterium. Then, Lens phases 

these variants into long haplotypes, each haplotype being defined in this context as a set 

of variants that co-occur within the same bacterial substrain. 

 

The Lens haplotyper leverages the fact that each long read originates from a single 

organism, and therefore all variants within a read must belong to the same substrain. By 

connecting reads at their overlapping variants, Lens places the variants into multi-

kilobase-long haplotypes in a process that is reminiscent of single-individual haplotyping 

(SIH) techniques10. In our setting, the number of true haplotypes is an unknown 

parameter that may be greater than two, making the phasing problem considerably more 

difficult. Although there exist well-known phasing algorithms for polyploid genomes 

(e.g. plants or cancer genomes), they all assume a fixed, known ploidy11,12, with the 

notable exception of some recent methods developed while this paper was under review 
13,14; Lens on the other hand infers the ploidy directly from the data. More precisely, Lens 

assembles haplotypes using an approximate greedy procedure (see below); this choice is 

in part due to the fact that the SIH problem (of which ours is a generalization) is 

computationally intractable15. In brief, Lens sorts aligned reads from left to right and in 

turn uses each read to either extend an existing haplotype or to form a new one, 

depending on the read-haplotype overlap and on the cost of forming a new cluster (both 

are tunable parameters for the algorithm). Our high-level approach may in principle have 

applications outside metagenomics, such as in cancer genome phasing. 



The	
  Lens	
  phasing	
  algorithm	
  
The Lens program starts with an alignment of long reads to contigs in BAM format. 

Reads with alignment scores lower than 30 are discarded. Lens first builds a list of 

variants that have high support from the reads: it selects all variants that occur in at least 

three reads and in at least 5% of all reads that map to that position. Then, for every read, 

Lens records which of the variants identified above it contains; variants having a q-score 

less than 15 are not recorded. Finally, Lens uses a greedy heuristic to assemble long reads 

into bacterial haplotypes. It iterates over all reads (sorted by the their starting positions), 

and at each step either adds a read to an existing haplotype (if the read and the haplotype 

overlap at two positions or more and agree completely on their overlap), or is used to 

initialize a new haplotype: 

• Let 𝑂 = 𝐻 = ∅ be (respectively) the set of output haplotypes and the current 

(working) set of haplotypes. 

• For every variant position 𝑝 (in increasing order): 

o Let 𝑅! be the set of reads that spans position 𝑝. 

o If 𝑅! ∩ 𝑅!!! = ∅, then 𝑂 ← 𝑂 ∪ 𝐻 and 𝐻 ← ∅. 

o For 𝑟 ∈ 𝑅!: 

§ If ∃ℎ ∈ 𝐻 such that read 𝑟 overlaps haplotype ℎ at 𝑣 variant sites 

without error (if the ‘cautious’ flag is set, require h to be unique): 

• Use 𝑟 to extend ℎ. 

§ Else: 

• Let ℎ! = 𝑟 . Add the new haplotype ℎ! to 𝐻. 

• Let 𝑂 ← 𝑂 ∪ 𝐻. Return 𝑂. 

At the end, all haplotypes in 𝑂  that have less than 𝑞% of their sequence covered by reads 

at a coverage of 𝑐 are discarded. All other haplotypes are reported. The parameters 𝑣, 𝑞, 𝑐 

are set via command-line flags; their default values are respectively 2 variants, 75% and 

2X. The ‘cautious’ flag is not set by default’. 



Running	
  Lens	
  
Lens consists of a series of four scripts that are run one after the other. Lens takes as 

input a .bam file with long reads aligned to a reference genome or to an assembled 

genomic contig. We used ‘bwa mem –T 30’ for generating this file (using BWA 0.7.5a). 

BAM filtering. We ran Lens only on reads with high mapping scores (>=30). We also 

used reads that align across their entire length (that had fewer than 500 bp in clipped 

regions, as defined by the CIGAR string). We filtered for such reads using: 

python filter_by_cigar.py -i input.bam -o 
filtered.bam;  

samtools view -b -h -q 30 filtered.bam > 
filtered.q30.bam  

Variant calling. Our first step was to call variants in the reference: 

python make_variants.py   -b filtered.q30.bam   -o 
variants.pos   --coverage-threshold 3   --frequency-
threshold 0.1   --qscore-threshold 15   --indels  

This will finds all variants (including indels) that have at least 3 reads supporting them 

and have an allele frequency of at least 0.1 (these are the default parameters). Also, only 

reads that have a qscore of 15 or more at a given position are used for calculating support. 

Variant calling in reads. Next, we compiled the reads that support the variants we have 

just identified. The result of this step is a file that lists for each read all the variants that 

the read covers. 

python make_reads.py \   -b filtered.q30.bam \   -v 
variants.pos \   -r variants.reads \   --qscore-
threshold 15  

The format of variants.reads is: <ctg id>   <read id>   <pos1:allele1>   <pos2:allele2>  ...  

Assembling reads into haplotypes. Finally, we assembled the reads at their overlapping 

variants into bacterial haplotypes. 

python detect_subspecies.py \   -b filtered.q30.bam \   
-r variants.reads \   -k haplotypes.txt \   --cov-
cutoff 2 \   --cov-cutoff-percentage 0.75 \   --
similarity-cutoff 1.0 \   --overlap-cutoff 2  

This reports only haplotypes that have a coverage of at least two over at least 75% of 

their length. Two reads will be connected into a haplotype if they overlap at at least two 



variants and are identical at both of these positions.The format of haplotypes.txt is: <ctg 

id>   <start pos>   <end pos>   <coverage>   <variants>.  



Quality	
  control	
  

Assessing	
  the	
  bias	
  of	
  Tru-­‐seq	
  synthetic	
  long	
  reads	
  
	
  
We assessed the accuracy of the synthetic long read libraries on the mock metagenome 

by mapping them to known reference genomes using Mummer 3.23. The number of 

misassemblies was determined using the Quast 2.3 package. To compare the coverage 

biases of Tru-seq synthetic long reads to traditional Illumina short reads, we aligned both 

kinds of reads to the reference using BWA-mem 0.7.5a with default parameters. We used 

bedtools 2.17.0 with options ‘genomecov –ibam <bam> -bga > genome.cov’ to compute 

the coverage at each position; the fraction of a genome covered (Supplementary Figure 3) 

was defined as the percentage of base pairs with non-zero coverage. We used ‘samtools 

idxstats <bam>’ to compute the coverage at each contig; species abundances 

(Supplementary Figure 4) were defined as the normalized coverage of each contig. 

 

Evaluating	
  the	
  assembly	
  of	
  the	
  mock	
  and	
  human	
  gut	
  metagenomes	
  
	
  
The assessment of accuracy and the prediction of genes on the gut metagenome was done 

using Quast 2.3 and Metagenemark 2.8 (packaged with Quast).  We used as true 

reference for the mock metagenome the following Fasta sequences downloaded from 

NCBI (ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/): 
1 >gi|10957398|ref|NC_000958.1| Deinococcus radiodurans R1 plasmid MP1, complete sequence 
2 >gi|10957530|ref|NC_000959.1| Deinococcus radiodurans R1 plasmid CP1, complete sequence 
3 >gi|15644634|ref|NC_000915.1| Helicobacter pylori 26695 chromosome, complete genome 
4 >gi|15805042|ref|NC_001263.1| Deinococcus radiodurans R1 chromosome 1, complete sequence 
5 >gi|15807672|ref|NC_001264.1| Deinococcus radiodurans R1 chromosome 2, complete sequence 
6 >gi|16802048|ref|NC_003210.1| Listeria monocytogenes EGD-e, complete genome 
7 >gi|22536185|ref|NC_004116.1| Streptococcus agalactiae 2603V/R chromosome, complete genome 
8 >gi|27466918|ref|NC_004461.1| Staphylococcus epidermidis ATCC 12228 chromosome, complete genome 
9 >gi|32470520|ref|NC_005003.1| Staphylococcus epidermidis ATCC 12228 plasmid pSE-12228-06, complete sequence 
10 >gi|32470532|ref|NC_005004.1| Staphylococcus epidermidis ATCC 12228 plasmid pSE-12228-05, complete sequence 
11 >gi|32470555|ref|NC_005005.1| Staphylococcus epidermidis ATCC 12228 plasmid pSE-12228-04, complete sequence 
12 >gi|32470572|ref|NC_005006.1| Staphylococcus epidermidis ATCC 12228 plasmid pSE-12228-03, complete sequence 
13 >gi|32470581|ref|NC_005007.1| Staphylococcus epidermidis ATCC 12228 plasmid pSE-12228-02, complete sequence 
14 >gi|32470588|ref|NC_005008.1| Staphylococcus epidermidis ATCC 12228 plasmid pSE-12228-01, complete sequence 
15 >gi|42740913|gb|AE017194.1| Bacillus cereus ATCC 10987, complete genome 
16 >gi|44004339|ref|NC_005707.1| Bacillus cereus ATCC 10987 plasmid pBc10987, complete sequence 
17 >gi|49175990|ref|NC_000913.2| Escherichia coli str. K-12 substr. MG1655, complete genome 
18 >gi|50841496|ref|NC_006085.1| Propionibacterium acnes KPA171202 chromosome, complete genome 
19 >gi|77358697|ref|NC_003112.2| Neisseria meningitidis MC58 chromosome, complete genome 
20 >gi|77404592|ref|NC_007488.1| Rhodobacter sphaeroides 2.4.1 plasmid B, complete sequence 
21 >gi|77404693|ref|NC_007489.1| Rhodobacter sphaeroides 2.4.1 plasmid C, complete sequence 
22 >gi|77404776|ref|NC_007490.1| Rhodobacter sphaeroides 2.4.1 plasmid D, complete sequence 
23 >gi|77461965|ref|NC_007493.1| Rhodobacter sphaeroides 2.4.1 chromosome 1, complete sequence 
24 >gi|77464988|ref|NC_007494.1| Rhodobacter sphaeroides 2.4.1 chromosome 2, complete sequence 
25 >gi|110645304|ref|NC_002516.2| Pseudomonas aeruginosa PAO1 chromosome, complete genome 



26 >gi|116628683|ref|NC_008530.1| Lactobacillus gasseri ATCC 33323 chromosome, complete genome 
27 >gi|125654605|ref|NC_009007.1| Rhodobacter sphaeroides 2.4.1 plasmid A, partial sequence 
28 >gi|125654693|ref|NC_009008.1| Rhodobacter sphaeroides 2.4.1 plasmid E, partial sequence 
29 >gi|126640097|ref|NC_009083.1| Acinetobacter baumannii ATCC 17978 plasmid pAB1, complete sequence 
30 >gi|126640109|ref|NC_009084.1| Acinetobacter baumannii ATCC 17978 plasmid pAB2, complete sequence 
31 >gi|126640115|ref|NC_009085.1| Acinetobacter baumannii ATCC 17978 chromosome, complete genome 
32 >gi|148337902|gb|DS264586.1| Actinomyces odontolyticus ATCC 17982 Scfld021 genomic scaffold,  
33 >gi|148337903|gb|DS264585.1| Actinomyces odontolyticus ATCC 17982 Scfld020 genomic scaffold 
34 >gi|148642060|ref|NC_009515.1| Methanobrevibacter smithii ATCC 35061 chromosome, complete genome 
35 >gi|150002608|ref|NC_009614.1| Bacteroides vulgatus ATCC 8482 chromosome, complete genome 
36 >gi|150014892|ref|NC_009617.1| Clostridium beijerinckii NCIMB 8052 chromosome, complete genome 
37 >gi|161508266|ref|NC_010079.1| Staphylococcus aureus subsp. aureus USA300_TCH1516 chromosome 
38 >gi|161510924|ref|NC_010063.1| Staphylococcus aureus subsp. aureus USA300_TCH1516 plasmid pUSA300HOUMR 
39 >gi|194172857|ref|NC_003028.3| Streptococcus pneumoniae TIGR4 chromosome, complete genome 
40 >gi|225631039|ref|NC_012417.1| Staphylococcus aureus subsp. aureus USA300_TCH1516 plasmid pUSA01-HOU 
42 >Ca21chr1_C_albicans_SC5314 (3188548 nucleotides) 
43 >Ca21chr2_C_albicans_SC5314 (2232035 nucleotides) 
44 >Ca21chr3_C_albicans_SC5314 (1799406 nucleotides) 
45 >Ca21chr4_C_albicans_SC5314 (1603443 nucleotides) 
46 >Ca21chr5_C_albicans_SC5314 (1190928 nucleotides) 
47 >Ca21chr6_C_albicans_SC5314 (1033530 nucleotides) 
48 >Ca21chr7_C_albicans_SC5314 (949616 nucleotides) 
49 >Ca21chrR_C_albicans_SC5314 (2286389 nucleotides) 
50 >gi|347750429|ref|NC_004350.2| Streptococcus mutans UA159 chromosome, complete genome 
51 >gi|384511964|ref|NC_017316.1| Enterococcus faecalis OG1RF chromosome, complete genome 
 

On the mock metagenome, we supplied Quast with gene and operon coordinates; gene 

coordinates were also obtained from NCBI 

(ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/); the following files were downloaded: 
NC_000913.gff  NC_003028.gff  NC_005005.gff  NC_007489.gff  NC_009083.gff  NC_010079.gff 

NC_000915.gff  NC_003210.gff  NC_005006.gff  NC_007490.gff  NC_009084.gff  NC_012417.gff 

NC_000958.gff  NC_003909.gff  NC_005007.gff  NC_007493.gff  NC_009085.gff 

NC_000959.gff  NC_004116.gff  NC_005008.gff  NC_007494.gff  NC_009515.gff 

NC_001263.gff  NC_004461.gff  NC_005707.gff  NC_008530.gff  NC_009614.gff 

NC_001264.gff  NC_005003.gff  NC_006085.gff  NC_009007.gff  NC_009617.gff 

NC_002516.gff  NC_005004.gff  NC_007488.gff  NC_009008.gff  NC_010063.gff 

 

Operon coordinates were obtained from the ProOpDB database 

(http://operons.ibt.unam.mx/OperonPredictor/) for the following 17 organisms: 

A. baumanii, E.coli, M.smithii, R.shpaeroides, S.pneumoniae, B.cereus, H.pylori, N. 

meningitidis, S.agalactiae, C.beijerinckii, L. gasseri, P. acnes, S.aureus, 

D.radiodurans, L.monocytogenes, P.aeruginosa, S.epidermidis 

These genes and operons were fed to Quast using the –G and –O options. 

We used the above genes and operons when evaluating the mock metagenome. The genes 

reported (predicted) for the gut metagenomes are obtained by Metagenemark, which is 

invoked by Quast. 



 

Analyzing	
  strain	
  haplotypes	
  
	
  
Variants were determined and assembled into strain haplotypes using Lens. We define 

the span of a haplotype as the interval between the first and last variant in that haplotype. 

Two haplotypes are said to intersect if their spans intersect. A haplotype graph G is 

defined over haplotypes and two haplotypes are connected in G if their spans intersect. 

Genomic regions harboring haplotypes were defined as the union of the haplotype spans 

within a connected component of G (with one region per connected component). We 

tested for intersection with gene intervals obtained via Metagenemark as described above. 

All these calculations were performed using bedtools 2.17.0. Genomic regions were 

computed using bedtools merge on the list of haplotype spans. Intersection with ORFs 

was computed similarly using bedtools intersect.  

 

To evaluate whether the gut microbiome haplotypes correspond to bacterial 

strains, we determined whether they satisfy perfect phylogeny16. A phylogenetic tree 

suggests how bacterial strains (represented by haplotypes here) might have evolved from 

one another; a tree satisfies the perfect phylogeny property if all strains evolved from a 

common ancestor and during this process, each position mutated at most once. When 

perfect phylogeny is not met (such as when certain positions have mutated twice), it is 

possible to measure the extent to which it is violated by estimating the number of 

positions that can be excluded to make perfect phylogeny hold. To assess whether 

variants were in perfect phylogeny, we used the four-gametes characterization of perfect 

phylogeny; this condition says that a binary phylogenetic matrix admits a perfect 

phylogeny if and only if there are no two columns and four rows such that the alleles at 

these four rows over the two columns are (0,0), (0,1), (1,0), (1,1). We found 227 regions 

with four our more haplotypes. A small number of genomic regions could not be 

expressed as a binary matrix, and we discarded 10 such regions from our analysis. Of the 

remaining 217, 185 satisfied the four-gametes condition. To determine the number of 

positions to be corrected to ensure perfect phylogeny, we used a greedy heuristic, where 

the position with the most conflicts (i.e. for which the number of column pairs that does 



not satisfy the four gametes condition was the highest) was discarded until the region was 

in perfect phylogeny.  

 

We downloaded essential genes from the OGEEdb database for all bacterial organisms 

that were also found in the mock gut metagenome, and combined them with E. coli 

essential genes downloaded from 

http://www.genome.wisc.edu/Gerdes2003/supplementary_table.html. We determined 

essential genes contained in assembled gut metagenomic contigs by mapping them with 

Mummer 3.26, choosing matches that spanned the entire length of the gene with 99% or 

more similarity. We determined the overlapping variants using bedtools intersect. In the 

mock metagenome, we determined genome coordinates directly from the .gff files 

described in the assembly subsection above. We called variants in the E. Coli reference 

genome (taken from the mock metagenome reference) using Lens as described earlier. 

We used SNPEff 4.0 with default parameters to predict the deleteriousness of each 

variant. We used the following list of essential genes: 

http://www.genome.wisc.edu/Gerdes2003/supplementary_table.html and we took their 

coordinates in E. Coli from the .gff file described above. Intersections between variants 

and gene intervals was computed using bedtools intersect. 

 

Evaluating	
  the	
  detection	
  quality	
  of	
  low-­‐abundance	
  bacteria	
  
	
  
We used the LCA and Epsilon-NB algorithms from the FCP 1.0.5 package as 

representatives of homology and composition-based methods. The former involves 

aligning contigs to a reference database using BLASTN 2.2.25+ (parameters are chosen 

automatically by FCP 1.0.5) and requires two parameters, which we set to (1e-5, 15). We 

used a parameter of 1e10 with Epsilon-NB. True labels were found by aligning contigs to 

the mock metagenome reference with Mummer; contigs having a single match larger than 

1 kbp were assigned a label. To compare our abundance estimation accuracy with 

Illumina, we mapped short reads to the reference using BWA (alignment score > 30) and 

computed the average coverage for each organism. Our abundance estimation script 

detect_abundance.py admits two regimes. In the first regime, the abundance of a 



taxonomic label is defined by number of short read base pairs that map to all contigs 

having that taxonomic label (normalized by the total number of short reads basepairs that 

map to some contig). In the second regime, we compute for each taxonomic label the 

median coverage of all contigs that have that label; the abundance each taxon is obtained 

by normalizing these median values. We use the first regime by default; we found the 

second regime to be more accurate when estimating abundance at the species level. In our 

experiments, we use the second regime when dealing with species and the first regime in 

all other cases. 

 

Validation	
  of	
  bacterial	
  haplotypes	
  using	
  short-­‐read	
  data	
  
	
  
We used Illumina 101-bp short read sequencing to verify the accuracy of the haplotypes 

identified in both the mock and the gut samples. We first generated a Fasta sequence for 

each haplotype produced by Lens using the make_fasta.py script in the Lens package; this 

script takes the Fasta sequence of the contig in which a haplotype is reported and replaces 

the base pairs at which there are putative variants so as to make them consistent with the 

given haplotype. We measure our accuracy over alleles present in haplotypes at variant 

positions in the haplotype. Thus, if at position p there is support for two bases (A and T) 

and three haplotypes cover that position (two of which carry A, and one of which carries 

T), we say that there are three alleles, and we consider all of them in our verification 

process. To perform verification, we generate a modified fasta sequence by taking the 

interval from the first to the last variant in the haplotype, plus a 75 bp window on each 

side. We then align all available short sequencing reads against these haplotypes using 

Bowtie 2.2.5 with the –k 5 flag (report up to 5 of the best alignments) and all other 

parameters set to default. Note that we use all available shotgun sequencing reads at this 

step, and not only ones subsampled for the main analysis (see “Metagenomic sample 

preparation”). We then examine whether shotgun reads align to regions with haplotype 

variants in a way that confirms these variants. For SNVs, we say that a read supports a 

variant if it aligns to its position and carries the haplotype allele at its matching base pair 

with a PHRED qscore of at least 20. Similarly, we say that a read supports an insertion if 

it contains a subsequence that matches perfectly the inserted sequence. A read supports a 



deletion if it aligns to the surrounding base pairs without an insertion. We say that a 

haplotype variant is supported by short reads if it has at least 2 supporting short reads. 

We implemented this verification procedure in the scripts verify_snps.py and 

verify_indels.py that are part of Nanoscope and executed it on the haplotypes found in 

both the gut and the mock metagenomes. Overall, we found very high concordance 

between short and long SNVs (97%) as well as high concordance over indels (99%); see 

Supplementary Table 27. We explain the high accuracy over indels by the fact that the 

criterion for calling an indel (which requires three perfectly aligning reads that carry that 

indel) is relatively more stringent than it is for SNVs. Also, note that some haplotypes 

may not be covered by short reads by chance and the above numbers are lower bounds on 

the true accuracy. However, they are close to the estimates reported by Schlossnig et al. 

(2012) for a very similar variant calling method (these authors reported approximately 

2% accuracy for calling SNPs). Finally note that this strategy may be implemented on the 

long reads themselves instead of the haplotypes; however that would be very 

computationally demanding as each read will have a large number of possible matches 

(depending on the long read coverage) and modern BWT-based aligners are not suited to 

handle such input. 

 

  



Comparison	
  to	
  alternative	
  methods	
  
	
  

Comparing	
  Lens	
  to	
  existing	
  bacterial	
  variant	
  callers	
  
	
  
We compared the Lens to the PILON bacterial variant caller on the task of finding SNPs 

and short indels with respect the mock metagenome reference using our three synthetic 

long read libraries. We did not call variants using short reads, as we only use variants 

visible via long reads in our downstream haplotyping analysis. 

 

We aligned the three long read libraries to the mock metagenome reference fasta using 

bwa mem 0.7.5a with default parameters and used the resulting bam files as input for 

both Lens and PILON. The Lens variant caller (using default parameters) called 335 

variants from this file. We ran PILON 1.11 on the same input file with the –diploid and –

min-depth 3 flag (the latter, to be comparable with the Lens cutoff for calling a variant), 

and with all other parameters set to default. PILON called more than 5775 variants on the 

same dataset, and 1876 of these had the PASS flag, indicating that they passed quality 

control.  

 

We proceeded to compare the variants called by each method. Of the 335 variants called 

by Lens, 217 were among the 1876 called by PILON, and 117 were not. Manually 

inspecting 10 random variants in IGV revealed that 9 of these 10 variants were 

surrounded by a large number of other variants (10 or more SNPs in a 500bp window 

around the analyzed variant). A total of 6 of these 9 windows contained indels in addition 

to SNPs. Furthermore 5 of the ten analyzed variants were in regions with a 50% or more 

drop in coverage compared to the average level in a 30Kbp window around that variant.  

 

This suggests that the PILON variant caller models the error profile of Illumina reads 

when making its variant calls, and this profile is not compatible with that of long reads. 

 

To verify the quality of the variants called by Lens we devised a verification scheme in 

which we align short reads to the bacterial haplotypes obtained from these variants (see 



the section on short read validation below). We found that more than 99% of the alleles 

carried by the bacterial haplotypes at the variant positions could also be confirmed by 

short reads (Supplementary Table 29). This suggests that PILON makes false negative 

calls on long read data. 

 

Next, we examined in more detail the PILON variants not reported by Lens. Of these, the 

vast majority was supported by a single long read. Since we require that our haplotypes 

be supported by at least two reads over 75% of their SNPs, we discarded all such 

positions from the 1876 reported by PILON. This left 325 positions with support from at 

least two long reads that were also tagged with the “PASS” flag. We ran the Lens 

haplotyping algorithm over these variants (we ran the scripts make_reads.py and 

detect_subspecies.py using default parameters), which yielded only 17 haplotypes 

harboring at least one non-reference allele. In comparison, Lens produced 77 such 

haplotypes from the 335 positions that it found. We then extracted a list of positions in 

the haplotypes that carried a non-reference allele and found that each of the 17 haplotypes 

carried exactly one non-reference allele. Further inspection revealed that 81% of reads 

overlapped only one of the 325 variant positions reported by PILON, and thus could not 

be used for haplotype assembly. It thus appears that PILON does not call variants using 

long reads that align to the reference with more than 2-3 mismatches; this appears to be 

again due to the fact that PILON models the error profile of short reads.  

 

Finally, we used PILON 1.11 with –diploid and with default parameters to call variants in 

the real metagenomic dataset. We found that PILON had high memory requirements and 

we could not get it to run with 90G of RAM. Since PILON used 25G of RAM on the 

mock metagenomic data, and our real data contains substantially more base pairs in very 

long contigs (the longest of which are >4X longer than those in the mock data), we 

estimate that PILON may take >100G of RAM to run on this dataset.  

 

Another potential alternative to Lens is the program MaryGold, which calls variants in 

bacterial genomes that directly from an assembly graph. However, this method is not 

applicable to our setting; although Celera and SOAPdenovo can individually output their 



assembly graphs in AMOS format, we cannot provide MaryGold with an assembly graph 

of both short and long reads. Furthermore, in order to call variants using long reads, we 

would need the assembly graph of the raw short reads used to construct the long reads via 

subassembly, and such a graph is not available to us in principle, since the subassembly 

software is run within Illumina Basespace. 

 

Comparison	
  to	
  a	
  long	
  read	
  SMRT	
  mock	
  metagenomic	
  dataset	
  
	
  
To further study the effectiveness of long reads for metagenomic analyses, we compared 

our results based on Tru-seq synthetic long reads to a publicly available dataset of 

SMRT17 long reads that were generated for the mock metagenomic community. This 

dataset was generated for an even abundance mock metagenomic sample; in our sample, 

bacterial species had uneven abundances. Nonetheless, several bacteria were covered by 

both types of reads, which allowed us to perform a comparison. 

 

We used the PBCR pipeline (part of the Celera assembler 8.3rc1) with the MHAP18 

alignment module to self-correct and assemble 70X of SMRT long reads from the even 

mock metagenomic sample (we downloaded the data from 

https://github.com/PacificBiosciences/DevNet/wiki/Human_Microbiome_Project_Mock

B_Shotgun): 

wgs-8.3rc1/Linux-amd64/bin/PBcR \ 

  -libraryname pb-hmp-mock-even \ 

  -fastq pb-mock-even.fastq \ 

  -length 500 \ 

  -threads 40 \ 

  -partitions 500 \ 

  genomeSize=83000000 

We also aligned the raw PacBio reads to our assembled contigs using pbalign, and 

performed Quiver error correction on the contigs: 

pbalign raw-reads.bas.h5 asm.ctg.fasta alignment.cmp.h5  --

nproc 16 –forQuiver; 



python variantCaller.py --algorithm=quiver -j8 

alignment.cmp.h5 -r asm.ctg.fasta -o out.gff -o out.fasta 

 

Assembly quality 

Compared to the synthetic long read assembly, the resulting contigs had a lower rate of 

misassemblies and point mutations (105 misassemblies in 53 Mbp of MHAP contigs, 

compared to 121 misassemblies in 46 Mbp of contigs assembled from synthetic long 

reads; Supplementary Table 28). The normalized misassembly rate for MHAP was 

1.98/Mbp, compared to 2.63/Mbp for synthetic long reads (a 25% reduction in error). It 

thus appears that the additional subassembly step increases the total amount of 

misassemblies; however, the misassembly rate remains on the same order of magnitude 

as that of the SMRT technology, and it therefore seems like the assembler is able to 

discard most locally misassembled reads (recall from Supplementary Table 4 that there 

were about 1800 misassemblies in the raw reads). The MHAP contigs had also a longer 

N50 length (142 Kbp, compared to 91 Kbp), although this can be in part attributed to the 

even bacterial abundances in the SMRT sample.  

 

We also attempted to estimate the quality of our assembly on the more complex bona fide 

human gut microbiome sample. We first attempted to use REAPR, an existing state-of-

the-art reference-free assembly validation tool that can assess the quality of assembled 

contigs. REAPR uses the distance between aligned pair-end reads to detect 

misassemblies, and therefore works best with long mate-pair reads. Because such reads 

were not available for our dataset, we instead used REAPR with standard paired-end 

reads. REAPR did not detect any misassemblies based on this input, which is likely due 

to a small insert size. We are unaware of any existing tools that can perform reference-

free assembly validation based on long read data, and this remains an open area for 

further research as long read technologies become more popular. 

 

Variant calling 

The error rate for indels, however, was significantly higher in the MHAP contigs, which 

is an artifact of the SMRT error model and of the subsequent error correction process. We 



then mapped the error-corrected SMRT long reads to the known mock metagenome using 

bwa mem 0.7.5a (with default parameters) and used Lens to identify genomic variants 

and place them into haplotypes. Because of the high indel error rate of the reads, we only 

considered SNVs; default Lens parameters were used for SNV calling.  

 

We verified the validity of the SMRT-derived haplotypes using short reads following a 

very similar strategy to the one we used for validating haplotypes derived from synthetic 

long reads (see above). The only difference was that we used the true mock reference 

genomes in place of the assembled contigs; this allowed us to examine the variant calling 

performance of the two methods in isolation from their ability to perform de-novo 

assembly. In total, 57469 alleles specific to a bacterial strain were present in the SMRT 

haplotypes; of these, 20258 were located in regions with more than 20x coverage in 

shotgun reads (Supplementary Table 29). However, only 2663 of these 20258 alleles 

carried a variant base-pair with respect to the mock metagenome reference. Thus most 

SMRT variants could not be assembled into haplotypes that met our quality threshold of 

2x support over >75% of positions, a first indication of the lower quality of these 

haplotypes. We further analyzed the quality of the haplotypes by mapping to them the 

Illumina shotgun reads according to the same strategy that we used for verifying 

haplotypes derived from long reads. We found that only 17915 variants (88%) could be 

supported by short reads; more problematically, only 389 of the 2663 alleles carrying a 

non-reference base-pair (15%) could be confirmed.  

 

For comparison, we repeated the same analysis using our three long-read libraries. More 

than 99% of all variants could be confirmed, and the absolute numbers of confirmed 

alleles that carrier a non-reference base-pair (271) was similar to that for SMRT reads 

(389; note however that the regions with SMRT and synthetic long read coverage are not 

exactly identical). This suggests that a lot of SNVs found using SMRT reads are artifacts 

of the error-correction process. We conclude that SMRT reads are useful for constructing 

draft contigs from bacteria, but have difficulty in identifying bacterial mutations and 

haplotypes. 

 



Comparison	
  of	
  the	
  merged	
  assembly	
  strategy	
  to	
  a	
  joint	
  assembly	
  using	
  SPAdes	
  
	
  
To assess the effectiveness of our assembly merging strategy, we used SPAdes 3.5.0 to 

assemble long and short reads jointly. In all experiments, we set K=127 and all other 

parameters to default. On the mock metagenome, SPAdes produced fewer errors and 

longer contigs than our merging strategy (Supplementary Table 30). However, it 

assembled a much smaller fraction of the mock metagenome than the combined strategy 

(28 Mbp, compared to 46 Mbp) and the amount of genes and operons assembled by 

SPADES was 50% that of the assembly merging approach. 

 

Curiously, the amount of sequence assembled by SPAdes (28Mbp) is comparable with 

that of Soapdenovo2 (26 Mbp). We explain this as follows: a De Brujn graph assembler 

like SPADES breaks long read data into k-mers, thus partly discarding contiguity 

information. It can use this information indirectly by threading through repeat structures 

in the DBG graph; however, it is difficult to resolve short tandem repeats via threading 

using 10 Kbp reads. Therefore, SPAdes performs poorly in regions where it does not 

have short read (mate-pair) data to resolve such repeats; in regions where it has both 

types of data however, it can resolve both long and short repeats and assembles the reads 

very well. On the gut metagenome, SPAdes again assembled reads into longer contigs 

than the merging strategy; however these contigs spanned 50% fewer base pairs and 

contained 50% fewer ORFs as predicted by Quast and Metagenemark (Supplementary 

Table 31).  

 

Finally, we evaluated SPAdes on another recent metagenomic dataset also sequenced 

using Tru-seq synthetic long reads (see “Comparison to the study of Sharon et al.” 

below). This study had very limited amounts of both short and long read sequencing for 

each sample. On that dataset, SPAdes produced contigs that were 2x longer than ones 

from the assembly merging approach, while assembling only 15% fewer sequence; this 

indicates that there may be cases where SPAdes has advantages over assembly merging. 

Because of the many tradeoffs that arise from using SPAdes, we include it as an optional 

assembler in Nanoscope that can be activated via a command-line parameter. 

 



Comparison	
  to	
  the	
  study	
  of	
  Schlossnig	
  et	
  al.	
  
	
  
Schlossnig et al.19 used shotgun sequencing to analyze the strain-specific variants present 

in the gut microbiomes of a large cohort of human subjects. We performed similar 

population genetics analyses using reference bacterial genomes listed by these authors. 

Based on their criterion that bacterial species should have at least 40% of their genomic 

sequences covered by reads, we extracted 10 reference genomes for downstream analysis. 

This smaller number of genomes is likely due to our lower sequencing depth compared to 

a pooling dataset of 252 microbiome samples studied by Schlossnig et al. To specifically 

compare the population metrics evaluated in their paper, we calculated SNP density and 

nucleotide diversity (π), which accounts for all possible variations at each base of the 

genome.  We found that they are highly correlated and comparable to the results in 

Schlossnig et al. (Supplementary Figure 14). We used these two parameters because they 

comprehensively summarize the population diversity within a population of closely 

related bacterial species. Specifically, we observed that the SNP density (measured in 

SNPs/kb) fell in the range of 7.6-46.0, while the nucleotide diversity π as between 10^(-

3) and 10^(-2). We opted not to calculate pN/pS like Schlossnig et al., as we feel the 

above two parameters confirmed our findings sufficiently. Our results indicate that our 

SNP calling procedures are in line with the methods previously described, yielding 

comparable population genetics parameters.  

 

Comparison	
  to	
  the	
  study	
  of	
  Greenblum	
  et	
  al.	
  
	
  
Recently, Greenblum et al.20 examined strain-level copy number variation in the human 

gut metagenome. Their analysis differs from ours in several respects. First, their pooling 

approach is unable to consistently produce clusters that represent a single bacterial 

species. Indeed, the clusters of reads that they report (which should represent individual 

bacterial species) actually contain sequence that maps to multiple genera using standard 

metagenomic binning programs (for example, cluster no. 96 – despite being labeled as 

“Escherichia coli” across many figures in the paper – actually covers three genera: 

Salmonella, Shigella, and Escherichia). Our haplotypes on the other hand, belong to a 

single bacterial contig, which can only belong to a single species. Furthermore, the 



deconvolution approach used by the authors on two genomic clusters only works when 

these clusters contain a lot of species (as indicated by the authors) and that also have a lot 

of reference genomes sequenced, which is the case of E. coli, but not so much for other 

less sequenced genera. Our approach helps circumvent these issues by directly recovering 

genomes via de-novo assembly. This assembly-based approach can uncover previously 

undescribed genomes and the resulting de-novo contigs can be used as a reference to 

analyze SNPs and CNVs (potentially using the method of Greenblum et al.). Finally, we 

would like to point out that the biological significance of bacterial CNV has not yet been 

established either in traditional microbiology genetic studies or in the setting of 

microbiome. We therefore choose not to analyze the CNVs in our genome and focus on 

SNVs and indels instead. 

 

Comparison	
  to	
  the	
  study	
  of	
  Sharon	
  et	
  al.	
  
	
  
While our study was under review, a related study was published by Sharon et al.21; this 

study used Tru-Seq synthetic long reads to analyze a soil environmental sample. Their 

work differs from ours in several respects. First, Sharon et al. use a limited amount of 

long-read sequencing per sample (about 500 Mbp; one long read library produced almost 

1 Gbp of sequence in our experiments). This amount of sequencing was not sufficient to 

assess all of the benefits of using long reads: our work used 3-7 Gbp per sample, which 

led to substantial improvements in the reconstruction of bacterial genomes (compared to 

alternative approaches) that were not reported by Sharon et al. Sharon et al. therefore 

conclude that Truseq synthetic long reads are a tool primarily for performing species 

identification and for assessing the diversity of metagenomic communities. Our work 

shows that with as little as 3 long read libraries, long reads outperform most existing 

methods on practically all aspects of whole-metagenome analysis, including a recent 

method that pooled hundreds of samples (Nielsen et al.22). Our positive results may 

change how future microbiome studies are conducted. 

 



More precisely, Sharon et al. perform two types of analyses that are also present in our 

paper: de-novo assembly and species identification. We propose superior techniques for 

doing each type of analysis and report better results. 

 

De-novo assembly 

First, we demonstrate that long reads can recover megabase-long contigs. For example, 

we assembled a 2 Mbp contig that was previously identified as a new species using 

hundreds of pooled samples and recovered as a cluster of short reads (Supplementary 

Figure 12); our work assembled it from only one metagenomic sample. 

 

This improved assembly quality is not solely due to having more coverage: we have also 

developed a computational pipeline and an assembly strategy that is more effective than 

that of Sharon et al. Although two of our tools (Minimus2 and Celera) were also used by 

Sharon et al., they require substantial tuning to be effective. For example, Sharon et al. 

could not get Celera (using mostly default parameters) to produce any assemblies from 

long reads; our version (using custom parameters; see Supplementary Methods) 

assembled their dataset to an N50 of 13 Kbp; further analysis using SPAdes increased 

this to 22 Kbp. Furthermore, Minimus2 with default parameters (as proposed by Sharon 

et al.) did not run at all on our dataset, and had to be recompiled with increased memory 

buffer sizes (see Supplementary Methods) in order to handle contigs of ~500 Kbp or 

more.  

 

We now give more details on how performed our comparison. We ran Nanoscope on the 

4m soil dataset of Sharon et al., the data for which is available on the SRA. Using the 

optional SPAdes assembler in Nanoscope (enabled with the –spades flag), we assembled 

441 Mbp of sequence into contigs with an N50 length of 22 Kbp; Sharon et al. report 

contig N50 lengths of ~8 Kbp (which correspond to the unassembled long reads; 

Supplementary Table 32). The contigs we assembled spanned 43,000 genes and 

contained 19,000 positions with genomic variants over which we could define 94 

bacterial haplotypes (Supplementary Table 32). 

 



Species identification 

Furthermore, because our method assembled the Sharon et al. data into much longer 

contigs, it was also easier to perform species identification. Our mapping-based species 

identification method is more flexible than one based on marker genes (the latter is only a 

slight generalization of 16S RNA sequencing); using this method, we identified the 

phylum Firmicutes among the top 10 most abundant, while Sharon et al. did not detect 

this phylum. 

 

In brief, Sharon et al. reported the following top phyla in the 4m sample: Proteobacteria, 

Chloroflexi, Nitrospirae, Crenarchaeota, Actinobacteria, Bacteroidetes, Planctomycetes, 

Euryarchaeota, Spirochaetes (in addition to some candidate phyla). The FCP package 

within Nanoscope (see Supplementary Methods for exact parameters) determined the top 

16 phyla (defined as ones to which with >75 Kbp can be mapped) to be Proteobacteria, 

Chloroflexi, Nitrospirae, Firmicutes, Euryarchaeota, Bacteroidetes, Actinobacteria, 

Acidobacteria, Deinococcus-Thermus, Cyanobacteria, Planctomycetes, Crenarchaeota, 

Deinococcus-Thermus, Spirochaetes, Chlorobi (see Supplementary methods). All of the 

phyla identified by Sharon et al. can be found in this list. The phylum Firmicutes is the 4-

th most abundant in terms of number of base pairs that map to it (79 contigs, 1.7 Mbp in 

total), but the approach of Sharon et al. cannot detect it. See Supplementary Table 33 for 

more details. 

 

These improved results compared to Sharon et al. represent only part of our 

contributions. Our paper also introduces important new analyses that can only be done 

with synthetic long reads. 

 

Bacterial genome phasing 

We identify hundreds of thousands of SNVs in the bacterial metagenome and show they 

are affected by purifying selection and by evolutionary constraints. We then phase these 

SNVs into long haplotypes that sometimes span > 100 Kbp. This is a unique novel 

capability of synthetic long reads, compared to Illumina and PacBio; it is made possible 

by a new algorithm called Lens. Although Sharon et al. also report finding SNVs within a 



small set of marker genes, they do not investigate further the nature and the properties of 

these variants. For instance, they do not present evidence that these SNVs are of 

biological significance and that they are not simply sequencing artifacts. 

 

All of the above analyses are made possible by a standalone tool called Nanoscope that 

will be made available to the metagenomics community to carry out studies similar to 

ours. 

 

Implications to human health 

Finally and perhaps most importantly, our study is the first to consider the human 

microbiome and show potential applications of synthetic long reads to the study of 

human health. For example, our work showed how we can assemble many long flagellar 

operons, which are strongly associated with pathogenicity. 

 

In conclusion, Sharon et al. used one library for 3 samples as well as an analysis 

methodology that did not fully explore the benefits offered by synthetic long reads. Our 

study used a reasonable amount of sequencing (2-7 Gbp) and demonstrated dramatic 

improvements in every aspect of metagenomic analysis as well as in new types of 

analyses (e.g. bacterial haplotyping). 

 

Comparison	
  to	
  previous	
  metagenomic	
  analysis	
  methods	
  
	
  
Our proposed approach is able to recover bacterial species from a metagenome at a level 

of quality comparable to that of previous methods involving hundreds of human subjects 

(Nielsen et al.22), multiple DNA extraction methods (Albertsen et al.23), or tetranucleotide 

binning with a mix of Sanger and mate-pair sequencing (Iverson et al.24). See 

Supplementary Table 34 for a high-level overview. 

 

Comparison to Nielsen et al. 

A key aspect of our method that is also shared with that of Nielsen et al. is that it can 

recover bacterial strains from the metagenome; however, our two approaches differ in the 



way strains are represented. The method of Nielsen et al. outputs clusters of scaffolds (39 

Kbp N50; 700 Kbp max.) that belong to the same genome (each cluster encompasses 

several Mbp of sequence). Our method assembles contigs de-novo, and assigns 

taxonomic labels using a mapping-based approach. These contigs can be much longer 

than the scaffolds of Nielsen et al.: we report more than ten contigs of >1 Mbp in length, 

with the longest one being 3.9 Mbp. Furthermore, we find a 2.2 Mbp contig belonging to 

a species newly discovered by Nielsen et al. and reported as a cluster of dozens of short 

sequences; these sequences map to our single long contig. However, because we only 

have one sample, we cannot further cluster our contigs by species like Nielsen et al. In 

other words, our method offers better contiguity (i.e. longer contigs), but lower 

completeness (i.e. we cannot identify all the contigs that belong to the same bacterial 

strain).  

 

The microbial variants and the resulting haplotypes that we uncover offer a different and 

complementary type of information about microbial strains, compared to that of Nielsen 

et al. Bacteria from a given strain are constantly evolving and will differ from each other 

at multiple genomic positions; our method can accurately find these variants and thus 

provides resolution at the sub-strain level. This represents an even higher level of 

resolution than that of Nielsen et al. In a sense, our method enables one to take a look at 

evolution as it unfolds and as strains mutate into other strains.  

 

To summarize, both of our approaches potentially recover full bacterial genomes and 

identify strains; our method has higher assembly contiguity than that of Nielsen et al. (i.e. 

higher contig N50 length), but lower completeness. While our method cannot cluster 

contigs into strains, it can further resolve a contig of a given strain into bacterial 

haplotypes specific to that strain. Finally and very importantly, it should be noted that our 

method requires only a single sample, as opposed to hundreds. 

 

Comparison to Albertsen et al. 

The methods of Albertsen et al. and Iverson et al. have shortcomings with respect to both 

our method and that of Nielsen et al. The method of Albertsen et al. sequences a sample 



using two different methods; species with different GC content will have different 

coverages with each method; this fact can be used to cluster contigs into groups 

associated with a given type of bacterium. Although this approach recovers about a dozen 

of (almost) complete genomes, it does not apply to microbes having similar GC content 

(e.g. similar strains).  

 

Comparison to Iverson et al. 

The method of Iverson et al. performs tetranucleotide binning of contigs before 

assembling them using mate-pairs and Sanger sequencing; although they fully recover a 

small number of genomes, this approach again cannot disentangle related strains, and 

furthermore may not be entirely accurate. 
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Supplementary	
  Figures	
  
 

We present below Supplementary Figures 1-14. 

	
  
	
   	
  



 
Supplementary Figure 1: Histogram of long read lengths for the mock metagenome 
  



 
Supplementary Figure 2: Histogram of long read lengths for the real metagenome  
  



 
 
Supplementary Figure 3: Fraction of genome covered with short and long reads, per 
organism, given an equal number of bases sequenced with each technology. For several 
organisms, the % coverage greatly varies between the two technologies, indicating 
different types of bias. 
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Supplementary Figure 4: Estimated abundance using short and long reads. For several 
organisms, the estimated abundances vary significantly. 
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Supplementary Figure 5: Comparison of contig lengths obtained from short and long 
sequencing (real metagenome). About twenty contigs obtained from long read 
sequencing are longer than 1 Mbp. 
  



 
 
Supplementary Figure 6: Recovery of operons from the assemblies obtained from short 
reads, long reads, and from the joint assembly (mock metagenome). Short reads were 
assembled using Soapdenovo2, long reads were assembled with Celera; the two were 
merged with Minimus2. The joint assembly recovers more than half of all operons, and 
twice more than only short reads. Interestingly, long and short reads seem to recover 
different types of operons. 
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Supplementary Figure 7: Recovery of genes from the assemblies obtained from short 
reads, long reads, and from the joint assembly (mock metagenome). Short reads were 
assembled using Soapdenovo2, long reads were assembled with Celera; the two were 
merged with Minimus2. The joint assembly recovers more than half of all genes, and 
twice more than only short reads. Interestingly, long and short reads seem to recover 
different types of genes. 
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Supplementary Figure 8: Fragment of 110 kbp genomic region in which there is 
variation between several bacterial subspecies. The contig belongs to the bacterium 
Parabacteroides distasonis.  
  



 Supplementary Figure 9: Genomic region 50 kbp in length in which there is variation 
between several bacterial subspecies. The contig belongs to the bacterium Odoribacter 
splanchnicus.  
  



 
Supplementary Figure 10: Percentage of genomic regions where all haplotypes are in 
perfect phylogeny, as a function of the percentage of positions that have to be corrected 
to ensure phylogeny. More than 85% of positions are in perfect phylogeny, and by 
correcting less than 5% of positions, we can increase this number to more than 92%. 
  



 
Supplementary Figure 11: Summary of the length and depth of genomic regions at 
which there is variation among bacteria. Blue regions are in perfect phylogeny, and red 
regions are not. 
 
  



 
 
Supplementary Figure 12: Recovery of a 2.3 Mbp long contig from a species belonging 
to the genus Acinetobacter for which no finished genome was previously available. We 
mapped contigs from an earlier fragmented assembly (bottom) to a 2.3 Mbp contig that 
we assembled (top). Most of the long contig appears to be covered by shorter contigs 
from the fragmented assembly. 
 
  



 
 
Supplementary Figure 13: Abundance estimates in the mock metagenome obtained 
from Nanoscope, compared to the abundances obtained from mapping short reads to the 
20 known genome references. 
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Supplementary Figure 14: Genomic variation statistics for 10 gut microbial species 
selected from our gut metagenome sample (at least 40% genomes were covered by 
reads). There is no obvious correlation between genome size/coverage and SNP density 
and π, which may be due to limited number of genomes analyzed. 
	
  
	
  
	
   	
  



Supplementary	
  Tables	
  
 

We present below Supplementary Tables 1-34. 

	
   	
  



	
  
 
Species Genome size (bp) GC fraction 
Acinetobacter baumannii 4,001,456 0.39 
Actinomyces odontolyticus 2,393,758 0.65 
Bacillus cereus 5,432,260 0.35 
Bacteroides vulgatus 5,163,189 0.42 
Clostridium beijerinckii 6,000,632 0.30 
Deinococcus radiodurans 3,284,061 0.67 
Enterococcus faecalis 2,739,625 0.38 
Escherichia coli 4,639,675 0.51 
Helicobacter pylori 1,667,825 0.39 
Lactobacillus gasseri 1,894,360 0.35 
Listeria monocytogenes 2,944,528 0.38 
Neisseria meningitidis 2,272,360 0.52 
Propionibacterium acnes 2,560,265 0.60 
Pseudomonas aeruginosa 6,264,404 0.67 
Rhodobacter sphaeroides 4,602,949 0.69 
Staphylococcus aureus 2,903,080 0.33 
Staphylococcus epidermidis 2,564,615 0.32 
Streptococcus agalactiae 2,160,267 0.36 
Streptococcus mutans 2,032,925 0.37 
Streptococcus pneumoniae 2,160,842 0.40 

 
Supplementary Table 1: Composition of the HMP mock metagenomic community. 
DNA from twenty organisms with known reference genomes was put together in this 
sample.	
  
  



Library # reads bp N50 length (bp) 
Long 1 149,375 959,367,910 9,241 
Long 2 154,443 971,635,090 9,090 
Long 3 147,218 940,325,694 9,208 
Long (total) 451,036 2,871,328,694 9,189 
Short 30,793,158 3,140,902,116 101 

 
Supplementary Table 2: Sequencing libraries for the mock metagenome	
  
  



Library # reads bp N50 length (bp) 
Long 1 173,055 1,144,582,563 8,549 
Long 2 170,269 1,146,386,491 8,586 
Long 3 180,145 1,207,605,902 8,591 
Long 4 172,566 1,160,996,971 8,582 
Long 5 175,772 1,211,278,430 8,644 
Long 6 177,640 1,266,272,031 8,712 
Long 7 177,473 1,258,217,400 8,701 
Long (total) 1,226,920 8,395,339,788 8,612 
Short 1 41,945,090 4,236,454,090 101 
Short 2 38,410,786 3,879,489,386 101 
Short (total) 80,355,876 8,115,943,476 101 

Supplementary Table 3: Sequencing libraries for the real metagenome 

 

  



 
Long-1 Long-2 Long-3 

# contigs (>= 0 bp) 149375 154443 147218 
# contigs (>= 1000 bp) 149375 154443 147218 
Total length (>= 0 bp) 959218535 971480647 940178476 
Total length (>= 1000 bp) 959218535 971480647 940178476 
# contigs 149375 154443 147218 
Largest contig 32269 33975 30905 
Total length 959218535 971480647 940178476 
Reference length 83861393 83861393 83861393 
GC (%) 48.94 48.88 48.86 
Reference GC (%) 43.64 43.64 43.64 
N50 9241 9089 9208 
NG50 12414 12435 12431 
N75 5835 5664 5790 
NG75 12055 12081 12074 
L50 43747 44462 42822 
LG50 2876 2871 2853 
L75 75930 77789 74489 
LG75 4592 4584 4567 
# misassemblies 671 696 684 
# misassembled contigs 624 656 645 
Misassembled contigs length 3737230 3651499 3720717 
# local misassemblies 2409 2448 2405 
# unaligned contigs 355 + 2015 pt. 336 + 2112 pt. 318 + 1885 pt. 
Unaligned length 1415081 1451166 1324686 
Genome fraction (%) 41.09 41.578 40.812 
Duplication ratio 27.805 27.83 27.441 
# N's per 100 kbp 0.17 0.17 0.19 
# mismatches per 100 kbp 12.85 12.93 13.34 
# indels per 100 kbp 2.3 2.32 2.18 
Largest alignment 32269 33975 30905 
NA50 9222 9074 9189 
NGA50 12407 12430 12428 
NA75 5809 5637 5764 
NGA75 12049 12077 12070 
LA50 43781 44491 42850 
LGA50 2883 2874 2857 
LA75 76058 77920 74617 
LGA75 4600 4587 4570 

Supplementary Table 4: Quality control for the mock metagenome long read libraries. 

  



N Species Coverage Estim. Abund. % covered % GC  
1 Acinetobacter baumannii 0.826602 1.04E-03 53.2% 38.9% 
2 Actinomyces odontolyticus 0.038524 4.84E-05 3.9% 65.4% 
3 Bacillus cereus 2.906793 3.65E-03 89.2% 35.5% 
4 Bacteroides vulgatus 0.210122 2.64E-04 18.6% 42.2% 
5 Clostridium beijerinckii 0.997614 1.25E-03 57.6% 29.9% 
6 Deinococcus radiodurans 0.063593 7.99E-05 5.4% 66.6% 
7 Enterococcus faecalis 0.048978 6.15E-05 4.9% 37.8% 
8 Escherichia coli 514.979955 6.47E-01 100.0% 50.8% 
9 Helicobacter pylori 13.812709 1.74E-02 99.8% 38.9% 

10 Lactobacillus gasseri 1.548396 1.95E-03 72.4% 35.3% 
11 Listeria monocytogenes 4.835126 6.07E-03 98.7% 38.0% 
12 Neisseria meningitidis 3.035695 3.81E-03 92.9% 51.5% 
13 Propionibacterium acnes 9.174239 1.15E-02 99.8% 60.0% 
14 Pseudomonas aeruginosa 24.522923 3.08E-02 75.1% 66.6% 
15 Rhodobacter sphaeroides 7.798898 9.80E-03 60.8% 68.8% 
16 Staphylococcus aureus 5.3144 6.68E-03 97.7% 32.7% 
17 Staphylococcus epidermidis 69.370668 8.71E-02 100.0% 32.0% 
18 Streptococcus agalactiae 10.844528 1.36E-02 99.4% 35.6% 
19 Streptococcus mutans 125.456057 1.58E-01 100.0% 36.8% 
20 Streptococcus pneumoniae 0.005563 6.99E-06 0.6% 39.7% 

 
Supplementary Table 5: Results of mapping long reads to known reference genomes 
(mock metagenome). Each organism varies in in its coverage with long reads, its relative 
abundance estimated from the coverage, and the fraction of the genome covered by long 
reads. 
  



N Species Coverage Estim. Abund. % covered % GC 
1 Acinetobacter baumannii 2.195619 1.40E-03 79.0% 38.9% 
2 Actinomyces odontolyticus 0.265852 1.70E-04 21.5% 65.4% 
3 Bacillus cereus 10.39775 6.64E-03 98.5% 35.5% 
4 Bacteroides vulgatus 0.203252 1.30E-04 16.8% 42.2% 
5 Clostridium beijerinckii 8.645627 5.52E-03 98.5% 29.9% 
6 Deinococcus radiodurans 0.212691 1.36E-04 17.6% 66.6% 
7 Enterococcus faecalis 0.325533 2.08E-04 25.3% 37.8% 
8 Escherichia coli 245.819059 1.57E-01 99.4% 50.8% 
9 Helicobacter pylori 7.701225 4.92E-03 97.3% 38.9% 

10 Lactobacillus gasseri 2.212187 1.41E-03 81.3% 35.3% 
11 Listeria monocytogenes 1.766114 1.13E-03 78.1% 38.0% 
12 Neisseria meningitidis 3.34195 2.14E-03 88.3% 51.5% 
13 Propionibacterium acnes 3.008918 1.92E-03 92.0% 60.0% 
14 Pseudomonas aeruginosa 29.686944 1.90E-02 99.4% 66.6% 
15 Rhodobacter sphaeroides 336.527637 2.15E-01 99.6% 68.8% 
16 Staphylococcus aureus 39.216208 2.51E-02 99.2% 32.7% 

17 
Staphylococcus 
epidermidis 380.161488 2.43E-01 99.1% 32.0% 

18 Streptococcus agalactiae 21.615019 1.38E-02 97.6% 35.6% 
19 Streptococcus mutans 471.457497 3.01E-01 98.6% 36.8% 
20 Streptococcus pneumoniae 0.239976 1.53E-04 19.0% 39.7% 

 
Supplementary Table 6: Results of mapping short reads to known reference genomes 
(mock metagenome). Each organism varies in in its coverage with short reads, its relative 
abundance estimated from the coverage, and the fraction of the genome covered by short 
reads. 
  



N Species Short Long Both Only one % GC 
1 Acinetobacter baumannii 78.98% 53.17% 42.02% 48.11% 38.9% 
2 Actinomyces odontolyticus 21.49% 3.85% 0.84% 23.66% 65.4% 
3 Bacillus cereus 98.52% 89.25% 87.80% 12.16% 35.5% 
4 Bacteroides vulgatus 16.75% 18.58% 3.14% 29.06% 42.2% 
5 Clostridium beijerinckii 98.45% 57.63% 56.41% 43.26% 29.9% 
6 Deinococcus radiodurans 17.63% 5.40% 1.27% 20.48% 66.6% 
7 Enterococcus faecalis 25.27% 4.90% 1.34% 27.49% 37.8% 
8 Escherichia coli 99.44% 99.98% 99.44% 0.55% 50.8% 
9 Helicobacter pylori 97.27% 99.81% 97.10% 2.87% 38.9% 

10 Lactobacillus gasseri 81.29% 72.39% 58.32% 37.05% 35.3% 
11 Listeria monocytogenes 78.07% 98.73% 77.11% 22.57% 38.0% 
12 Neisseria meningitidis 88.34% 92.92% 82.71% 15.84% 51.5% 
13 Propionibacterium acnes 92.02% 99.82% 91.87% 8.11% 60.0% 
14 Pseudomonas aeruginosa 99.42% 75.08% 74.67% 25.15% 66.6% 
15 Rhodobacter sphaeroides 99.60% 60.76% 60.39% 39.58% 68.8% 
16 Staphylococcus aureus 99.18% 97.70% 96.88% 3.11% 32.7% 
17 Staphylococcus epidermidis 99.09% 100.00% 99.09% 0.91% 32.0% 
18 Streptococcus agalactiae 97.65% 99.37% 97.14% 2.73% 35.6% 
19 Streptococcus mutans 98.61% 100.00% 98.61% 1.39% 36.8% 
20 Streptococcus pneumoniae 18.99% 0.56% 0.14% 19.27% 39.7% 

 
Supplementary Table 7: Coverage statistics for species present in the mock 
metagenome. For each species, we indicate the percent of the genome covered by short 
reads, long reads, by both, and by only one technology. For many organisms, short and 
long reads appear to cover different regions of the genome. 
  



 

 
Short Long Joint 

# contigs 92247 24199 34786 
Largest contig 628113 3936002 3936002 
Total length 232738162 609559313 656202352 
GC (%) 45.84 46.85 46.85 
N50 8687 37319 49208 
N75 1635 16435 18127 
L50 4263 2832 2367 
L75 21837 9466 8301 
# N's per 100 kbp 243.51 0 116.82 
# predicted genes (unique) 274600 523358 552680 
# predicted genes (>= 0 bp) 275200 570360 623203 
# predicted genes (>= 300 bp) 214963 493158 533061 
# predicted genes (>= 1500 bp) 25898 85342 90978 
# predicted genes (>= 3000 bp) 3300 10404 11163 

 
Supplementary Table 8: Assembly metrics for the real metagenome. Short and long 
read libraries were assembled with Soapdenovo2 and the Celera assemblers, respectively. 
The results were merged using Minimus2 to produce a joint assembly. We report quality 
control metrics from the QUAST package. 
  



 

 
Short Long Joint 

# contigs (>= 0 bp) 6732 1412 3092 
# contigs (>= 1000 bp) 3107 1412 1668 
Total length (>= 0 bp) 26883707 33907364 46410922 
Total length (>= 1000 bp) 24478720 33907364 45482193 
# contigs 6732 1412 3092 
Largest contig 413959 1687316 1687331 
Total length 26883707 33907364 46410922 
Reference length 83861393 83861393 83861393 
GC (%) 50.2 44.38 46.67 
Reference GC (%) 43.64 43.64 43.64 
N50 19122 43803 91895 
N75 4369 16870 25235 
L50 227 128 102 
L75 1038 454 364 
# misassemblies 29 89 121 
# misassembled contigs 23 75 95 
Misassembled contigs length 185760 3960997 6541944 
# local misassemblies 553 79 651 
# unaligned contigs 332 + 54 part 3 + 13 part 290 + 58 part 
Unaligned length 262197 53073 265150 
Genome fraction (%) 31.583 39.626 52.986 
Duplication ratio 1.005 1.022 1.041 
# N's per 100 kbp 101.44 0 55.5 
# mismatches per 100 kbp 3.9 8.92 7.9 
# indels per 100 kbp 2.24 2.54 2.69 
# genes 17753 + 3917 part 18909 + 1594 part 27224 + 2485 pt. 
# operons 2746 + 1563 part 2998 + 953 part 4567 + 1079 part 
Largest alignment 413959 1662515 1662529 
NA50 18948 42994 83121 
NA75 4324 16131 23510 
LA50 229 131 107 
LA75 1047 468 383 

 
Supplementary Table 9: Assembly metrics for the mock metagenome. Short and long 
read libraries were assembled with Soapdenovo2 and the Celera assemblers, respectively. 
The results were merged using Minimus2 to produce a joint assembly. We report quality 
control metrics from the QUAST package. 
  



 

 
Genes Operons 

Short 17,753 2,746 
Long 18,909 2,998 
Joint 27,224 4,567 
Short, not long 7,937 1,460 
Short and long 12,863 1,286 
Long, not short 9,018 1,712 
Joint, not long, not short 0 110 
Not assembled all 24,542 4,153 
Total 51,766 8,720 

 
Supplementary Table 10: Recovery of genes and operons from the assemblies obtained 
from short reads, long reads, and from the joint assembly (mock metagenome). Short 
reads were assembled using Soapdenovo2, long reads were assembled with Celera; the 
two were merged with Minimus2. The joint assembly recovers more than half of all 
operons, and twice more than only short reads. Interestingly, long and short reads seem to 
recover different types of operons. 
  



 
Operon ID Gene ID Genomic coordinates 
 e-coli-551 flgA 1129427 1130086 
 e-coli-551 flgM 1129058 1129351 
 e-coli-551 flgN 1128637 1129053 
 e-coli-552 flgB 1130241 1130657 
 e-coli-552 flgC 1130661 1131065 
 e-coli-552 flgD 1131077 1131772 
 e-coli-552 flgE 1131797 1133005 
 e-coli-552 flgF 1133025 1133780 
 e-coli-552 flgG 1133952 1134734 
 e-coli-552 flgH 1134787 1135485 
 e-coli-552 flg 1135497 1136594 
 e-coli-552 flgJ 1136594 1137535 
 e-coli-552 flgK 1137601 1139244 
 e-coli-552 flgL 1139256 1140209 

Supplementary Table 11: Both flagellar operons in E. Coli are assembled using the joint 
dataset (mock metagenome). The longer operon is 10 Kbp long and contains more than 
11 genes. 
  



Operon ID Length (bp) 
 e-coli-552 1449 
 e-coli-551 9968 
 r-shpaeroides-647 4788 
 r-shpaeroides-26 13961 
 r-shpaeroides-656 2918 
 r-shpaeroides-658 766 
 p-aeruginosa-627 18422 
 r-shpaeroides-17 2148 
 r-shpaeroides-18 714 
 r-shpaeroides-1960 2489 
 p-aeruginosa-1933 2511 

Supplementary Table 12: Flagellar operons fully assembled within the mock 
metagenome. The joint assembly enables us to recover entire operons responsible for 
bacterial motility, an important factor in determining the whether a microbe will be 
infectious. We are able to recover about half of all such operons present in the data, 
including all the ones present in E. Coli and R. Sphaeroides. Remaining operons could 
not be recovered mainly due to the low abundance of their organisms and to gaps in 
coverage. 
  



Contig ID Contig len. Genus # of operons # of genes Max. genes/operon 
25887 1.2 Mbp Eubacterium 3 13 5 
48450 1.2 Mbp Azospirillum 5 20 5 
48971 0.9 Mbp Butyrivibrio 1 3 3 
24757 2.3 Mbp Acinetobacter 10 50 11 

Supplementary Table 13: Flagellar operons in human gut metagenome. Out of 16 
contigs longer than 0.8 Mbp, four contained flagellar genes. The longest such contig 
contained 10 operons, the longest of which contained 11 genes. 
  



 Human gut Mock metagenome 

 
Base pairs Variants Base pairs Variants 

Essential genes 65,332 11 973,673 19 
Non-essential genes 5,272,922 1,863 4,529,662 203 
% Essential 1.22% 0.59% 17.69% 8.56% 

 
Supplementary Table 14: Frequency of strain variants in the human gut and mock 
metagenomes across essential and non-essential genes. Essential genes from the 
OGEEDB essential genes database were mapped to assembled gut metagenome contigs 
using Mummer. We found 30 contigs with matches, and their total length was 5,338,254 
bp. A total of 65,332 bp mapped to essential genes; all other regions within the mapped 
contigs were considered non-essential. The essential genes contained 11 variants out of 
1874 in total within the mapped contigs. This represents a statistically significant 
enrichment (p < 0.02 using the χ2 test). The frequency of strain variants in the mock 
metagenome across essential and non-essential genes was also significant (p < 1e-3 using 
the χ2 test). 
  



Cutoff threshold 2 3 4 
Variant positions 1626 1304 1210 

 
Supplementary Table 15: Number of positions with strain variants identified by Lens in 
the mock metagenome as a function of the coverage cutoff. All other parameters were set 
to default: the minimum allele frequency was set to 0.1 and the minimum PHRED qscore 
to 15. In all cases, small numbers of variants were found in the mock metagenome. 
 
 
  



SNPs In essential genes In all genes 
Low effect 10 271 
Moderate effect 7 210 
High effect 0 6 

 
Supplementary Table 16: Predicted effects of strain-specific variants found in the mock 
metagenome (E. Coli only). Effects were predicted using the SNPEff software package. 
The difference in the number of moderate effect SNPs is statistically significant (p < 1e-
2; chi-squared test). 
 
  



 
Short Long 

contigs 271,825 24,199 
contigs classified by LCA 126,272 14,858 
contigs classified by NB 29,880 21,722 
% contigs classified by LCA 46.45% 61.40% 
% contigs classified by NB 10.99% 89.76% 
total bp 175,111,648 609,559,313 
bp classified by LCA 113,235,079 398,131,752 
bp classified by NB 94,155,101 582,671,628 
% bp classified by LCA 64.66% 65.31% 
% bp classified by NB 53.77% 95.59% 

Supplementary Table 17: Results of assigning taxonomic labels to contigs using the 
FCP classification package at the species level on the real metagenomic sample. 
  



 
Short Long 

ctg class. correctly 1.000000 (2987/2987) 1.000000 (1331/1331) 
bp class. correctly 1.000000 (23495094/23495094) 1.000000 (29986824/29986824) 
ctgs unclassified 0.006651 (20/3007) 0.020603 (28/1359) 
bp unclassified 0.008193 (194097/23689191) 0.007295 (220350/30207174) 

Supplementary Table 18: Accuracy of the LCA algorithm at assigning taxonomic labels at 
the species level, assessed on the mock metagenomic sample. 
 

     Short Long 
ctg class. correctly 1.000000 (2998/2998) 1.000000 (1358/1358) 
bp class. correctly 1.000000 (23669958/23669958) 1.000000 (30188607/30188607) 
ctgs unclassified 0.002993 (9/3007) 0.000736 (1/1359) 
bp unclassified 0.000812 (19233/23689191) 0.000615 (18567/30207174) 

Supplementary Table 19: Accuracy of the LCA algorithm at assigning taxonomic labels 
at the genus level, assessed on the mock metagenomic sample. 
  



     Short Long 
ctg class. correctly 0.957891 (2434/2541) 0.960120 (1276/1329) 
bp class. correctly 0.969226 (22118466/22820762) 0.979460 (29341659/29956984) 
ctgs unclassified 0.154972 (466/3007) 0.022075 (30/1359) 
bp unclassified 0.036659 (868429/23689191) 0.008282 (250190/30207174) 

Supplementary Table 20: Accuracy of the Naïve Bayes algorithm at assigning taxonomic 
labels at the species level, assessed on the mock metagenomic sample. 
 

     Short Long 
ctg class. correctly 0.964002 (2544/2639) 0.968657 (1298/1340) 
bp class. correctly 0.976197 (22484253/23032496) 0.984523 (29579871/30044876) 
ctgs unclassified 0.122381 (368/3007) 0.013981 (19/1359) 
bp unclassified 0.027721 (656695/23689191) 0.005373 (162298/30207174) 

Supplementary Table 21: Accuracy of the Naïve Bayes algorithm at assigning 
taxonomic labels at the genus level, assessed on the mock metagenomic sample. 
  



N Length (bp) Genus 
1 3,936,007 Odoribacter 
2 2,514,024 Bacteroides 
3 2,399,651 Bacteroides 
4 2,260,142 unclassified 
5 1,912,083 unclassified 
6 1,672,821 Ruminiclostridium 
7 1,636,963 Bacteroides 
8 1,428,920 unclassified 
9 1,379,634 Bacteroides 

10 1,377,560 Acidaminococcus 

Supplementary Table 22: Genus-level taxonomic labels assigned to the longest contigs 
in the real metagenome. 
  



N Length (bp) FCP Classification 
1 2,259,571 Bacteria;unclassified;unclassified;unclassified;unclassified;unclassified;unclassified;unclassified; 

2 1,379,633 Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidaceae;Bacteroides;unclassified;unclassified; 

3 1,377,544 Bacteria;Firmicutes;Negativicutes;Selenomonadales;Acidaminococcaceae;Acidaminococcus;unclassified;unclassified; 

4 1,244,739 Bacteria;Proteobacteria;Alphaproteobacteria;unclassified;unclassified;unclassified;unclassified;unclassified; 

5 1,067,321 Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;unclassified;unclassified;unclassified;unclassified; 

6 972,590 Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidaceae;Bacteroides;unclassified;unclassified; 

7 904,049 Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;unclassified;unclassified;unclassified;unclassified; 

8 868,360 Bacteria;unclassified;unclassified;unclassified;unclassified;unclassified;unclassified;unclassified; 

9 855,447 Bacteria;Firmicutes;Clostridia;Clostridiales;unclassified;unclassified;unclassified;unclassified; 

10 842,182 Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Bacteroidaceae;Bacteroides;unclassified;unclassified; 

Supplementary Table 23: Longest contigs in the real metagenome that could not be 
assigned a taxonomic label at the species level or higher. 
 
N Length (bp) 

1 3,223 
2 6,604 
3 16,998 
4 5,689 
5 13,365 
6 31,566 
7 8,889 
8 5,715 
9 7,439 

10 10,426 

Supplementary Table 24: Longest BLAST match from each of the above contigs to a 
database of known finished genomes. 
  



Bacterium Abundance 

Lawsonia intracellularis 0.13209 

Chitinophaga pinensis 0.048586 

Clostridium novyi 0.043447 

[Eubacterium] eligens 0.036388 

[Eubacterium] siraeum 0.032927 

Bacteroides helcogenes 0.027292 

Marinitoga piezophila 0.027192 

Alistipes finegoldii 0.026972 

Bacteroides thetaiotaomicron 0.025505 

Acholeplasma brassicae 0.025332 

Bacteroides fragilis 0.022607 

Peptoclostridium difficile 0.021531 

Streptobacillus moniliformis 0.020873 

Bacteroides salanitronis 0.019356 

Bacteroides vulgatus 0.018029 

Clostridium botulinum 0.016666 

Acholeplasma palmae 0.016552 

Odoribacter splanchnicus 0.01433 

Eubacterium rectale 0.012471 

Bacteroides xylanisolvens 0.012289 

Alistipes shahii 0.012105 

unclassified 0.011699 

Ignavibacterium album 0.011551 

Parabacteroides distasonis 0.010399 

Akkermansia muciniphila 0.010303 

Clostridium cellulovorans 0.009233 

Clostridiales genomosp. BVAB3 0.009028 

Roseburia intestinalis 0.007073 

butyrate-producing bacterium SM4/1 0.00693 

Treponema succinifaciens 0.006739 

Faecalibacterium prausnitzii 0.005786 

Campylobacter jejuni 0.005555 

Fusobacterium nucleatum 0.0054 

Bifidobacterium longum 0.005242 

Streptomyces cattleya 0.005136 

Filifactor alocis 0.005085 

Lactobacillus ruminis 0.005025 

Gottschalkia acidurici 0.005019 

Caldilinea aerophila 0.004892 

Coprococcus catus 0.004863 

Fibrobacter succinogenes 0.00485 

Sphaerochaeta globosa 0.004656 



[Ruminococcus] torques 0.004506 

Slackia heliotrinireducens 0.00447 

Megamonas hypermegale 0.004444 

Clostridium ljungdahlii 0.004427 

Clostridium acetobutylicum 0.004251 

Desulfovibrio vulgaris 0.003889 

Fretibacterium fastidiosum 0.003739 

Ruminococcus bromii 0.003736 

Oscillibacter valericigenes 0.003693 

Lachnoclostridium phytofermentans 0.003615 

butyrate-producing bacterium SS3/4 0.003595 

Prevotella sp. oral taxon 299 0.003478 

Propionibacterium freudenreichii 0.003268 

Clostridium beijerinckii 0.003136 

Elusimicrobium minutum 0.003126 

[Clostridium] saccharolyticum 0.003079 

Cryptobacterium curtum 0.003068 

Lactobacillus johnsonii 0.003066 

Achromobacter xylosoxidans 0.003026 

Clostridium tetani 0.003025 

Dehalococcoides mccartyi 0.002996 

Enterococcus faecium 0.002933 

Paenibacillus mucilaginosus 0.002785 

[Clostridium] stercorarium 0.002769 

Butyrivibrio proteoclasticus 0.002719 

Desulfovibrio desulfuricans 0.002676 

Desulfomicrobium baculatum 0.002648 

Ruminococcus sp. SR1/5 0.002645 

Coprococcus sp. ART55/1 0.002637 

Pseudomonas resinovorans 0.002628 

Bifidobacterium bifidum 0.002611 

Roseburia hominis 0.002605 

Ruminococcus albus 0.002589 

Streptococcus suis 0.002549 

Enterococcus faecalis 0.002542 

Butyrivibrio fibrisolvens 0.002511 

Clostridium sp. SY8519 0.002491 

Denitrovibrio acetiphilus 0.002481 

Olsenella uli 0.002479 

[Ruminococcus] obeum 0.002401 

Ruminococcus champanellensis 0.002399 

Coriobacterium glomerans 0.002363 

Clostridium saccharoperbutylacetonicum 0.002341 



Streptococcus pyogenes 0.002292 

[Eubacterium] cylindroides 0.002249 

butyrate-producing bacterium SSC/2 0.002242 

Desulfitobacterium hafniense 0.002234 

Acidaminococcus fermentans 0.002169 

Adlercreutzia equolifaciens 0.002151 

Clostridium perfringens 0.002133 

Ethanoligenens harbinense 0.002119 

Erysipelothrix rhusiopathiae 0.002103 

Lactococcus lactis 0.002045 

Veillonella parvula 0.002025 

Clostridium pasteurianum 0.001978 

Treponema pedis 0.001961 

Gordonibacter pamelaeae 0.001899 

Syntrophobotulus glycolicus 0.001881 

Desulfovibrio magneticus 0.001877 

Streptococcus pasteurianus 0.001848 

Symbiobacterium thermophilum 0.001819 

Treponema denticola 0.001812 

Selenomonas ruminantium 0.001798 

Paenibacillus sp. Y412MC10 0.001752 

Selenomonas sputigena 0.001744 

Finegoldia magna 0.001734 

Clostridium saccharobutylicum 0.001725 

Spirochaeta thermophila 0.001706 

Eggerthella lenta 0.001704 

Halobacteroides halobius 0.001687 

Desulfitobacterium dichloroeliminans 0.001648 

Syntrophomonas wolfei 0.00162 

Treponema primitia 0.00158 

Mahella australiensis 0.001575 

Candidatus Saccharimonas aalborgensis 0.001567 

Bifidobacterium thermophilum 0.001567 

Desulfosporosinus orientis 0.001552 

Prevotella denticola 0.001495 

Cellulosilyticum lentocellum 0.00137 

Acidaminococcus intestini 0.00135 

Tannerella forsythia 0.001348 

Desulfotomaculum ruminis 0.001335 

Janthinobacterium sp. Marseille 0.001327 

Clostridium sp. BNL1100 0.00132 

Paenibacillus sp. JDR-2 0.001259 

Treponema brennaborense 0.001236 



Eubacterium limosum 0.0012 

Herminiimonas arsenicoxydans 0.001179 

Lactobacillus delbrueckii 0.001174 

Spirochaeta smaragdinae 0.001159 

[Clostridium] clariflavum 0.00115 

Prevotella intermedia 0.001067 

Thermobacillus composti 0.001063 

Opitutus terrae 0.001054 

Methanobrevibacter smithii 0.00105 

Eggerthella sp. YY7918 0.000962 

Bifidobacterium animalis 0.000962 

Prevotella dentalis 0.000954 

Sphaerochaeta pleomorpha 0.000918 

Thermacetogenium phaeum 0.000901 

Thermaerobacter marianensis 0.00087 

Gardnerella vaginalis 0.000861 

Actinobacillus succinogenes 0.00085 

Ruminiclostridium thermocellum 0.000811 

Alkaliphilus metalliredigens 0.000808 

Haemophilus parasuis 0.000807 

Treponema azotonutricium 0.0008 

[Clostridium] cellulolyticum 0.000792 

Escherichia coli 0.000786 

Mannheimia haemolytica 0.00078 

Actinobacillus pleuropneumoniae 0.000756 

Acetobacterium woodii 0.000733 

Megasphaera elsdenii 0.000698 

Desulfotomaculum gibsoniae 0.000683 

Desulfomonile tiedjei 0.000649 

Porphyromonas gingivalis 0.000627 

Prevotella melaninogenica 0.000608 

Bacillus coagulans 0.000529 

Candidatus Methanomassiliicoccus intestinalis 0.000516 

Desulfosporosinus meridiei 0.000482 

Thermanaerovibrio acidaminovorans 0.000477 

Streptococcus intermedius 0.000476 

[Clostridium] sticklandii 0.000467 

Desulfotomaculum acetoxidans 0.000463 

Thermoanaerobacterium thermosaccharolyticum 0.00043 

Bifidobacterium dentium 0.000396 

Desulfotomaculum kuznetsovii 0.000387 

Porphyromonas asaccharolytica 0.00038 

Alkaliphilus oremlandii 0.000378 



Heliobacterium modesticaldum 0.000352 

Bifidobacterium adolescentis 0.000308 

Bacteroidales bacterium CF 0.000305 

Campylobacter hominis 0.000272 

Clostridium kluyveri 0.000228 

Riemerella anatipestifer 0.000165 

Weeksella virosa 0 

Supplementary Table 25: Abundance estimates for the bacteria in the gut metagenome. 
  



 
Nanoscope Reference 

Acinetobacter baumannii 0.004316 0.003776 
Actinomyces odontolyticus 0 0.000143 
Bacillus cereus 0.00222 0.00192 
Bacteroides vulgatus 0.00018 0.000158 
Clostridium beijerinckii 0.008438 0.007205 
Deinococcus radiodurans 0 0.002793 
Enterococcus faecalis 0 0.000063 
Escherichia coli 0.05176 0.060983 
Helicobacter pylori 0.002308 0.002017 
Lactobacillus gasseri 0.000135 0.000134 
Listeria monocytogenes 0.00099 0.001104 
Neisseria meningitidis 0.002127 0.003039 
Propionibacterium acnes 0.003828 0.003204 
Pseudomonas aeruginosa 0.016951 0.014213 
Rhodobacter sphaeroides 0.23266 0.189467 
Staphylococcus aureus 0.287555 0.25594 
Staphylococcus epidermidis 0.22212 0.235984 
Streptococcus agalactiae 0.008532 0.0078 
Streptococcus mutans 0.155881 0.136271 
Streptococcus pneumoniae 0 0.000206 
Correlation 

 
0.97509635 

Supplementary Table 26: Abundance estimates for the bacteria in the mock 
metagenome obtained from Nanoscope, compared to estimates obtained by mapping 
short reads to the known 20 reference genomes. 
  



 
Mock SNPs Mock indels Gut SNPs Gut indels 

Number of distinct alleles across haplotypes 3940 121 464652 5328 
        In regions with > 20X short reads cov. 3880 82 141027 1925 
        That are also confirmed by short reads 3791 82 136072 1895 
Concordance 97.70% 100% 96.49% 98.44% 

 
Supplementary Table 27: Validation of bacterial haplotypes using shotgun sequencing. 
Shotgun reads were aligned to fasta sequences corresponding to each bacterial haplotype. 
We say that a variant within a haplotype is supported by a short read if the reads aligns 
perfectly to the variant. Because short and long reads have different coverage profiles, we 
only confirm variants that fall in regions with >20X short read coverage.  



 

 
Joint (staggered sample) SMRT (even sample) 

# contigs (>= 0 bp) 3092 1121 
# contigs (>= 1000 bp) 1668 1121 
Total length (>= 0 bp) 46410922 52622925 
Total length (>= 1000 bp) 45482193 52622925 
# contigs 3092 1121 
Largest contig 1687331 2954570 
Total length 46410922 52622925 
Reference length 83861393 83861393 
GC (%) 46.67 46.55 
Reference GC (%) 43.64 43.64 
N50 91895 142836 
N75 25235 47598 
L50 102 60 
L75 364 225 
# misassemblies 121 105 
# misassembled contigs 95 64 
Misassembled contigs length 6541944 8100339 
# local misassemblies 651 66 
# unaligned contigs 290 + 58 part 9 + 3 part 
Unaligned length 265150 126875 
Genome fraction (%) 52.986 60.466 
Duplication ratio 1.041 1.036 
# N's per 100 kbp 55.5 0 
# mismatches per 100 kbp 7.9 3.08 
# indels per 100 kbp 2.69 14.11 
Largest alignment 1662529 2954569 
NA50 83121 126638 
NA75 23510 40835 
LA50 107 66 
LA75 383 245 

 
Supplementary Table 28: Assembly of the mock metagenome using our joint 
long+short read sequencing strategy, compared to an assembly of SMRT reads using 
PBCR with MHAP. The SMRT reads were generated for the even mock metagenomic 
sample at a uniform depth of 70X, while our reads were generated for the staggered 
sample. SMRT reads generate long contigs, but have a very high indel error rate. 
  



 
Mock SNPs SMRT SNPs 

Number of distinct alleles across haplotypes 760 57469 
        In regions with > 20X short reads cov. 709 20258 
        That are also confirmed by short reads 708 17915 
Distinct variant alleles across haplotypes 295 7689 
        In regions with > 20X short reads cov. 272 2663 
        That are also confirmed by short reads 271 389 
Concordance over all alleles 99.86% 88.43% 
Concordance over variant alleles 99.63% 14.61% 

 
Supplementary Table 29: Validation of haplotypes obtained from SMRT reads using 
shotgun sequencing and comparison to the LR validation. Shotgun reads were aligned to 
fasta sequences corresponding to each bacterial haplotype. We say that a variant within a 
haplotype is supported by a short read if the reads aligns perfectly to the variant. Because 
various reads have different coverage profiles, we only confirm variants that fall in 
regions with >20X of short read coverage. We also only look at SNVs because of the 
SMRT reads’ high error rate. Overall, the vast majority of variants identified by SMRT 
are not confirmed by short reads. 
  



 
Ass. merging SPAdes 

# contigs (>= 0 bp) 3092 397 
# contigs (>= 1000 bp) 1668 254 
Total length (>= 0 bp) 46410922 28875392 
Total length (>= 1000 bp) 45482193 28839102 
# contigs 3092 265 
Largest contig 1687331 1382885 
Total length 46410922 28846434 
Reference length 83861393 83861393 
GC (%) 46.67 45.38 
Reference GC (%) 43.64 43.64 
N50 91895 252756 
N75 25235 91715 
L50 102 27 
L75 364 75 
# misassemblies 121 71 
# misassembled contigs 95 53 
Misassembled contigs length 6541944 8282145 
# local misassemblies 651 66 
# unaligned contigs 290 + 58 part 5 + 0 part 
Unaligned length 265150 22316 
Genome fraction (%) 52.986 34.385 
Duplication ratio 1.041 1.001 
# N's per 100 kbp 55.5 0 
# mismatches per 100 kbp 7.9 9.46 
# indels per 100 kbp 2.69 1.85 
# genes 27224 + 2485 part 12834 + 264 part 
# operons 4567 + 1079 part 2120 + 163 part 
Largest alignment 1662529 1131235 
NA50 83121 201356 
NA75 23510 80326 
LA50 107 32 
LA75 383 90 

 
Supplementary Table 30: Comparison of the assembly merging strategy to assembly 
short and long reads together with SPAdes on the mock metagenomic sample. SPAdes 
achieves much lower error and higher N50, but assembles much fewer base pairs as well 
as 50% fewer genes and operons. 
  



 
Joint SPAdes 

# contigs 34786 14709 
Largest contig 3936002 1046061 
Total length 656202352 268877838 
GC (%) 46.85 46.33 
N50 49208 73993 
N75 18127 38564 
L50 2367 989 
L75 8301 2262 
# N's per 100 kbp 116.82 0 
# predicted genes (unique) 552680 247095 
# predicted genes (>= 0 bp) 623203 247761 
# predicted genes (>= 300 bp) 533061 215917 
# predicted genes (>= 1500 bp) 90978 39183 
# predicted genes (>= 3000 bp) 11163 5198 

 
Supplementary Table 31: Comparison of the assembly merging strategy to assembly 
short and long reads together with SPAdes on the real metagenomic sample. SPAdes 
achieves much lower error and higher N50, but assembles much fewer base pairs and the 
contigs that it produces contain 50% fewer predicted gene ORFs. 
 
  



 
SPAdes Asm. Merging 

Number of conitgs 2354 5040 
Contigs N50 23847 13452 
Longest contig 471336 197804 
Total bp assembled 44152518 52147096 
Genes predicted 41858 49892 
Number of variants 18085 10534 
Number of bacterial haplotypes 94 50 

 
Supplementary Table 32: Metagenomic analysis of the 4m soil metagenome from 
Sharon et al. We ran the Nanoscope pipeline on data downloaded from SRA using both 
the standard assembly strategy (Asm. Merging) and using the optional SPAdes 
assembler. SPAdes assembled about 85% as much sequence as the merging approach into 
contigs that were much longer. More variants and haplotypes were found in the SPAdes 
assembly. Both methods over an improvement over the results of Sharon et al., which 
assembled sequence into contigs of less than <10 kbp. 
  



Phylum # contigs % contigs # bp % bp 
unclassified 1075 0.456669499 16128086 0.365281228 
Proteobacteria 643 0.273152082 15314326 0.346850569 
Chloroflexi 221 0.093882753 4341316 0.098325445 
Nitrospirae 83 0.035259133 2384163 0.053998347 
Firmicutes 79 0.033559898 1748190 0.039594344 
Bacteroidetes 50 0.021240442 970529 0.021981283 
Euryarchaeota 50 0.021240442 767823 0.017390243 
Acidobacteria 23 0.009770603 502788 0.011387527 
Actinobacteria 27 0.011469839 293005 0.006636201 
Deinococcus-Thermus 8 0.003398471 168542 0.003817268 
Crenarchaeota 9 0.00382328 157085 0.003557781 
Cyanobacteria 14 0.005947324 147908 0.003349934 
Chlorobi 6 0.002548853 131811 0.002985356 
Spirochaetes 7 0.002973662 129599 0.002935257 
Planctomycetes 9 0.00382328 112873 0.002556434 
Thermodesulfobacteria 5 0.002124044 108882 0.002466043 
Ignavibacteriae 5 0.002124044 78134 0.001769639 

 
Supplementary Table 33: Top phyla identified in the 4m soil metagenome from Sharon 
et al. We ran the Nanoscope pipeline on data downloaded from SRA using both the 
standard assembly strategy (Asm. Merging) and using the optional SPAdes assembler. 
The FCP program identified 16 phyla to which >75 Kbp of sequence could be mapped. 
These include all the standard phyla reported by Sharon et al. (i.e. we choose not to 
consider candidate phyla); however, we also find new phyla, such as Firmicutes. This is 
the 4-th most abundant phylum, but it is not reported by Sharon et al. 
  



 Our method Nielsen et al. Albertsen et al. Iverson et al. 
Sample type Gut microbiome Gut microbiome Environmental Environmental 
# of samples 1 18-396 2 1 
Seq. platform Tru-seq SLR Illumina WGS Illumina WGS SOLiD mate-pairs 

Sanger sequencing 
Seq. amount 8 Gbp (long reads) 

x40 (subassembly) 
4.5 Gbp/sample 86 Gbp 59 Gbp 

Software  Nanoscope, Lens Canopy clustering Multi-metagenome SEAStAR 
Analysis type De-novo assembly; 

Phasing 
Clustering across 
subjects; assembly 

Binning across 
extraction methods 

De-novo assembly; 
Nucleotide binning 

Softw. availability Yes Yes Yes No longer online 
Taxa detected 178 741 31 47 
Resolution Individual SNV Strain Species with diff. 

GC content 
Family 

Longest scaffold 3.9 Mbp 733 Kbp 3.6 Mbp 2.2 Mbp 
Scaffold N50 49 Kbp 39 Kbp1 4.1 Kbp overall 

~100 Kbp for top 
species 

6.8 Kbp 

Bases assembled 656 Mbp 45 Mbp (genes) 
35 Gbp (total) 

423 Mbp 300 Mbp 

# Variants  200K n/a n/a n/a 
# Haplotypes 5K n/a n/a n/a 
 
Supplementary Table 34: Comparison of Tru-seq synthetic long reads to alternative 
metagenomic analysis techniques. In brief, our approach produces similar results to 
alternative techniques that used hundreds of pooled samples (Nielsen et al.) or potentially 
inaccurate binning approaches (Albertsen et al., Iverson et al.). Furthermore, we analyze 
strains at a higher resolution than before by detecting strain-specific SNVs and indels and 
phasing them into haplotypes. 
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 Note that the contigs of Nielsen et al. are also clustered into unordered sets belonging to the same species. 


