
Supplementary Note

Quantitative mathematical modelling

Modelling of H2B-GFP fluorescence dilution data implies two independent populations
with different proliferation rates and primarily coupled division and transport for the rapidly
dividing cells

The BL, SL, and GL cells are labeled with the same maximal amount of H2B-GFP at the beginning of
the doxycycline-induced chase. As the chase proceeds, BL stem cells (SCs) and progenitors divide, diluting
the H2B-GFP per cell by a factor of two at each division, so the number of times that a cell has divided
since the start of the chase, d, can be determined from the 2d-fold reduction in its H2B-GFP fluorescence.
Therefore, H2B-GFP fluorescence intensity histograms of BL cells indicate the relative proportions of cells
that have divided d = 0, 1, 2, . . . times1,2. This d-distribution depends primarily on the rate of cell division,
but is also affected by the rate at which the undivided and divided cells are transported from the BL to
the SL. Transport of divided cells into the SL and GL replaces the d = 0 cells in these compartments, so
their H2B-GFP histograms provide insight into the transport mechanism and rates. (Since CL cells are not
included in the FACS analysis, GL→CL transport is not analyzed here.)

In these experiments, tdTomato, α6-integrin, and CD34 markers were used to identify BL, SL, and GL
cells from the back skin of mice that had been sacrificed after 3-, 7-, and 21-day chases (Fig. 3a). Their
H2B-GFP histograms (Fig. 3b) were deconvolved (Fig. 3d) as previously described3 to determine the d-
distributions for all 9 compartment/chase duration combinations (Fig. 3e, green). (See Theoretical Methods,
below, for further details.) A maximum of eight peaks could be resolved in the FACS data, which limited
the analysis to d ≤ 7.

As discussed in the main text, two observations are striking: First, most of the BL cells are dividing
rapidly—85% of them divided at least once by 3 days. Second, all the SL and GL cells are replaced at
similar fast rates. The second observation is only partly explained by the rapid division and the homeostatic
requirement that the density of cells in each compartment remain constant. Homeostasis implies that the
BL→SL transport rate must equal the mean BL division rate, λBL, and that the SL→GL and GL→CL
transport rates are fixed by λBL and the ratios between the layer cell densities (ρBL, ρSL, and ρGL); the transport
rates are not independent parameters. The cell density ratios were determined by microscopy and cell
counting of the BL, SL, and GL in back skin sections to be ρSL/ρBL = 0.78±0.07 and ρGL/ρBL = 0.52±0.05.
Since the ratios are less than one, we expect the SL→GL and GL→CL upward cell transport rates to be faster
than the mean division rate.

However, even these fast transport rates would not be adequate to account for the very rapid replacement
of undivided SL and GL cells with divided cells from the BL if division were uncorrelated with transport.
(We call this “uncoupled division”.) In that case, the transported cells would be randomly selected from,
and have the same d-distribution as, the BL cells. Then, because of the time required to displace the bulk of
the SL and GL cells, the SL and GL d-distributions would lag the BL distribution. On the other hand, the
rapid reduction in the number of undivided SL and GL cells can be explained by the hypotheses that rapid
division is tightly “coupled” to transport. In that case, every transported cell will have just divided, and at
each instant the mean number of divisions of the transported cells will be one greater than the mean number
of divisions of the BL cells. This will accelerate the rate of change of the d-distributions in both SL and GL.

We quantitatively tested this hypothesis by dynamically modelling the division and transport processes.
We tested both previously analyzed4,5 and new models that differ in the numbers of subpopulations within
the BL, SL, and GL compartments, the lineal relationships between them, and the extent of coupling between
division and BL→SL transport. All the models allow stochastic variation of both division and transport
intervals, which are parameterized by the mean rates. The best-fit parameters were determined by minimiz-
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ing the total discrepancy ∆ between the experimental and predicted d-distributions summed over the nine
compartment/chase-duration measurements (Figs. 3e and Supplementary Fig. 3b; The bars are normalized
so that the sums of densities over the displayed ranges are unity). ∆ = 0 for a perfect fit and increases as the
fit deteriorates; the best-fit parameters and ∆ for the different models are given in Fig. 3c and Supplementary
Fig. 3a. Adding the number of parameters to ∆ approximates half the Akaike Information Criterion6 and
can be used to compare models with different numbers of parameters.

To challenge the inference that the fast division must be coupled to BL→SL transport, we considered
three models in which division and transport are uncoupled. The simplest such model is one in which the
BL contains a single population of stem cells (SCs) that symmetrically divide to SCs at rate λS while also
undergoing uncoupled, stochastic differentiation and transport from BL→SL, and then from SL→GL→CL
(Supplementary Fig. 3a, blue). As in all the models considered, the transport rates are not independent
parameters; rather, they are determined from λS by the homeostatic requirement that the density of cells in
each layer be constant in time. While this model with the best-fit value of λS = 0.29/day fits the BL division
data reasonably well (Supplementary Fig. 3b, blue), the transport rate is much too slow and does not fit the
SL and GL data. In this model complete replacement of the undivided d = 0 cells in SL and GL is not
predicted until 3 weeks, while the data show that most SL and GL cells are replaced by 3 days and that all
cells are replaced by 1 week (Supplementary Fig. 3b, green).

We next tested the single-progenitor “P-D” (or “committed progenitor”) model that was proposed by
Clayton et al.4 to explain their lineage-tracing experiments. In this model the BL contains a population
of self-renewing, dividing progenitor (P) cells that generate a second population of non-proliferating dif-
ferentiated cells (Ds). Only the differentiated cells are transported to the SL, so transport and division are
uncoupled (Fig. 3c, gray). Both division and transport are modeled as random processes governed by mean
rate constants. The predictions of the model for a fluorescence dilution experiment are governed by two
independent parameters: the fraction of differentiated cells in BL and λP, the mean progenitor division rate.
(The mean transport rate is fixed by the homeostatic requirement of constant cell density. The symmetry
parameter r that was used in applying the P-D model to lineage tracing data is not relevant for fluorescence
dilution analysis; therefore, we do not distinguish between symmetric and asymmetric divisions in Fig. 3c.)
Clayton et al. found that this model provided a good fit to their lineage tracing data with 78% of the BL
comprised of differentiated cells and λP ≈ 0.16/day. The model with these values clearly does not fit the
d distributions from our H2B-GFP dilution data since it implies that only half of the BL cells would have
divided by day 3. An improved, but still poor, fit to the BL data can be obtained if we use the best-fit di-
vision rate of λP = 1.7/day (∆ = 204; Supplementary Fig. 3b, gray); but this very fast rate is biologically
improbable, and the predicted transport rates are still much too small to explain the SL and GL H2B-GFP
dilution data. This problem can be ameliorated if the proportion of differentiated cells in the BL is decreased
to 50%, but even then the best fit that can be obtained (with λP = 0.58/day) does not predict the observed
fast replacement of the undivided cells in SL and GL (∆ = 70; Fig. 3e, gray).

If both P-D model parameters are allowed to vary without constraint, the best-fit model contains only
8% differentiated cells in the BL and λP = 0.47/day. Because the fraction of differentiated cells is so
small, to maintain constant BL cell density the differentiated cells must be transported from BL→SL almost
as soon as they are created. Therefore, the model with these parameters is degenerate and is effectively
equivalent to a single-population model in which division is coupled to transport: it generates almost the
same d-distribution and discrepancy (∆ = 35) as the single-population coupled SC model (see below and
Supplementary Fig. 3b, dark blue). As with that model, the fit to the SL and GL data is improved, but the
fit to the day 7 BL distribution is degraded. For example, the p-values for the d = 0 and d = 1 probabilities
under the best-fit model are 10−7 and 5 × 10−7, respectively. No good balance between the requirements
imposed by the SL and GL data and those imposed by the BL data could be found. Moreover, the P-D
model requires an additional adjustable parameter to do this, so it is not of interest. We conclude that the
P-D model is poor for these data.
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We also considered the stem cell/progenitor “SC-P-D” model that was introduced by Mascre et al.5 This
makes both quantitative and qualitative changes to the P-D model: (1) The fraction of differentiated cells
in the BL is decreased to 20%. (2) The model adds a SC population that undergoes stochastic division
both for self-renewal and the generation of Ps (Fig. 3c, blue). This introduces two additional parameters
that are relevant to analyzing a H2B-GFP dilution experiment: the proportion of the BL composed of SCs
and λS, their mean division rate. This model with the Mascre et al. parameters (5% SCs, λS ∼ 5/year,
λP = 0.18/day) also failed to fit the data.

For an extended test of the possibility that hierarchically combining a SC population with a descendant
progenitor population could improve performance, we tested the model allowing all parameters except for
the fraction of differentiated cells to vary. An improved best-fit was obtained (λS = 0.30/day, λP = 0.48/day;
∆ = 37; Fig. 3e, blue), but it contains no SCs and so is equivalent to the P-D model, albeit with a reduced
fraction of differentiated BL cells. When all four SC-P-D parameters were allowed to vary without con-
straint, the best-fit model was the same as the unconstrained P-D model: it has no SCs and only a small
number of differentiated cells that are almost immediately transported from BL→SL after creation. Thus,
like the P-D model, the SC-P-D model cannot fit all the data even though two additional adjustable param-
eters are included. We conclude that allowing for a SC population that generates the progenitor population
does not improve the fit to the data.

Having demonstrated that models in which division and BL→SL transport are uncoupled cannot well-
model all the data, we tested the simple single-population SC model in which these two processes are tightly
coupled (Supplementary Fig. 3a, dark blue; red arrow denotes coupled transport). This could model, for
example, the biological situation in which the mitotic plane is perpendicular to the basement membrane and
division is physically asymmetric: a SC attached to the basement membrane divides into a SC that remains
membrane-attached and a descendant that is transported to the SL and differentiates7. As a result, divided
cells are more rapidly transported from BL→SL. (However, physical asymmetry is not required and the
model is consistent with any mechanism that couples division to BL→SL transport.) Like the uncoupled SC
model, there is only one adjustable parameter—the SC division rate λS, which had a best-fit value of 0.47/day
(∆ = 36). As hypothesized, the coupling greatly improves the fit to the SL and GL data (Supplementary
Fig. 3b, dark blue). The fit obtained with this simple model is very close to that obtained with the more
complicated unconstrained P-D and SC-P-D models. We conclude that the data strongly suggest that most
fast division is tightly coupled to BL→SL transport and that adding multiple lineally related components to
the BL does not improve the fit to the data.

However, as discussed above, none of these models provides a good fit to the day 7 BL d-distribution.
This suggests that the BL contains an additional population that divides at a slower rate. The most econom-
ical way to model this is by including a second, slowly dividing SC population. This gives a model with
two independent proliferating populations that we call the “two-SC model” (“2×SC”; Fig. 3c, yellow). It
has three independent parameters: the division rates of the fast- and slow-dividing populations, λS1 and λS2 ,
and the fraction of fast SCs in BL, f S1 . We considered variants of the model having different degrees of
coupling between division and BL→SL transport. For simplicity, we first consider a semi-coupled model
in which division of the fast population is completely coupled with transport (red arrow in Fig. 3c, yel-
low) while division of the slow population is completely uncoupled, since this is adequate to well-model
the H2B-GFP dilution data. (In the sequel we discuss a refinement of the model for analyzing the lineage
tracing data.) This model well-fits the data if cells in the fast population divide on average once every two
days (λS1 ≈ 0.51/day), cells in the slow population divide on average every ∼ 5 days (λS2 ≈ 0.19/day),
and the fast cells comprise about two-thirds of the BL (f S1 ≈ 0.70; ∆ = 27; Fig. 3e, yellow).

We conclude that dynamic modelling of the H2B-GFP fluorescence dilution suggests that the BL contains
at least two independently dividing populations and that transport of at least most of the rapidly dividing
cells is coupled to cell division. The slowly and rapidly dividing SC populations identified here probably
correspond to the LRC and non-LRC populations identified from the independent experimental data. The

3



quantitative modelling implies that the non-LRC’s divide ∼ 2.5 times faster than the LRCs. The corre-
spondence is further supported by the agreement between the fraction of fast SCs in the model (f S1) and
the fraction of non-LRCs estimated by examining the areas of the spatially separated, non-LRC and LRC
regions in the tail: photomicrography suggests that they are present in a 65:35 ratio (Fig. 1h and Supple-
mentary Fig. 5a), which is close to the 70:30 ratio computed here.

The tail epidermis short-term H2B-GFP fluorescence dilution data reported by Mascre et al.5 for the BL
compartment at 6 and 9 days (their Fig. 3j and Supplemental Fig. 6d) is consistent with the 3- and 7-day
back skin BL data reported here (Fig. 3e, green). However, their 3-week data (their Fig. 3j) is quite different
from ours (Fig. 3e, green). While our data show much larger proportions of highly divided cells at 3 weeks
relative to 7 days, their 3-week proportions are only increased slightly beyond their 9-day proportions. This
may reflect differences in the experimental selection procedures, mouse age during the chase, or the type of
skin (tail vs back) that was analyzed. For example, it may be relevant that we used an additional selection
to isolate cells for H2B-GFP FACS analysis: in addition to the α6-integrin+/CD34− selection used in both
sets of experiments, the cells analyzed here were also selected for K14CreER-induced recombination and
expression of the tdTomato marker (Figs. 2a and 3a). At the low doses of tamoxifen used, this selection
excluded other epidermal skin compartments such as infundibulum, isthmus, hair follicle outer root sheath,
sebaceous gland, and hair germ that could contribute to the data. In any case, their modelling5 may not
have revealed the fast-dividing population because, as shown above, the identification depends critically on
including the SL and GL data, which was not available for their analysis.

Turnover and division rates in the tail scale (enriched in non-LRCs) and interscale (en-
riched in LRCs) epidermal regions

The ability to morphologically distinguish the scale and interscale epidermal regions in the tail provided
an opportunity to compare the division rates within these regions with the values calculated from the H2B-
GFP dilution data. (This could not be done for back skin, because its non-LRC and LRC regions are not
morphologically distinct in tissue sections prior to doxycycline chase.) K5-tTA/pTRE-H2B-GFP mice were
chased with doxycycline (Supplementary Fig. 3c), and the H2B-GFP signals within the BL and SL (scale)
or the BL and SL+GL (interscale) regions were measured by fluorescence microscopic image analysis of
transverse sections (Supplementary Fig. 3d). The initial (i.e., day 0) H2B-GFP fluorescence signals varied
by only ∼ 5% between mice, so the temporal reduction of fluorescence could be determined by comparing
the values from mice chased for different intervals (Supplementary Fig. 3e). By interpolation we see that the
turnover half-lives for the BL plus analyzed suprabasal region are ∼ 3.5 days (non-LRC) and ∼ 6.2 days
(LRC).

The least-square best-fit non-LRC and LRC division rates were determined from the BL data using
the fast (S1) and slow (S2) 2×SC subpopulation models, respectively. This gave λS1 = 0.40/day and
λS2 = 0.14/day. These values are 20–25% lower than the best-fit values from the back skin H2B-GFP
dilution experiments, while the ratio between them, λS1/λS2 = 2.9, is very close to the back skin ratio,
2.7. (The division rate ratio differs somewhat from the inverse of the turnover half-life ratio because the BL
H2B-GFP turnover depends on the extent to which division is coupled to transport.)

This excellent agreement, allowing for overall slightly slower cell division in the tail than in the back,
supports the two stem cell model and the hypothesis that the back and tail LRC and the back and tail non-
LRC populations are closely related.

Lineage tracing implies a mixture of coupled and uncoupled division/transport

Mixed (hybrid) coupling and uncoupling of non-LRC and LRC division to BL→SL transport. SCs
that divide with complete division/transport coupling, such as the fast SCs in the minimal 2×SC model
described above, cannot form BL clones since the descendants are transported as quickly as they are gen-
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erated. However, lineage tracing showed that the non-LRCs as well as the LRCs form clones in the BL
(Fig. 4f). To accommodate this observation, the 2×SC model must be extended to allow at least some
uncoupled division of the fast (i.e., non-LRC) population as well. A mixture of coupled and uncoupled di-
vision/transport might result from differing microenvironments or from stochastic behavior within a single
environment with probabilities 1 − uS1 for coupled- and uS1 for uncoupled-division/transport (Supplemen-
tary Fig. 3a, yellow; red arrow denotes coupled transport). uS1 cannot be determined from the dilution
data, but we found that the stochastic hybrid model provides a better fit than all the other models as long as
uS1 ≤ 30%. For example, Supplementary Fig. 3b, yellow, displays the best-fit of the 2×SC hybrid model
(f S1 = 0.74, λS1 = 0.47, λS2 = 0.19, uS1 = 0.20), in which 20% of the rapidly dividing cells divide
symmetrically and retain both descendants in the BL, thus allowing for clone formation in the BL.

Conversely, while the H2B-GFP dilution data was well-fit by the minimal model in which slow popula-
tion division was completely uncoupled from BL→SL transport, that data does not exclude the possibility
that the slow population also divides with partial coupling to transport.

Neutral drift and clone number evolution in the tail interscale. In many, if not most, cases, homeostatic
tissue replacement involves neutral competition between clones, which predicts a neutral drift of individual
clone sizes and numbers with time in lineage tracing experiments: marked stem cells form a decreasing
number of clones having increasing mean size over time8. The rate of change depends on the probability
that a cell division changes the number of proliferating cells in the BL: “asymmetric divisions” do not
change the number while “symmetric divisions” decrease or increase the number by one. In this context
these terms do not imply physical asymmetry or symmetry of the division process. For example, a division
that is tightly coupled to BL→SL transport in the 2×SC model is asymmetric because the number of SCs
does not change, whether or not this results from physical asymmetry7 or another biological mechanism.
Conversely, in this context an uncoupled division is symmetric regardless of the physical symmetry of the
process. The hybrid 2×SC model is consistent with neutral drift; therefore, quantitative analysis of lineage
tracing experiments can be used to estimate the fraction of uncoupled divisions in the non-LRCs (uS1) and
LRCs (uS2).

Since Dlx1 is preferentially expressed in the LRC cells (Figs. 4c and 5c), we used it in lineage tracing
to estimate uS2 in the tail epidermal interscale regions: Dlx1CreER/Rosa-tdTomato mice were injected with
tamoxifen to induce low-frequency Dlx1CreER-induced recombination and expression of tdTomato. This
permitted the change in the number and total vertically projected size (i.e., fractional area) of the tdTomato+

clones within the line and non-line interscale substructures to be measured for periods up to one year.
Consistent with neutral drift, the number of clones decreased (Supplementary Fig. 5f) even as their fractional
area increased due to clone spread into the suprabasal region (Fig. 5f). Combining this information with
the interscale LRC division rate determined from the H2B-GFP reduction measurements (λS2 = 0.14/day;
Supplementary Fig. 3e) implies that the probability of uncoupled division is similar in both interscale regions
(Supplementary Fig. 5g, solid lines): uS2 = 0.18 (non-line) and 0.12 (line). Accounting for the 2.6:1 ratio
of non-line to line area (Supplementary Fig. 5a), we estimate that uS2 ≈ 0.16 in interscale overall. This
value for the LRCs is within the range uS1 ≤ 0.3 that is consistent with the H2B-GFP dilution data for the
non-LRCs, so it is possible that both populations divide with the same degree of coupling.

The data exclude the alternative model that the extent of coupling between division and transport is de-
termined by microenvironments within the interscale and scale subregions as long as the Dlx1CreER-marked
cells are representative of the complete LRC population. However, while it seems unlikely, we cannot ex-
clude the possibility that Dlx1 marks a subset of the LRCs that divide with a slower rate and with different
values of uS2 . The slowest rate consistent with the data is λS2 ∼ 0.02 − 0.03/day, which would fit the data
if division were completely uncoupled (i.e, uS2 = 1; Supplementary Fig. 5f, dotted lines).

The lineage of the small number of Dlx1CreER-marked cells in the scale region (which mainly contains
non-LRCs) is unclear since Dlx1 is only a preferential, not absolute, marker of LRCs. The number of
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clones formed by these cells decreased with time at about the same rate as the Dlx1CreER-marked cells in
the interscale (Supplementary Fig. 5f). However, these clones were almost twice as small as those in the
non-line interscale (Supplementary Fig. 5e), indicating decreased proliferation and differentiation of the
Dlx1CreER-marked cells in the scale region.

Similar analyses were not performed to determine uS1 for the non-LRC cells because the rapid growth
and overlap of the Slc1a3CreER-marked clones prevented counting clone number at the later times.

In summary, the H2B-GFP dilution data and lineage tracing data together imply that the non-LRCs divide
at similar fast rates (0.4–0.5 divisions/day) in both the back and tail with most, but not all, divisions tightly
coupled to BL→SL transport. The back and tail LRCs divide at slower rates (0.14–0.19 divisions/day) and
it is likely, but not unequivocal, that most of their divisions are also coupled to transport.

Comparison to previous quantitative models of the mouse epidermis
The hybrid 2×SC model is quite different from the P-D and SC-P-D models previously proposed by

Clayton et al.4 and Mascre et al.5 Both SC populations in our hybrid 2×SC model are independent and have
two distinct populations of differentiated descendants that travel independently through the SL and GL. In
contrast, the P-D Clayton et al. model differs from a single-population model only in that differentiated cells
are retained in the BL before transport to the SL; only a single type of differentiated cells travels through
the SL and GL in this model. In the same vein, while the SC-P-D Mascre et al. model introduces another
population, K14CreER SCs, into the BL, these do not comprise an independent population. Rather, these
SCs are precursors of the InvCreER cells. Moreover, they are not spatially segregated and only one type of
differentiated cell is generated. These differences are displayed in the subdivisions of the bars in Fig. 3e and
Supplementary Fig. 3b, which show the individual subpopulation contributions.

The Clayton et al., Mascre et al., and hybrid 2×SC models all imply that neutral drift of clone number
and size will be observed in lineage tracing experiments, and such data can be used to estimate the mix-
ture of “asymmetric” and “symmetric” division that is occurring8. Interestingly, the best-fit division rate
(∼ 0.17/day) and asymmetric division fraction (∼ 80%) computed using those models for the mouse tail
AhCreER+

and InvCreER+
committed progenitor populations are both similar to the corresponding best-fit val-

ues (∼ 0.14/day and∼ 84%, respectively) computed from the 2×SC model for our tail skin LRC population.
However, the biological processes that are assumed to explain the mixture of symmetric and asymmetric di-
visions in the neutral drift process are different: in the previous models, asymmetric division generates one
differentiated and one committed progenitor cell in the basal layer, and symmetric division generates either
zero or two differentiated cells in the basal layer; all three types of division are uncoupled from transport.
In the hybrid 2×SC model, asymmetric (i.e., coupled) division involves the closely coincident transport of
one descendant to the SL during a division, while neither descendant is immediately transported during a
symmetric (i.e., uncoupled) division; there is no need to posit differentiation within the BL. However, the
possibility of some small fraction of differentiated cells in the BL or additional minor subpopulations is not
excluded.

Relationship to the mouse epidermis turnover rate
Potten et al.9 injected mice with [14C]thymidine and showed that the time to peak 14C in the GL was

∼ 4.5 days. This includes the time required for cell division in the BL (during which the thymidine is
incorporated) and BL→SL→GL transport, and so represents the turnover time of the nucleated epidermal
layers. Since transport itself requires on average about three days 9, this implies that a large amount of
BL cell division must occur with two days. This is consistent with our H2B-GFP data, which implies that
∼ 70% of the BL cells divide on average every two days. We quantitatively tested this by simulating the
thymidine-labelling experiments using the 2×SC model and, in remarkable agreement, found that the peak
of the transit-time distribution of a radioactive label from the BL to the GL was also ∼ 4.5 days.
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Summary of modelling results
The simultaneous collection of H2B-GFP dilution data for the SL and GL layers along with the BL layer

permitted a more detailed and accurate analysis of the kinetics of mouse epidermal division and transport
than has previously been possible. Mathematical modelling of this data allowed us to infer, independently
of the molecular analysis, that the back skin BL contains at least two independent dividing populations of
cells. The rapidly dividing population, which comprises about two-thirds of the BL, divides on average
about once every two days; this is almost three times faster than the slow population, which comprises about
one-third of the BL and divides on average once every five days. The relative proportions inferred from
modelling agree with the relative proportions of non-LRC and LRC cells measured by photomicrography,
supporting the hypothesis that the mathematically inferred populations correspond to the experimentally
identified types. In addition, by analyzing the temporal reduction of total H2B-GFP fluorescence in the
morphologically distinct tail scale (enriched in non-LRCs) and interscale (enriched in LRCs) regions, we
were able to estimate the tail skin non-LRC and LRC division rates and nucleated layer turnover times. The
∼ 3 : 1 ratio between the division rates in tail skin was in excellent agreement with the∼ 2.7 : 1 ratio of the
back skin rates computed from the H2B-GFP dilution analysis, although both tail rates were ∼ 20 − 25%
slower than those of their back counterparts.

Since essentially all nucleated epidermal cells expressed the H2B-GFP transgene, we can be certain that
the fast and slow populations identified by the dilution data analysis comprise the bulk of the granulated
epidermis. This assurance is an important complement to the data utilizing molecular expression patterns.
Using the best-fit 2×SC model, we compute that a FACS-selected population of BL cells having d ≤ 3 after
a 14 day chase will contain 85% LRCs, and that the population having d ≥ 6 will contain 80% non-LRCs.
Therefore, these populations provided good reagents for identifying mRNA expression differences between
the LRC and non-LRC populations (Fig. 2).

Theoretical methods
Deconvolution of the H2B-GFP fluorescence dilution data

Cells from the back skin of two mice each were analyzed at days 3 and 7, and from five mice at day
21. Compartment-gated FACS data (e.g., tdTomato+, α6-integrin+, CD34− for BL; Fig. 3b) were exported
as scale values from FlowJo 6.5.7. Histograms of these data were deconvolved by variational Bayesian
Gaussian mixture modeling as previously described3. In a few cases where peaks could not be resolved by
this method, the relative d-proportions were determined by dissecting the relevant histogram region using
the dilution relationship log2 I(d) = const − d, where I(d) is the fluorescence intensity corresponding to
the value of d.

The complete histograms were resolved for day 3, but only the peaks for d ≤ dmax(7) = 5 and d ≤
dmax(21) = 7 could be resolved for days 7 and 21, respectively. In those cases, the proportions were
renormalized so that their sum for 0 ≤ d ≤ dmax(t) equalled one. [To permit uniform notation in which all
d-summations are bounded by dmax(t), we define dmax(3) =∞.]

Mathematical modeling

Notation.

x: Cell type/compartment (component) indicator, which can denote a stem cell (SC, S), progenitor (P), or
differentiated (D) cell in the BL, a differentiated cell in the SL (SL), or a differentiated cell in the GL
(GL).

c: Compartment indicator, which can be BL, SL, or GL.
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ρx, ρc: Area density of cells of component x or compartment c; the ratios of the ρc are determined experi-
mentally.

λx: Division rate of cells of component x.

kx→x
′

: Stochastic transfer rate of x to x′ cells.

ηxd (t): Area d-density of cells of component x that have divided d times by time t.

πcd(t): Proportion of cells in compartment c that have divided d times by time t.

A general formulation for H2B-GFP fluorescence dilution modeling. The dynamical models that de-
scribe the time evolution of the ηxd (t) in a H2B-GFP dilution experiment are described by linear differential
equations. To facilitate consideration of a large number of models, we develop a general form that can be
applied in all cases.

The uncoupled, single SC model. First consider a simple model for SCs that divide symmetrically and
undergo uncoupled, stochastic transport (Supplementary Fig. 3a, blue). When the division half-life is long
compared with the shortest possible time between divisions, division and transport can be modeled as a
Poisson processes3,4,5. The differential equations and boundary conditions for the (area) cell d-densities are

Dtη
S
d(t) = 2λSηS

d−1(t)− (λS + kS→SL)ηS
d(t) ηS

d(0) = δd0 ρ
BL

Dtη
SL
d (t) = kS→SLηS

d(t)− kSL→GLηSL
d (t) ηSL

d (0) = δd0 ρ
SL (1)

Dtη
GL
d (t) = kSL→GLηSL

d (t)− kGL→CLηGL
d (t) ηGL

d (0) = δd0 ρ
GL .

where λS is the SC division rate, the kx→x
′

are the transport rates, and, since there is only one population in
BL in this model, ρS = ρBL. The terms in the first equation correspond to the creation of two d-cells from
one (d− 1)-cell, and all the other terms correspond to stochastic transport between compartments.

The total density of each component is

∞∑
d=0

ηxd (t) = ρx , (2)

where, in this model, x ∈ {S, SL,GL}. Homeostasis requires that, as indicated, the ρx must be constant.
This constrains the transport rate constants: summing the differential equations over d, applying Eq. (2), and
setting the derivatives equal to zero gives linear equations that imply

kS→SL = λS

kSL→GL = kS→SLρS/ρSL = λSρS/ρSL (3)

kGL→CL = kSL→GLρSL/ρGL = λSρS/ρGL .

Since ρS = ρBL, only the ratios of the compartment densities are relevant, and these were fixed at the
experimentally determined values ρSL/ρBL = 0.78 ± 0.07 and ρGL/ρBL = 0.52 ± 0.06. Therefore, the only
independent parameter in this model is λS.

We can solve the equations analytically using generating functions to get the component d-densities. We
sum the d-densities for all the components (i.e., populations) within a compartment to get the d-densities
for compartment c, ηcd(t). In this case there is only one component in each compartment, so this is not
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necessary. Because we experimentally determine the relative proportions only for d ≤ dmax, we similarly
renormalize the model-predicted values with this bound:

πcd(t) =
ηcd(t)∑dmax

d′=0 η
c
d′(t)

,

where c is any compartment.

Vector generating functions. The above equations can be compacted using a vector format. We begin by
defining theNx-vector x, which identifies theNx components, and the d-density vectors over the component
space:

x = (x1, x2, . . . , xNx) (4a)

ηηηd(t) = [ηx1d (t), ηx2d (t), . . . , η
xNx
d (t)] (4b)

ρρρ = (ρx1 , ρx1 , . . . , ρxNx ) (4c)

ηηηd(0) = δd0 ρρρ . (4d)

In this case,

Nx = 3

x = (S,SL,GL)

ηηηd(t) = [ηS
d(t), η

SL
d (t), ηGL

d (t)]

ρρρ = (ρBL, ρSL, ρGL) .

The predicted d-proportion vectors for comparison with the experimental data,

πππd(t) = [πBL
d (t), πSL

d (t), πGL
d (t)] , (5)

are determined by projection using the 3×Nx-matrix C and renormalization:

πππd(t) = diag

[
dmax∑
d′=0

C · ηηηd′(t)

]−1

· C · ηηηd(t) (d ≤ dmax) . (6)

where diag(·) is the diagonal matrix with elements specified by the argument. In this simple model,C equals
the identity matrix I , but this will not be so when there is more than one component per compartment. In
that case, C will be a rectangular, not square, matrix.

Defining the vector generating function,

ηηη(ξ, t) =
∞∑
d=0

ξd ηηηd(t) ,

Eqs. (1) and (2) can be rewritten as

∂tηηη(ξ, t) = −Γ(ξ) · ηηη(ξ, t) (7a)

ηηη(ξ, 0) = ηηη(1, t) = ρρρ , (7b)

where, using the transport rate constraints, the transition matrix for this model is

Γ(ξ) = −

2λS(ξ − 1) 0 0
λS −λSρS/ρSL 0
0 λSρS/ρSL −λSρS/ρGL

 .
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These equations have the solution
ηηη(ξ, t) = e−Γ(ξ)t · ρρρ . (8)

The matrix exponential can be evaluated analytically and the individual d-components can be obtained by
differentiation

ηηηd(t) =
1

d!

∂dηηη(ξ, t)

∂ξd

∣∣∣∣
ξ=0

. (9)

Factoring the transition matrix. Rewriting Eqs. (1) with each d-density divided by its respective total
component density and applying the transport rate constraints gives

Dtη
S
d(t) = 2λSρS[ηS

d−1(t)/ρS − ηS
d(t)/ρ

S]

Dtη
SL
d (t) = λSρS[ηS

d(t)/ρ
S − ηSL

d (t)/ρSL] (10)

Dtη
GL
d (t) = λSρS[ηSL

d (t)/ρSL − ηGL
d (t)/ρGL] .

This form reveals a structure that is common to all the models that we consider: The equations, with the
transport rates set to their constrained values, are simplified when expressed in terms of the fractional d-
densities ηxd/ρ

x. The remaining (division) rates appears as pre-factors. (In this simple case there is only
one.) To illuminate and exploit this inherent structure, we factor the transition matrix as

Γ(ξ) = −diag(F) · T (ξ) · diag(ρρρ)−1 , (11)

where F is a stochastic flow Nx-vector that contains the division rates and the constrained transport rates
expressed in terms of the division rates. T (ξ) is a Nx × Nx transfer matrix. In this case F S is the rate
of density creation, and F SL and F GL are the flow rates of density transport. Each of these is λSρS, so
F = λSρS(1, 1, 1). The transfer matrix mirrors the structure of the fractional d-density terms within brackets
in Eqs. (10)

T (ξ) =

2(ξ − 1) 0 0
1 −1 0
0 1 −1

 .

[We present below the definitions of F and T (ξ) in the general case.]

Generalization of the vector generating function form (VGFF) to more complex models. This repre-
sentation, using vector generating functions and factored Γ(ξ), generalizes to all the models that we consider
and can be used to facilitate their analysis. It automatically incorporates the homeostatic constraints of Eq.
(7)b to fix the stochastic transport rate constants. In addition, T (ξ), which is dimensionless and free of most
model parameters, elucidates the underlying structure of the division and transport processes in the model.

To understand how this works in general, note that since each component initiates at most one stochastic
transport process, we can associate each transport rate with a unique component. Therefore, as in the
example above, summing the differential equations for these components over d and setting the derivatives
to zero gives one linear equation per transport rate. (We do not include in this count density transfers that are
coupled to division, and therefore have no independent rate constant.) Because there are no closed transport
cycles, the complete set of transport rate linear equations is triangular, and therefore has a unique solution
for the rates.

Eqs. (7) imply that the constant-density constraints are equivalent to

Γ(1) · ρρρ = 0 .

The right-factorization of diag(ρρρ)−1 reduces this equation to

T (1) · 1 = 0 , (12)
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where 1 is the constant-unity vector (i.e., with all components equal one). Therefore, with the diag(ρρρ)−1

factorization, we know that the transport rates have been correctly fixed if Eq. (12) is satisfied.
A further simplification is provided by the left-factorization of diag(F), which removes the remaining

(i.e., the division) rates from T (ξ) leaving it dimensionless. In general, we set F x equal to the rate of density
creation for the dividing (S and P) components, or to the density outflow rate for the non-dividing (D, SL,
and GL) components.

Left-factoring these terms from Γ(ξ), as in Eq. (11), leaves T (ξ) with a simple structure: the diagonal el-
ements of the non-dividing components are always−1 because transport is their only stochastic process and
the outflow rate has been factored into the flow vector. The diagonal elements of the dividing components
always include a −1 corresponding to stochastic division, and may include additional terms corresponding
to the immediate retention of one (ξ) or both (2ξ) descendants after division. They will also contain terms
corresponding to stochastic transport out of the dividing compartment if transport is uncoupled from divi-
sion. The off-diagonal terms represent inter-component transfers. These will be multiplied by ξ if transport
is coupled to division (i.e., the d-value increases), but not if it is an uncoupled stochastic process.

Using these rules, Γ(ξ) can be constructed for most models without explicitly solving the homeostatic
constraints or writing out the differential equations and boundary conditions. (The hybrid 2×SC model that
we discuss below is the only exception considered here.) Nonetheless, for clarity we also list the explicit
differential equations and boundary conditions for each model below.

T (1) also satisfies the weighted column summation condition

F · T (1) = ∆∆∆ , (13)

where ∆∆∆ is the Nx-vector with components ∆x, where ∆x is the rate of density change contributed by
component x to the system:

∆x =


λxρx (x ∈ {S,P})
0 (x ∈ {SL,D})
−kGL→SLρGL = −

∑
x∈{S,P} λ

xρx (x = GL)

∆∆∆ · 1 = 0 . (14)

[P (progenitor) and D (differentiated cell) are BL components in models that we consider below.] Eq. (13)
reflects the steady-state, density-conserving flow of the cells: all the density generated in BL must flow out
through GL. Eq. (14) reflects the steady-state flow of total density within the system.

Most of the models that we consider below have multiple components per compartment. The Nx–vector
ρρρ of component total densities is constrained by the 3-vector ρρρexp of experimental compartment densities:

ρρρexp = C · ρρρ . (15)

Since the ratios between the three compartment densities are fixed at their experimental values and only
ratios of the ρx affect the solution, there are only Nx − 3 independent density parameters. The component
d-densities are combined into compartment d-densities by Eq. (6) for comparison with the experimental
compartment d-densities, but the individual component d-densities are used for subdividing the bars in the
charts in Fig. 3e and Supplementary Fig. 3b.

Using this representation, each model is completely specified by x, C, ρρρ, F, and T ; Eqs. (4)–(9) and
(11)–(15) always hold true.

Computation in the x × d vector-product space. Because T (ξ) is usually a sparse matrix, Eqs. (8) and
(9) can be solved analytically in (at least most of) the cases we consider. However, the high-order differ-
entiations needed to determine the ηηηd(t) from ηηη(ξ, t) for d � 1 in the models with many components give
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complicated collections of terms that are numerically difficult to sum with adequate accuracy. Therefore, we
extend the formulation to a numerically stable variant in which the ηxd (t) are reinterpreted as components
of doubly-indexed vectors in the x ⊗ d product space, λλλ and ρρρ are reinterpreted as outer products of the
corresponding vectors in the x-space and the constant-unity vector in the d-space, ξ-independent terms in
T (ξ) are reinterpreted as multiples of the identity matrix in the d-space, and ξ in T (ξ) is reinterpreted as
the raising operator in the d-space [i.e., which have matrix elements δd,d−1 (1 ≤ d ≤ dmax)]. With this
understanding, the VGFF provides a convenient method for structuring the computational algorithm. x⊗ d
vectors are encoded as Nx × (dmax + 1)-vectors and, since Γ(ξ) is very sparse in this representation, the
matrix exponentiation appearing in Eq. (8) can be computed accurately.

The coupled, single SC model. Division and transport are coupled in this model; one descendant of a
divided SC remains in the BL while the other is immediately transported to the SL (Supplementary Fig. 3a,
dark blue). The dynamic equations and boundary conditions are

Dtη
S
d(t) = λS[ηS

d−1(t)− ηS
d(t)] ηS

d(0) = δd0ρ
S

Dtη
SL
d (t) = λSηS

d−1(t)− kSL→GLηSL
d (t) ηSL

d (0) = δd0ρ
SL

Dtη
GL
d (t) = kSL→GLηSL

d (t)− kGL→CLηGL
d (t) ηGL

d (0) = δd0ρ
GL .

The VGFF is specified by the same x, ηηηd(t), C, ρρρ, and F as the uncoupled model; the only difference is that

T (ξ) =

ξ − 1 0 0
ξ −1 0
0 1 −1

 .

The differences arise from the coupling of division and transport in this case: TSL,S(ξ) is changed from 1
in the uncoupled model to ξ here because BL→SL transport is coupled to division, so the division number
of the transported cell in SL is one greater than that of the parental cell in BL. The 2ξ and −2 terms in the
uncoupled TS,S(ξ) are changed to ξ and −1 because only one descendant remains in the BL immediately
after division and because there is no stochastic BL→SL transport. Because of this, λS must be twice as
large in this model as in the uncoupled, single SC model to yield the same S d-distribution. Concomitantly,
the predicted rates-of-change of the SL and GL d-distributions relative to that of the BL d-distribution are
twice as fast in this coupled model than in the uncoupled model.

The single progenitor, P-D model. This model, proposed by Clayton et al.4, has both progenitor and
differentiated cells in the BL. The progenitors divide to self-renew and generate differentiated cells that are
stochastically transported to SL (Fig. 3c, gray). The dynamic equations and boundary conditions are

Dtη
P
d(t) =λP[ηP

d−1(t)− ηP
d(t)] ηP

d(0) = δd0ρ
P

Dtη
D
d(t) =λPηP

d−1(t)− kD→SLηD
d(t) ηD

d(0) = δd0ρ
D

Dtη
SL
d (t) =kD→SLηD

d(t)− kSL→GLηSL
d (t) ηSL

d (0) = δd0ρ
SL

Dtη
GL
d (t) =kSL→GLηSL

d (t)− kGL→CLηGL
d (t) ηGL

d (0) = δd0ρ
GL ,

12



where, in accord with Eq. (15), ρP + ρD = ρBL. The VGFF is

x = (P,D, SL,GL)

C =

1 1 0 0
0 0 1 0
0 0 0 1


ρρρ = (ρP, ρD, ρSL, ρGL)

F = λPρP(1, 1, 1, 1)

T =


ξ − 1 0 0 0
ξ −1 0 0
0 1 −1 0
0 0 1 −1

 .

There are two independent parameters, the progenitor division rate, λP, and the fraction of BL cells that are
progenitors, fP = ρP/ρBL.

The stem cell-progenitor, SC-P-D model. This model, proposed by Mascre et al.5, adds self-renewing
SCs to the P-D model (Fig. 3c, blue). The equations used by Mascre et al. (their Supplementary Information
Sec. 4.1) do not preserve cell densities, because the SCs are constantly adding cells to the independently
self-renewing progenitor population. Nonetheless, those equations provided an adequate approximation for
their analyses since only a very small fraction, f S = ρS/(ρS +ρP +ρD) = 0.05, of SCs were included in their
modeling. However, in this case we explore the complete range 0 < f S < 1, so it is necessary to amend the
equations to ensure homeostasis.

A number of biological mechanisms could be involved in homeostasis; e.g., progenitor cell death, oc-
casional differentiation of both progenitor cell division descendants, or differentiation independent of pro-
genitor division. Each mechanism introduces an additional parameter into the differential equations, which
is then fixed by the constant-density requirement. For example, some progenitor cell death combined with
homeostatic feedback to the SC division rate gives the amended differential equations and boundary condi-
tions

Dtη
S
d(t) =λS[ηS

d−1(t)− ηS
d(t)] ηS

d(0) = δd0ρ
S

Dtη
P
d(t) =λSηS

d−1(t) + λP ηP
d−1(t)− (λP + kd)ηP

d(t) ηP
d(0) = δd0ρ

P

Dtη
D
d(t) =λPηP

d−1(t)− kD→SLηD
d(t) ηD

d(0) = δd0ρ
D

Dtη
SL
d (t) =kD→SLηD

d(t)− kSL→GLηSL
d (t) ηSL

d (0) = δd0ρ
SL

Dtη
GL
d (t) =kSL→GLηSL

d (t)− kGL→CLηGL
d (t) ηGL

d (0) = δd0ρ
GL ,

where λP is the mean net rate of successful divisions, and ρS + ρP + ρD = ρBL. The addition to the original
formulation of the term −kd ηP

d(t) in the second equation represents the rate of division-coupled cell death;
it is constrained by the constant-density requirement to be kd = λSρS/ρP. (While mechanistically this is a
feedback constraint on λS, for convenience we treat λS as an independent parameter and kd as a constrained
parameter.) We used this form because it is biologically plausible.

The corresponding VGFF is

x = (S,P,D, SL,GL)

C =

1 1 1 0 0
0 0 0 1 0
0 0 0 0 1
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ρρρ = (ρS, ρP, ρD, ρSL, ρGL)

F = (λSρS, λPρP, λPρP, λPρP, λPρP)

T =


ξ − 1 0 0 0 0
γξ ξ − 1− γ 0 0 0
0 ξ −1 0 0
0 0 1 −1 0
0 0 0 1 −1

 ,

where γ = λSρS/(λPρP). There are four independent parameters: λS, λP, and the fractions of BL cells that
are SCs and progenitors, f S = ρS/(ρS + ρP + ρD) and fP = ρP/(ρS + ρP + ρD).

The two-SC, 2×SC models. These models have independent self-renewing, fast- (S1) and slow- (S2)
dividing populations. We assume that both populations differentiate into a combined pool of cells in the
SL that are subsequently transported to the GL. We focus on two closely related variants: the semi-coupled
variant in which division of S1 is coupled to transport and division of S2 is uncoupled (Fig. 3c, yellow),
and a hybrid variant in which S1 divisions are either uncoupled or coupled to transport with probabilities
uS1 or 1 − uS1 , respectively, while division of S2 remains completely uncoupled (Supplementary Fig. 3a,
yellow). Although the semi-coupled model is a special case (uS1 = 0) of the hybrid model, for clarity
we discuss it separately. (The doubly hybrid variant, in which both the S1 and S2 populations undergo a
mixture of uncoupled and coupled divisions could be analyzed similarly. However, the dependence on the
S2 uncoupling probability uS2 is not detectable in the dilution experiments, so we fix uS2 = 1 here.)

If we were to assume that all the stochastic processes were Poisson processes, the differential equations
and boundary conditions for the semi-coupled variant would be

Dtη
S1
d (t) = λS1 [ηS1

d−1(t)− ηS1
d (t)] ηS1

d (0) = δd0 ρ
S1 (16a)

Dtη
SL1
d (t) = λS1ηS1

d−1(t)− kSL→GLηSL1
d (t) ηSL1

d (0) = δd0 ρ
SL
1 (16b)

Dtη
GL1
d (t) = kSL→GLηSL1

d (t)− kGL→CLηGL1
d (t) ηGL1

d (0) = δd0 ρ
GL
1 (not used) (16c)

Dtη
S2
d (t) = 2λS2ηS2

d−1(t)− (λS2 + kS2→SL)ηS2
d (t) ηS2

d (0) = δd0 ρ
S2 (16d)

Dtη
SL2
d (t) = kS2→SLηS2

d (t)− kSL→GLηSL2
d (t) ηSL2

d (0) = δd0 ρ
SL
2 (16e)

Dtη
GL2
d (t) = kSL→GLηSL2

d (t)− kGL→CLηGL2
d (t) ηGL2

d (0) = δd0 ρ
GL
2 , (16f)

where the mass conservation and homeostatic constraints imply that ρS1 + ρS2 = ρBL, ρSL1 = γ1ρ
SL, ρSL2 =

γ2 ρ
SL, ρGL1 = γ1 ρ

GL, ρGL2 = γ2 ρ
GL, γ1 = λS1ρS1/(λS1ρS1 + λS2ρS2), and γ2 = λS2ρS2/(λS1ρS1 + λS2ρS2).

These equations are just the union of the coupled and uncoupled SC equations. Writing them in this form
emphasizes that the two populations are independent in all three layers. However, since the SL1 and SL2

cells are transported by the same stochastic processes, we can add Eqs. (16)b and d together to get a single
equation for ηSL

d (t) = ηSL1
d (t) + ηSL2

d (t). The same holds for the GL1 and GL2 cells and Eqs. (16)c and f.
Doing this, we get the more compact form

Dtη
S1
d (t) = λS1 [ηS1

d−1(t)− ηS1
d (t)] ηS1

d (0) = δd0 ρ
S1

Dtη
S2
d (t) = 2λS2ηS2

d−1(t)− (λS2 + kS2→SL) ηS2
d (t) ηS2

d (0) = δd0 ρ
S2 (not used)

Dtη
SL
d (t) = λS1ηS1

d−1(t) + kS2→SLηS2
d (t)− kSL→GL ηSL

d (t) ηSL
d (0) = δd0 ρ

SL

Dtη
GL
d (t) = kSL→GL ηSL

d (t)− kGL→CL ηGL
d (t) ηGL

d (0) = δd0 ρ
GL .
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The hybrid equations would be

Dtη
S1
d (t) =(1 + uS1)λS1ηS1

d−1(t)− (λS1 + uS1 kS1→SL) ηS1
d (t)

Dtη
S2
d (t) =2λS2ηS2

d−1(t)− (λS2 + kS2→SL) ηS2
d (t) (not used)

Dtη
SL
d (t) =uS1 kS1→SLηS1

d (t) + (1− uS1)λS1ηS1
d−1(t) + kS2→SLηS2

d (t)− kSL→GLηSL
d (t)

Dtη
GL
d (t) =kSL→GLηSL

d (t)− kGL→CLηGL
d (t) ,

with the same boundary conditions as those of the semi-coupled model.

Gamma distribution waiting-time processes. Preliminary studies using the equations above indicated
that the 2×SC model provides the best fit to the data of all the models tested. To further improve its
biological significance, we replaced the Poisson process with a process having a more realistic waiting-time
distribution for the fast division process. The Poisson process, although often used for modeling because
of its mathematical simplicity, has an exponential waiting-time (τ ) distribution that is largest at τ = 0.
This corresponds to biologically impossible instantaneous re-division, but the approximation is acceptable
when the division rate is slow compared to the minimum time required for division (i.e., allowing for DNA
synthesis and mitosis), as was the case in the analyses of Refs. 3, 4, and 5. However, it is not appropriate for
modelling the fast division of the non-LRC cells.

To fix this, we replaced the Poisson process with a process having a waiting-time distribution equal to
a Gamma distribution with shape parameter α = 2. This vanishes for τ → 0, thereby providing a more
realistic model. In the same vein, if rapid asymmetric replication is “pushing” cells along, it seems unlikely
that a cell transported into one compartment would immediately be transported to the next. Therefore, we
used the Gamma distribution process for transport as well. We continued to use a Poisson process to model
S2 division since it is slow. While the Gamma distribution process could also be used with the SC, P-D, and
SC-P-D models, in contrast with the 2×SC model, this degraded their best-fits to the data, so this was not
done.

The Gamma (α = 2) waiting-time distribution is achieved simply by replacing the S1, SL, and GL
Poisson processes by two-step Poisson processes involving two subpopulations, each having half the mean
waiting-time (i.e., twice the rate) of the original process. For example, S1 is split into Sa1 and Sb1 subpopula-
tions that undergo the two-step division process (Sa1)d → (Sb1)d and (Sb1)d → (Sa1)d+1. The (Sb1)d → SLad+1

process models BL→SL transport when division and transport are coupled. The additional (Sa1)d → SLad
and (Sb1)d → SLad processes model the additional uncoupled transport in the hybrid variant. Analogously, the
SLa → SLb, SLb → GLa, GLa → GLb, and GLb → CL processes together model SL→GL→CL transport.

The differential equations and boundary conditions for the semi-coupled model are

Dtη
Sa1
d (t) = 2λS1 [η

Sb1
d−1(t)− ηSa1

d (t)] η
Sa1
d (0) = δd0 ρ

S1/2 (17a)

Dtη
Sb1
d (t) = 2λS1 [η

Sa1
d (t)− ηSb1

d (t)] η
Sb1
d (0) = δd0 ρ

S1/2 (17b)

Dtη
S2
d (t) = 2λS2ηS2

d−1(t)− (λS2 + kS2→SL) ηS2
d (t) ηS2

d (0) = δd0 ρ
S2 (17c)

Dtη
SLa

d (t) = 2λS1η
Sb1
d−1(t) + kS2→SLηS2

d (t)− 2kSL→GLηSLa

d (t) ηSLa

d (0) = δd0 ρ
SL/2 (17d)

Dtη
SLb

d (t) = 2kSL→GL [ηSLa

d (t)− ηSLb

d (t)] ηSLb

d (0) = δd0 ρ
SL/2 (17e)

Dtη
GLa

d (t) = 2kSL→GL ηSLb

d (t)− 2kGL→CLηGLa

d (t) ηGLa

d (0) = δd0 ρ
GL/2 (17f)

Dtη
GLb

d (t) = 2kGL→CL [ηGLa

d (t)− ηGLb

d (t)] ηGLb

d (0) = δd0 ρ
GL/2 . (17g)
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The VGFF is

x = (SSa1 ,SSb1 , S2,SL
a,SLb,GLa,GLb)

C =

1 1 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1


ρρρ = (ρS1/2, ρS1/2, ρS2 , ρSL/2, ρSL/2, ρGL/2, ρGL/2)

F = (λS1ρS1 , λS1ρS1 , λS2ρS2 , FΣ, FΣ, FΣ, FΣ)

T (ξ) =



−1 ξ 0 0 0 0 0
1 −1 0 0 0 0 0
0 0 2(ξ − 1) 0 0 0 0
0 γ1ξ γ2 −1 0 0 0
0 0 0 1 −1 0 0
0 0 0 0 1 −1 0
0 0 0 0 0 1 −1


,

where FΣ = λS1ρS1 + λS2ρS2 , γ1 = λS1ρS1/FΣ, γ2 = λS2ρS2/FΣ, and ρS1 + ρS2 = ρBL.
Because their transition rates are the same, the S1 subcomponent densities are equal, ρSa1 = ρSb1 =

ρS1/2, and the flow rate through Sa1 equals the density increase due to cell division in Sb1; therefore, F Sa1 =

F Sb1 = λS1ρS1 . Analogous equalities hold for the SL and GL subcomponents. There are three independent
parameters: the division rates of the two SC populations, λS1 and λS2 , and the fraction of BL cells that are
S1, f S1 = ρS1/ρBL.

The hybrid model (i.e., u > 0) is more complicated since Sb1 has lower density than Sa1, ρSb1(u) <
ρSa1 , because the uncoupled BL→SL transport of cells from Sa1 reduces the flow of cells to Sb1. (This is a
discrete—i.e., two-phase “cell cycle”—echo of the continuous, biological steady-state situation in which
the density of cells that have progressed time τ past mitosis is a decreasing function of τ .) We define
β(u) = ρSb1(u)/ρSb1(0) = 2ρSb1(u)/ρS1 and use the constraint ρSa1 + ρSb1 = ρS1 and the constancy of ρSa1 and
ρSb1 to determine kS1→SL(u) = β(u) = 2(

√
1 + u− 1)/u. This gives the hybrid 2×SC differential equations

Dtη
Sa1
d (t) = 2(1 + u)λS1η

Sb1
d−1(t)− [2λS1 + u kS1→SL(u)] η

Sa1
d (t) η

Sa1
d (0) = δd0 ρ

Sa1 (u)

Dtη
Sb1
d (t) = 2λS1η

Sa1
d (t)− [2λS1 + u kS1→SL(u)] η

Sb1
d (t) η

Sb1
d (0) = δd0 ρ

Sb1(u)

Dtη
S2
d (t) = 2λS2ηS2

d−1(t)− (λS2 + kS2→SL) ηS2
d (t) ηS2

d (0) = δd0 ρ
S2

Dtη
SLa

d (t) = 2(1− u)λS1η
Sb1
d−1(t) + u kS1→SL(u) [η

Sa1
d (t) + η

Sb1
d (t)] +

kS2→SLηS2
d (t)− 2kSL→GLηSLa

d (t) ηSLa

d (0) = δd0 ρ
SL/2

Dtη
SLb

d (t) = 2kSL→GL [ηSLa

d (t)− ηSLb

d (t)] ηSLb

d (0) = δd0 ρ
SL/2

Dtη
GLa

d (t) = 2kSL→GL ηSLb

d (t)− 2kGL→CLηGLa

d (t) ηGLa

d (0) = δd0 ρ
GL/2

Dtη
GLb

d (t) = 2kGL→CL [ηGLa

d (t)− ηGLb

d (t)] ηGLb

d (0) = δd0 ρ
GL/2 .

where

β(u) = 2(
√

1 + u− 1)/u , [2(
√

2− 1) <β(u) ≤ 1]

ρSa1 (u) = [1− β(u)/2] ρS1

ρSb1(u) = β(u) ρS1/2

0 < u ≤ 1 .

16



The VGFF is specified by the same x and C as the semi-coupled model, but with different ρρρ, F, and
T (ξ). Noting that the rate of density generation in Sb1 is ∆1 = 2λS1ρSb1 = β(u)λS1ρS1 and that the number
of descendants transferred to Sa1 depends linearly on u, we have

ρρρ = {[1− β(u)/2] ρS1 , β(u) ρS1/2, ρS2 , ρSL/2, ρSL/2, ρGL/2, ρGL/2}
F = [(1 + u)β(u)λS1ρS1 , β(u)λS1ρS1 , λS2ρS2 , FΣ, FΣ, FΣ, FΣ]

T (ξ) =



−1 ξ 0 0 0 0 0
1 + uβ(u)/2 −1− uβ(u)/2 0 0 0 0 0

0 0 2(ξ − 1) 0 0 0 0
u[1− β(u)/2]γ1(u) [(1− u)ξ + uβ(u)/2]γ1(u) γ2(u) −1 0 0 0

0 0 0 1 −1 0 0
0 0 0 0 1 −1 0
0 0 0 0 0 1 −1


,

where

FΣ(u) = β(u)λS1ρS1 + λS2ρS2

γ1(u) = β(u)λS1ρS1/FΣ(u)

γ2(u) = λS2ρS2/FΣ(u) .

The −uβ(u)/2 = −u kS1→SL(u)/2 term in T (ξ)
Sb1,S

b
1

corresponds to the stochastic SSb1 → SLa transport.

The compensating term in T (ξ)
S
Sb1 ,SS

a
1

corresponds to the increased Sa1 → Sb1 flow. The non-linear depen-
dence of the transport rate on u arises from the interplay of the parallel stochastic transport from both S1

subcomponents with the homeostatic constraints.
Uncombined equations (i.e., analogous to Eqs. (16)) that tracked the SL1, SL2, GL1, and GL2 cells sep-

arately were used for displaying the contributions of the S1 and S2 components and their differentiated
descendants separately in Fig. 3e and Supplementary Fig. 3b.

Parameter fitting. The best-fit parameters for each modelM, {φM}, were determined by minimizing the
statistical discrepancy ∆M between the mean experimental proportions {Πc

d(t)} and model (M)-predicted
proportions {πM,c

d (t)} using Dirichlet statistics.

∆M({φM}) =
∑
c,t

logD
[
~Πc(t); ~αc(t)

]
−
∑
c,t

logD [~πM,c(t); ~αc(t)] ,

where the sums are over the experimental measurements at c ∈ {BL, SL,GL} and t ∈ {3, 7, 21}, D(~π|~α)
is the Dirichlet distribution, ~Πc(t) and ~πM,c(t) are the [dmax(t) + 1]-vectors over the experimental and
model-predicted proportions, and ~αc(t) is the [dmax(t) + 1]-vector with components αcd(t) determined from
the experimental data as described below. The first term is the log of the Dirichlet probability for a perfect
model where the prediction exactly matches the data, while the second term is the log of the probability for
the prediction. Therefore, ∆M({φM}) ≥ 0 and smaller values indicate better fitting models.

The αcd(t), 0 ≤ d ≤ dmax(t) were determined by the maximum likelihood condition

Πc
d(t) =

αcd(t)− 1∑dmax(t)
d′=0 [αcd′(t)− 1]
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{i.e., the mode of D[~Πc(t); ~αc(t)] is fixed to the Πc
d(t)}, and the method-of-moments condition that the sum

of the Dirichlet component variances equal the sum of the variances of the experimental measurements:

dmax∑
d=0

(σcd)
2 =

dmax∑
d=0

αcd(α
c
0 − αcd)/[(αc0)2(αc0 + 1)] ,

where αc0 =
∑

d α
c
d and the time arguments are implicit.

Relationship to Akaike information criterion. Asymptotically, for αcd(t) � 1, the Dirichlet distribu-
tion can be well-approximated by a constrained multinormal distribution and, up to an additive constant,
∆M({φM}) approximates the negative log-likelihood. In this case, the Akaike information criterion6 for
modelM is

AIC = 2kM + 2∆M ({φM}∗) ,

where kM is the number of adjustable parameters in the model and {φM}∗ is the best-fit set of parameters.
Because some of the αcd(t) 6� 1, this approximation may not be accurate. Nonetheless, it provides a
rough guideline for comparing models with different numbers of adjustable parameters: since smaller AICs
indicate better models, the model with the minimum kM + ∆M is preferred.

H2B-GFP decay and cell turnover in tail scale and interscale epidermal regions. The decay of H2B-
GFP fluorescence density in the interscale (predominantly LRC) epidermal regions was analyzed using the
2×SC model, but with cell density parameters ρS1 = 0, ρS2 = ηBL

tot(0), ρSL = ηSL
tot(0), and ρGL = ηGL

tot(0),
where the ηctot(0) were the total fluorescence densities measured in the unchased mice. Accounting for the
dilution of fluorescence with division, the model-predicted total fluorescence density at later time t is

ηctot(t) =
∑
d

ηcd(t)/2
d . (18)

The best-fit value of λS2 was determined by least-squares minimization of the predicted values to the data,
either for BL alone, or for BL+SL+GL (“total”), as indicated in Supplementary Fig. 3e. The same procedure
was used to determine the best-fit λS1 for the scale (non-LRC) regions, except that the cell density parameters
were ρS1 = ηBL

tot(0), ρS2 = 0, ρSL = ηSL
tot(0), and, because there is no GL in the scale regions, ρGL = 0.

BL→GL transit time. Potten et al.9 estimated the BL→GL transit-time by measuring the amount of radioac-
tivity that was recovered from the mouse back surface at different times after injection of [14C]thymidine,
which is incorporated into the BL. Since tracking radioactive thymidine is mathematically analogous to
tracking H2B-GFP, we compared the 2×SC model predictions with these results using Eqs. (17) and the
best-fit parameters, but changed the initial boundary conditions to ηSa1

d (0) = δd0 ρ
S1 , ηS2

d (0) = δd0 ρ
S2 , and

η
Sb1
d (0) = ηSLa

d (0) = ηSLb

d (0) = ηGLa

d (0) = ηGLb

d (0) = 0 to reflect the incorporation of [14C]thymidine into
the S1 and S2 cells during S-phase and the initial absence of radioactivity in SL and GL. The predicted
total amount of radioactivity in GL at time t was proportional to ηGL

tot(t) as per Eq. (18). The peak of this
distribution was compared with the peak of radioactivity recovery measured by Potten et al.

Neutral drift and clone number evolution. The temporal evolution of the number of Dlx1CreER-marked
clones observed in the tail interscale lineage tracing experiments was analyzed using a modified hybrid SC
model in which the SL and GL compartments were combined into a single SGL compartment having the
combined cell density, ρSGL = ρSL + ρGL, and division and transport were treated as Poisson processes. (This
was adequate because the division and transport rates are fast on the time-scale of interest.) The temporal
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evolution of Pnb,ns(t), the probability that a clone has nb BL cells and ns SGL cells at time t, is described
by the master equation

DtPnb,ns(λ, u; t) =

(1− u)λnb[Pnb,ns−1(λ, u; t)− Pnb,ns(λ, u; t)] + uλ[(nb − 1)Pnb−1,ns(λ, u; t)− nb Pnb,ns(λ, u; t)] +

u kS→SGL[(nb + 1)Pnb+1,ns−1(λ, u; t)− nb Pnb,ns(λ, u; t)] + kSGL→CL[(ns + 1)Pnb,ns+1(λ, u; t) −
ns Pnb,ns(λ, u; t)] (19a)

Pns,nb(λ, u; 0) = δns1 δnb0 , (19b)

where u is the probability of uncoupled replication. The positive terms correspond to the inflow of prob-
ability into the (nb, ns) state from, in order, division coupled to BL→SGL transport, uncoupled division,
uncoupled BL→SGL transport, and SGL→CL transport. The negative terms are the corresponding out-
flows.

We calculate Pnb,ns(λ, u; t) by introducing the generating function

P (λ, u; ξ, χ; t) =

∞∑
ns=0
nb=0

ξnb χns Pnb,ns(λ, u; t)

Pnb,ns(λ, u; t) =
1

nb!ns!
∂nbξ ∂

ns
χ P (λ, u; ξ, χ; t)

∣∣∣∣
ξ=0
χ=0

,

and summing Eqs. (19) over nb and ns. Applying the homeostatic transport rate constraints kS→SGL = λ and
kSGL→CL = ρBL/ρSGL λ = β λ, we get

∂tP (λ, u; ξ, χ; t) = λ{[(1− u) ξ χ+ u (ξ2 + χ)− (1 + u) ξ] ∂ξ + β (1− χ) ∂χ}P (λ, u; ξ, χ; t)

P (λ, u; ξ, χ; 0) = ξ .

This homogeneous first-order partial differential equation can be solved by the method of characteristics
giving

P (λ, u; ξ, χ; t) = ξ
[
u, (1− χ) e−βλt; z(u, 1− χ; ξ)

]
,

where

ξ(u, y; z) =
β µ(u, y) f1(u, y) + y µ(u,−β) f2(u, y) + z [β µ(u, y)ψ1(u, y)− y µ(u,−β)ψ2(u, t)]

β u [f1(u, y) + z ψ1(u, y)]

z(u, y; ξ) =
β [y − u (ξ + y − 1)] f1(u, y) + y µ(u,−β) f2(u, y)

−β [y − u (ξ + y − 1)]ψ1(u, y) + y µ(u,−β)ψ2(u, y)

µ(u, x) = u+ (1− u)x

f1(u, y) = 1F1

[
1− u

β(1− u)
; 1;−(1− u) y

β

]
f2(u, y) = 1F1

[
2− u

β(1− u)
; 2;−(1− u) y

β

]
ψ1(u, y) = Ψ

[
1− u

β(1− u)
, 1,−(1− u) y

β

]
ψ2(u, y) = Ψ

[
2− u

β(1− u)
, 2,−(1− u) y

β

]
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where 1F1(a; b; z) is the confluent hypergeometric function of the first kind and Ψ(a, b, z) is Tricomi’s
confluent hypergeometric function.

P0,0(λ, u; t) = P (λ, u; 0, 0; t) is the probability that a clone has disappeared by time t, so the probability
that a clone of any size remains is 1 − P (λ, u; 0, 0; t). This was evaluated with the values determined
from the tail interscale H2B-GFP experiments, β = 1.6 (interscale) or 1.5 (scale), and two types of best-fit
parameters were determined: either λ = 0.14/day was fixed at the interscale division rate determined by
the H2B-GFP decay experiments, or u = 1 was fixed corresponding to completely uncoupled division and
BL→SGL transport. In both cases the best-fit value for the other parameter was determined by least-squares
minimization.

The probability in the case where the coupling of division and transport is non-stochastically determined
by the microenvironment is 1 − u limv→1 P (λ, v; 0, 0; t) since the number of clones does not decrease in
regions where division and transport are completely coupled.

Code availability
Code for histogram deconvolution has previously been described3 and is available from B.S.W. All other

calculations were performed using Mathematica, Version 10.4, and code is available from D.S.
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