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Supplementary Figures 

 

 

 

Supplementary Figure 1 

Unobserved single-nucleotide variants (SNVs).  

Histogram indicating, for a range of alternative allele frequency bins, the number of SNVs 

observed in 143 high-coverage Complete Genomics sequences but unobserved in the 

corresponding low-coverage data (Supplementary Note 1.3.2). 
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 3 

 

Supplementary Figure 2 

Sample-wise median aCGH intensity ratios.  

For each sample, median log2 intensity ratio (prior to normalization) across the 2,714 probes 

used for CNV calling. The black line represents the mean value across samples, and the red lines 

indicate an interval of 6 standard deviations, centered on the mean. Samples with values outside 

this interval are indicated with their IDs (Supplementary Note 2.1.3). 
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a 
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Supplementary Figure 3 

AMELY deletion.  

Array CGH log2 intensity ratios versus genomic coordinate (Mb) for (a) sample HG03006 and 

for (b) the reference sample, NA10851. Each point represents a single probe. Lower intensities 

are clearly visible for HG03006 in Y:6,103,728–9,397,666, which includes AMELY 

(Supplementary Note 2.1.3). 
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Supplementary Figure 4 

Copy-number allele calling in a repetitive region.  

Empirical probability density of mean log2 aCGH intensity ratio for 410 non-reference calls in 

Y:22,218,957–22,508,011, a region for which we considered the reference allele to be two 

copies. Only variant samples—those for which we inferred a gain or loss of at least 0.2 copies—

are shown. Peaks around –2, –0.5, and 0.4 likely correspond to 0, 1, and 3 copies, respectively 

(Supplementary Note 2.1.3). 
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Supplementary Figure 5 

Validation of copy-number variants (CNVs).  

Each bar represents one variant called by Genome STRiP and covered by at least one aCGH 

probe. The number of probes covering each variant is reported above the bars, and the height of 

each bar represents the number of samples that were called as ALT by Genome STRiP and were 

present in the aCGH dataset. The dark gray sub-bars represent samples confirmed as ALTs, 

while the light gray sub-bars represent samples not confirmed as ALTs. Below each bar, the 

starting position of the variant and the ratio of confirmed ALTs to unconfirmed ALTs are 

reported, separated by a semicolon (Supplementary Note 2.2.1). 
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Supplementary Figure 6 

Validation of segmental duplications (SDs).  

Each bar represents one variant called by Genome STRiP and covered by at least one aCGH 

probe. The number of probes covering each variant is reported above the bars, and the height of 

each bar represents the number of samples called as ALT by Genome STRiP that were present in 

the aCGH dataset. The dark gray sub-bars represent samples confirmed as ALTs, while the light 

gray sub-bars represent samples not confirmed as ALTs. Below each bar, the starting position 

and the ratio of confirmed to unconfirmed ALTs are reported for each variant (Supplementary 

Note 2.2.1). 
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Supplementary Figure 7 

Array CGH probe density.  

Boxplots representing the distribution of probe densities for CNVs (left) and for SDs (right) 

(Supplementary Note 2.2.1). 
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Supplementary Figure 8 

Fibre-FISH validation of CNV region 1.  

We observe one copy in HG00096 and 2 copies in HG03856 and in GM19082. (a) 

Diagrammatic representation of the CNV region and probe design, showing the relative sizes of 

the CNV, the BAC clones, and their overlap. (b) Representative fibre-FISH images, with RP-

11443C23 in red and RP11-115E20 in green. The green signal has been shifted downward in the 

image marked with a green arrow, indicating the overlap between the two BACs (18,550 bp). 

(Supplementary Note 2.2.2) 
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RP11-414C23 

CNVR: 126 kb Y: 2,888,555–3,014,661 

Probes 

HG03856: 2 copies 

HG00096: 1 copy 

GM19082: copies 



 10 

a 

 
 

b 

 

Supplementary Figure 9 

Fibre-FISH validation of CNV region 4.  

We observe one copy in HG00096 and two copies in HG01377. (a) Diagrammatic representation 

of the CNV region and probe design, showing the relative sizes of the CNV, the BAC clones, 

and their overlap. (b) Representative fibre-FISH images, with RP-292P9 in green and RP11-

1264A13 in red. Green arrows mark images in which the green signal has been shifted 

downward. In HG00096, the signal shift shows the overlap between the two clones (~100 kb), 

and, in HG01377, it also demonstrates that this CNV primarily involves RP11-264A13. 

(Supplementary Note 2.2.2) 
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Supplementary Figure 10 

Work flow for analysis of CNVs.  

Flow chart summarizing the number of loci at each stage of the CNV analysis (Supplementary 

Note 2.3.1). 
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Supplementary Figure 11 

Phylogeny of LTR12B elements in the human genome.  

In this maximum-likelihood tree, calculated with MEGA61 and edited with FigTree2, we indicate 

as leaf labels the coordinates (chromosome:start–end) of each of the human genome’s 211 

LTR12B elements. Branches leading to the elements in Y:22,216,565–22,369,669 and 

Y:22,419,687–22,512,935 are highlighted in green (Supplementary Note 2.3.1). 
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Supplementary Figure 12 

CNV mutation events.  

Bar plot indicating the number of CNVs associated with 1, 2–10, or 11–105 mutation events. 

Teal and orange bars represent duplications and deletions, respectively (Supplementary Note 

2.3.1). 
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Supplementary Figure 13 

Partitioning the phylogeny.  

Overview of Y-chromosome tree, with major haplogroups and their defining SNPs indicated. 

Labels with black backgrounds mark megahaplogroups F, K, and P, and gray lineages were not 

sampled in this study. Colored rectangles indicate the partitioning strategy used for mapping 

SNVs to the tree: five main contiguous blocks and three nested components for the most frequent 

haplogroups: E1b, O3, and R1b (Supplementary Note 4.3). 
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Supplementary Figure 14 

Observed phylogeny, partitioned into eight linked subtrees.  

(Figure appears on the following 5 pages.) Branch lengths are drawn in proportion to the number 

of SNVs that map compatibly to each branch. Internal branches are labeled with an index, a 

canonical SNP (major branches only), and the branch length, separated by pipes (|). Terminal 

branches are labeled with the individual’s haplogroup, most derived ISOGG SNP, and sample 

ID, then, in parentheses, the branch index (followed by a colon), branch length (number of 

singletons), and sequencing coverage. The population is indicated last. Gray triangles are place-

holders for subsequent subtrees. The asterisk (*) denotes an approximate branch length due to 

lack of polarization at the most ancestral split, that between A0 and A1. (a) Haplogroups A0, 

A1a, B, D, E, and C (n = 88), with E1b inset (n = 298). (b) Haplogroups F*, G, and H (n = 82). 

(c) Haplogroups I and J (n = 124). (d) Haplogroups L, T, K2a1*, N, and O (n = 162), with O3 

inset (n = 114). (e) Haplogroups Q and R (n = 160), with R1b inset (n = 216). (Supplementary 

Note 4.3) 
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Supplementary Figure 15 

Phylogeny updates.  

Orange branches indicate new structures identified in this study, and SNPs labeled with orange 

backgrounds define new lineages or redefine extant lineages. Blue branches indicate haplogroups 

sequenced fully for the first time, and gray lineages were not sampled. Labels with black 

backgrounds mark megahaplogroups F, K, and P. Boxed text indicates primary geographic 

distributions of the major Y-chromosome haplogroups3–5 (Supplementary Note 4.4). 
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Supplementary Figure 16 

Haplogroup J2 tree.  

Haplogroup J2-M172 is distributed roughly evenly between South-Asian lineages (blue) and 

those carried by Europeans and Admixed Americans (green), but sublineages cluster by 

superpopulation. The distance scale is number of SNVs (Supplementary Note 4.4.9). 
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Supplementary Figure 17 

Haplogroup Q tree.  

Red tones indicate Admixed-American individuals, purple indicates Vietnamese samples, and 

blue indicates South-Asians. Q-M3 is a star-like phylogeny. HG01944 is Peruvian, but this 

individual’s paternal lineage is an East-Asian, rather than Native-American, branch of hgQ 

(Supplementary Note 4.4.14). 
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Supplementary Figure 18 

Branch-length bias due to low coverage.  

(Left) In this example, we assume a true tree with the lengths of each branch (number of SNVs) 

indicated in orange. (Center) With 2.5 sequencing coverage of branch a and 5 coverage of 

branch b, we expect 29 unobserved branch-a singletons and 4 unobserved branch-b singletons 

(gray arrows). In addition, we expect that 16 branch-c doubletons will appear to be branch-b 

singletons, whereas just 1 will appear to be a branch-a singleton. (Right) The net effect is a 

negative bias for the observed length of branch a but a positive bias for branch b. 

(Supplementary Note 4.5.1) 
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Supplementary Figure 19 

Traversing high-coverage internal branches to estimate split times.  

This figure illustrates our procedure to estimate the age of an internal node by measuring its 

height, relative to a reference node with a known age. In this example, we date the split between 

the European and Asian branches of R1a: R1a-Z282 (blue) and R1a-Z93 (green), respectively. 

The node to be dated, R1a-Z645, is indicated with a blue-green point. To estimate its age, we 

start from the reference node (red point; Q1a-M3) and traverse internal branches (red lines), 

counting the number of SNPs between the reference node and the common ancestor of the red 

and blue-green nodes (black point; P-M45). We then traverse the branches from the common 

ancestor down to the node of interest (blue-green lines; R1a-Z645) and convert the path-length 

difference to units of time, yielding the age difference between the reference node and the node 

of interest (Supplementary Note 4.5.3). 
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Supplementary Figure 20 

Distributions of functional annotations.  

(a) Functional categories for all variants and for coding variant (inset). (b) Functional effects. 

(Supplementary Note 5) 
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Supplementary Figure 21 

Distribution of CADD-based scores (C-scores)6.  

Distribution for all SNVs (black) and for missense SNVs (orange) (Supplementary Note 5). 
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Supplementary Figure 22 

Coding-variant annotations.  

(a) Distribution of synonymous and missense variants, stratified by non-reference allele count. 

(b) Percentages of missense variants predicted to be tolerated or deleterious, according to SIFT7. 

(c) Percentages of missense variants predicted to be benign, possibly damaging, or probably 

damaging, according to PolyPhen8. (Supplementary Note 5) 
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Supplementary Figure 23 

Variants affecting CTCF binding.  

These sequence logos represent the CTCF binding matrix model for the (a) forward and (b) 

reverse strands. The x-axes indicate motif base positions, and the height of stacked letters 

indicates the total information content for a given position, with 0 corresponding to no base 

preference and 2 indicating a single base used. The relative sizes of the individual letters 

represent their relative occurrences within the motif, and black (green) arrows represent motif-

destroying (motif-enhancing) variants. The number of individuals observed with the non-

reference allele is indicated below each arrow. The CTCF binding motif MA0139.1 was obtained 

from Jaspar9 (Supplementary Note 5).  
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Supplementary Figure 24 

Observed relative diversity.  

Observed levels of diversity relative to those on the autosomes, stratified by population, for (a) 

mtDNA and (b) the Y chromosome. Values are corrected for the mutation rate specific to each 

genomic region. YRI_published and CEU_published, values from Sayres et al.10; 

all_pops_141_cg, values computed from the 141 male Complete Genomics sequences that 

overlapped with the 1000 Genomes Project phase 3 low-coverage sample; all_pops_141_lc, 

based on the low-coverage sequences of the same 141 individuals; all_pops_1244_lc, includes 

all 1,244 low-coverage sequences (Supplementary Note 7). 
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Supplementary Figure 25 

African and European demographic models.  

Non-red features represent a previously developed model11,12. In red, SizeB, refers to the size of 

the bottleneck specific to the male lineage (Supplementary Note 7.1). 
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Supplementary Figure 26 

Relative diversities for a range of demographic models.  

Patterns of relative diversity for X versus autosome (blue), Y versus autosome (red), and mtDNA 

versus autosome (green) under (a) African demographic history and (b) European demographic 

history. Values are corrected for differing mutation rates. Black plus signs indicate values far in 

excess of the plot range (Supplementary Note 7.4). 
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Supplementary Figure 27 

Relative diversities for the two best-fitting demographic models.  

Levels of diversity, relative to the autosomes and corrected for differing mutation rates, for the X 

(blue), Y (red), and mtDNA (green). The models assume Nm/Nf equal to 0.5 or 0.25, a bottleneck 

of 50 males starting 150 generations ago and lasting for 50 generations, and 30 years per 

generation (Supplementary Note 7.4). 
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Supplementary Figure 28 

Expected autosomal diversity versus male bottleneck size.  

Expected autosomal diversity amongst Africans (blue) and Europeans (red) for Nm bottleneck 

sizes (B) of 100, 50, 10, and 1 (Supplementary Note 7.4). 
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Supplementary Figure 29 

Two-phase exponential-growth model for an observed subtree with known TMRCA.  

(a) The piecewise-linear red curve represents an example growth trajectory with haplogroup 

population sizes N1 and N2 at the ends of growth phases lasting T1 and T2 generations, 

respectively. We partition T1 into the portion before coalescence of the subtree (Tb) and the 

portion after (Tc), and we set the second phase to conclude T3 generations prior to the present. (b) 

We consider up to 10 “sampling” times, each of which defines the coalescence time (Ts) of a 

pruned version of the observed subtree (black branches). Fixed constraints include T3, N2, and 

TMRCA, the coalescence time measured from the present. For a given Ts, free parameters include 

T1 and N1, as we can estimate Tb, Tc, and T2 from the other parameters. The solid gray curve 

indicates one of many other possible growth trajectories that satisfy the constraints 

(Supplementary Note 8.1). 
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Supplementary Figure 30 

Inference of phase-1 growth rate and duration.  

Schematic contour plot of the joint likelihood of T1 and N1, given the frequency spectrum. The 

blue point indicates the maximum-likelihood combination, and the blue curve indicates the 

acceptance region. Dotted gold vertical lines and green horizontal lines indicate the marginal 

confidence intervals for T1 and N1, respectively. Each dotted gray line originates at (0, 1) and 

represents the exponential growth trajectory for a specified number of sons per male per 

generation (). Trajectories that are tangent to the curve defining the acceptance region 

correspond to the most extreme values consistent with the data (Supplementary Note 8.1). 
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Supplementary Figure 31 

Likelihood contours for phase-1 growth parameters.  

(Figure continues on the following two pages.) For each grid point, we computed the joint 

likelihood of the duration of the first phase of growth (T1) and the number of individuals 

possessing the lineage at its conclusion (N1), given the observed site frequency spectrum. We 

evaluated T1 values ranging from 1 to 48 generations and N1 values in a geometric progression 

from ~10 to 200,000 individuals. Contour lines correspond to 95%, 90%, and 50% confidence 

regions. Within each haplogroup, we studied a number of nodes of interest, and for each node, 

we include a plot for one of ten possible subtree sampling heights. See Supplementary Figure 

30 for further details and Supplementary Data File 8b for the full set of plots. (a) African 

haplogroup E1b. (b) South-Asian haplogroup R1a. (c) European haplogroup R1b. 

(Supplementary Note 8.2) 
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Supplementary Tables  

Supplementary Table 1 

Populations of the 1000 Genomes Project. Superpopulations, codes, and descriptions of each 

of the 26 populations sampled (Supplementary Note 1.1). 

 

Superpopulation 

Code 

 Population  

Code 

 
Description 

EAS  CHB  Han Chinese in Beijing, China 

EAS  JPT  Japanese in Tokyo, Japan 

EAS  CHS  Southern Han Chinese 

EAS  CDX  Chinese Dai in Xishuangbanna, China 

EAS  KHV  Kinh in Ho Chi Minh City, Vietnam 

EUR 
 

CEU 
 Utah Residents with 

Northern and Western European Ancestry 

EUR  TSI  Toscani in Italy 

EUR  FIN  Finnish in Finland 

EUR  GBR  British in England and Scotland 

EUR  IBS  Iberian in Spain 

AFR  YRI  Yoruba in Ibadan, Nigeria 

AFR  LWK  Luhya in Webuye, Kenya 

AFR  GWD  Gambian in Western Division, The Gambia 

AFR  MSL  Mende in Sierra Leone 

AFR  ESN  Esan in Nigeria 

AFR  ASW  Americans of African Ancestry in Southwest USA 

AFR  ACB  African Caribbeans in Barbados 

AMR  MXL  Mexican Ancestry from Los Angeles, USA 

AMR  PUR  Puerto Ricans from Puerto Rico 

AMR  CLM  Colombians from Medellin, Colombia 

AMR  PEL  Peruvians from Lima, Peru 

SAS  GIH  Gujarati Indian from Houston, Texas 

SAS  PJL  Punjabi from Lahore, Pakistan 

SAS  BEB  Bengali from Bangladesh 

SAS  STU  Sri Lankan Tamil from the UK 

SAS  ITU  Indian Telugu from the UK 

 

 

Superpopulation Code Description 

AFR African 

AMR Admixed American 

EAS East Asian 

EUR European 

SAS South Asian 
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Supplementary Table 2 

SNV alternative-allele concordance. Comparison between 143 high-coverage Complete 

Genomics sequences and low-coverage sequences of the same individuals. Results are stratified 

by genotype frequency (Supplementary Note 1.3.3). 

Alt Allele Count Concordant Discordant Concordance 

1 4,431 7 0.998 

2 1,244 21 0.983 

3 1,004 8 0.992 

4 288 6 0.980 

5 423 7 0.984 

> 5 81,218 299 0.996 

All 88,608 348 0.996 

 

 

Supplementary Table 3 

SNV derived-allele concordance. Comparison between 143 high-coverage Complete Genomics 

sequences and low-coverage sequences of the same individuals. Results are stratified by 

genotype frequency (Supplementary Note 1.3.3). 

Derived Allele Count Concordant Discordant Concordance 

1 4,050 26 0.994 

2 1,095 10 0.991 

3 724 2 0.997 

4 328 8 0.976 

5 374 1 0.997 

> 5 124,832 116 0.999 

All 131,403 163 0.999 
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Supplementary Table 4 

STR Mendelian consistency. Discrepancies between father and son STR genotypes for loci 

with major-allele frequencies below 95% (Supplementary Note 3.1.2). 

Base-Pair Difference Motif Length Number of Errors % of Errors 

-5 5 1 1.4 

-4 4 2 2.8 

-3 3 1 1.4 

-2 2 28 38.9 

2 2 33 45.8 

3 3 1 1.4 

4 2 5 6.9 

6 2 1 1.4 

 

 

Supplementary Table 5 

STR genotype concordance. Concordance between HipSTR and capillary STR genotypes for 

PowerPlex Y23 loci. In contrast to the SNP, MNP, indel, and CNV analyses, which used 

GRCh37 coordinates, we list STR start and stop positions according to GRCh38 

(Supplementary Note 3.1.2). 

  

Locus Start  Stop Correct Calls Total Calls % Correct 

DYS481 8,558,337 8,558,402 138 158 87.3 

DYS570 6,993,190 6,993,257 138 145 95.2 

DYS576 7,185,318 7,185,385 175 182 96.2 

DYS438 12,825,899 12,825,948 294 304 96.7 

DYS392 20,471,987 20,472,025 185 191 96.9 

DYS456 4,402,919 4,402,978 255 263 97.0 

DYS458 7,999,839 7,999,902 197 203 97.0 

DYS19 9,684,380 9,684,443 174 179 97.2 

DYS549 19,358,338 19,358,389 318 326 97.5 

DYS391 11,982,077 11,982,132 363 370 98.1 

DYS389I 12,500,448 12,500,495 388 394 98.5 

DYS439 12,403,473 12,403,564 356 361 98.6 

DYS437 12,346,267 12,346,326 335 339 98.8 

DYS533 16,281,349 16,281,396 357 360 99.2 

DYS643 15,314,132 15,314,186 282 283 99.6 

Total   3,955 4,058 97.5 
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Supplementary Table 6 

STR genotype discrepancies. Base-pair differences and motif lengths for discrepancies between 

HipSTR and capillary electrophoresis genotypes for the PowerPlex Y23 loci (Supplementary 

Note 3.1.2). 

Base-Pair Difference Motif Length Number of Errors % of Errors 

-24 4 1 1.0 

-8 4 2 1.9 

-5 5 2 1.9 

-4 4 18 17.5 

-3 3 3 2.9 

3 3 19 18.5 

4 4 40 38.8 

5 5 9 8.7 

6 3 3 2.9 

8 4 5 4.9 

9 3 1 1.0 
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Supplementary Table 7 

Karyotyping results. X- and Y-chromosome paints on metaphase spreads were used to 

determine the sex chromosome copy numbers in cell lines. For each cell line, we list the 

observed karyotypes and the percentage of metaphase spreads in which each karyotype was 

observed. Each cell-line identifier with a “GM” prefix corresponds to the “NA”-prefixed sample 

ID of the same number (Supplementary Note 2.2.3).  

Cell line Population Karyotype Percentage 

HG02372 CDX 47,XXY 100% 

    

GM20754 TSI 
46,XY 55% 

45,X  45% 

GM12413 CEU 
46,XY 73% 

45,X 27% 

HG00246 GBR 
46,XY 38% 

45,X 62% 

HG02053 ACB 
46,XY 50% 

45,X 50% 

HG03615 BEB 
46,XY 60% 

45,X 40% 

HG01967 PEL 
46,XY 60% 

45,X 40% 

    

HG00251 GBR 46,XY 100% 

HG01182 PUR 46,XY 100% 

HG01187 PUR 46,XY 100% 

HG01506 IBS 46,XY 100% 

HG00634 CHS 46,XY 100% 

HG00650 CHS 46,XY 100% 
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Supplementary Table 8 

Cross-tabulation of major haplogroups by population. (a) Counts of individuals from each 

population observed to possess each haplogroup. Colors indicate superpopulations: African 

(AFR) (red), Admixed American (AMR) (orange), European (EUR) (green), South Asian (SAS) 

(blue), and East Asian (EAS) (purple). (b) Row percentages: distribution of haplogroups within 

each population. (c) Column percentages: distribution of populations within haplogroup clusters. 

(Supplementary Note 4.1) 
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A0 A1a B B2 E1a E1b E2 D2 C1 C3 C5 F* G1 G2 H H0 H1 H2 I1 I2 J1 J2 L1 T K2* N N1 O1 O2 O3 Q1a Q1b R1a R1b R2

1244 2 3 3 4 20 298 5 20 4 10 17 1 2 17 7 12 41 2 31 17 15 61 27 8 1 7 25 19 75 114 42 3 86 216 29

GWD 55 1 3 1 11 38 1 GWD

MSL 42 2 2 37 1 MSL

YRI 52 4 47 1 YRI

ESN 53 53 ESN

LWK 45 3 40 2 LWK

ACB 47 1 2 31 3 3 7 ACB

ASW 26 17 1 1 2 5 ASW

PUR 54 1 1 14 2 3 1 3 2 27 PUR

CLM 43 8 1 6 1 3 24 CLM

MXL 33 5 2 1 1 10 14 MXL

PEL 41 2 1 3 1 24 1 9 PEL

IBS 54 2 2 2 1 6 1 1 39 IBS

TSI 53 4 2 2 1 15 3 2 24 TSI

GBR 46 6 1 1 4 34 GBR

CEU 49 3 8 4 1 1 2 30 CEU

FIN 38 9 1 1 23 3 1 FIN

PJL 48 1 4 1 2 1 12 2 1 1 17 6 PJL

GIH 58 12 2 1 11 5 5 16 1 5 GIH

BEB 42 1 2 5 10 5 2 2 2 1 9 3 BEB

STU 55 1 1 6 9 8 10 2 15 3 STU

ITU 60 1 5 9 2 4 8 1 1 1 16 12 ITU

KHV 46 1 1 1 1 2 16 22 2 KHV

CDX 50 2 10 22 16 CDX

CHS 52 1 2 8 41 CHS

CHB 46 3 1 5 1 5 7 23 1 CHB

JPT 56 20 4 2 20 10 JPT

A0 A1a B B2 E1a E1b E2 D2 C1 C3 C5 F* G1 G2 H H0 H1 H2 I1 I2 J1 J2 L1 T K2* N N1 O1 O2 O3 Q1a Q1b R1a R1b R2

A0 A1a B B2 E1a E1b E2 D2 C1 C3 C5 F* G1 G2 H H0 H1 H2 I1 I2 J1 J2 L1 T K2* N N1 O1 O2 O3 Q1a Q1b R1a R1b R2

GWD 2 5 2 20 69 2 GWD

MSL 5 5 88 2 MSL

YRI 8 90 2 YRI

ESN 100 ESN

LWK 7 89 4 LWK

ACB 2 4 66 6 6 15 ACB

ASW 65 4 4 8 19 ASW

PUR 2 2 26 4 6 2 6 4 50 PUR

CLM 19 2 14 2 7 56 CLM

MXL 15 6 3 3 30 42 MXL

PEL 5 2 7 2 59 2 22 PEL

IBS 4 4 4 2 11 2 2 72 IBS

TSI 8 4 4 2 28 6 4 45 TSI

GBR 13 2 2 9 74 GBR

CEU 6 16 8 2 2 4 61 CEU

FIN 24 3 3 61 8 3 FIN

PJL 2 8 2 4 2 25 4 2 2 35 12 PJL

GIH 21 3 2 19 9 9 28 2 9 GIH

BEB 2 5 12 24 12 5 5 5 2 21 7 BEB

STU 2 2 11 16 15 18 4 27 5 STU

ITU 2 8 15 3 7 13 2 2 2 27 20 ITU

KHV 2 2 2 2 4 35 48 4 KHV

CDX 4 20 44 32 CDX

CHS 2 4 15 79 CHS

CHB 7 2 11 2 11 15 50 2 CHB

JPT 36 7 4 36 18 JPT

A0 A1a B B2 E1a E1b E2 D2 C1 C3 C5 F* G1 G2 H H0 H1 H2 I1 I2 J1 J2 L1 T K2* N N1 O1 O2 O3 Q1a Q1b R1a R1b R2

GWD 50 100 33 55 13 20 GWD

MSL 67 10 12 6 MSL

YRI 20 16 20 YRI

ESN 18 ESN

LWK 75 13 40 LWK

ACB 50 10 10 10 18 3 ACB

ASW 6 20 3 12 2 ASW

PUR 25 5 5 12 18 7 5 25 12 PUR

CLM 3 6 40 12 7 11 CLM

MXL 2 12 3 12 24 6 MXL

PEL 1 3 20 2 57 1 4 PEL

IBS 1 12 12 7 10 12 1 18 IBS

TSI 1 12 6 7 25 38 2 11 TSI

GBR 19 6 2 5 16 GBR

CEU 18 26 24 7 2 2 14 CEU

FIN 29 6 7 92 3 FIN

PJL 6 24 8 5 7 20 7 2 33 20 21 PJL

GIH 71 100 14 27 8 19 19 17 GIH

BEB 10 12 71 24 8 7 3 2 33 10 10 BEB

STU 6 14 50 22 13 37 5 17 10 STU

ITU 6 42 22 100 7 30 100 14 33 19 41 ITU

KHV 10 100 14 4 11 21 19 5 KHV

CDX 20 53 29 14 CDX

CHS 10 11 11 36 CHS

CHB 30 6 71 4 26 9 20 CHB

JPT 100 100 20 27 9 JPT

A0 A1a B B2 E1a E1b E2 D2 C1 C3 C5 F* G1 G2 H H0 H1 H2 I1 I2 J1 J2 L1 T K2* N N1 O1 O2 O3 Q1a Q1b R1a R1b R2
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Supplementary Table 9 

Sex-biased admixture in the Americas. Among Admixed-American populations, the 

proportion of Native-American ancestry across the autosomes is significantly greater than that of 

the Y chromosome. Binomial p-values computed under a null hypothesis of no sex-bias 

(Supplementary Note 4.4.14). 

 Percent Native American  

 Autosomal Y P 

Peruvians 76 56 0.0040 

Mexicans 46 30 0.049 

Colombians 26 7 0.0016 

Puerto Ricans 13 0 0.00054 
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Supplementary Table 10 

Split-time estimates. Branch, haplogroup and canonical SNP or haplogroup and branch index 

in the corresponding subtree of Supplementary Figure 14; Left Child and Right Child, 

haplogroups of the two offspring branches, if a well-known label exists; T, estimated split time, 

assuming the aDNA-based mutation rate estimate of Fu et al. ( = 0.76  10–9 per bp per year)13; 

T', estimated split time using the pedigree-based mutation rate estimate of Helgason et al. ( = 

0.888  10–9 per bp per year)14 (Supplementary Note 4.5). 

Branch Left Child Right Child T (ky) T' (ky) 

A0–T (Root) A0-L991 A1-V168 190.4 163.0 

A1-V168 A1a-M31 BT-M42 159.0 136.1 

BT-M42 B-M181 CT-M168 105.8 90.5 

B-M181 . B2-M182 100.6 86.1 

CT-M168 DE-M145 CF-P143 76.0 65.0 

DE-M145 D2-M55 E-M96 72.7 62.2 

E-M96 E1-P147 E2-M75 57.8 49.5 

E1-P147 E1a-M33 E1b1-P179 56.3 48.2 

E1a-M33 . . 14.7 12.6 

E1b1-P179 E1b1b1-M35 E1b1a1-M2 46.9 40.1 

E1b1b1-M35 . . 28.4 24.3 

E1b1a1-M2 . E1b1a1a1-M180 17.2 14.7 

E1b1a1a1-M180 . . 11.8 10.1 

E1b.384 . . 5.3 4.5 

E1b.95 . . 5.0 4.3 

CF-P143 C-M130 F-M89 75.5 64.6 

C-M130 C1+C5 C3-M217 52.5 44.9 

C1+C5 C1-M8 C5-M356 51.8 44.3 

GHIJK-M3658 G-M201 HIJK-M578 54.2 46.4 

HIJK-M578 H-M2713 IJK-M523 54.0 46.2 

H-M2713 H0 H1+H2-M69 50.9 43.6 

H1+H2-M69 H1-M52 H2 43.0 36.8 

H1.94 . . 6.3 5.4 

H1.66 . . 7.3 6.2 

IJK-M523 IJ-M429 K-M9 53.1 45.4 

IJ-M429 I-M170 J-M304 47.6 40.7 

I-M170 I1-M253 I2-M438 30.5 26.1 

J-M304 J1-M267 J2-M172 35.9 30.7 

J2-M172 J2a-M410 J2b-M12 33.7 28.8 

K-M9 LT-P326 K2-M526 50.9 43.6 

LT-P326 L-M11 T-M184 48.1 41.2 

L1.323 . . 4.4 3.8 

K2-M526 K2a1-M2313 P-M45 50.8 43.5 

NO-M214 N-M231 O-P186 44.7 38.3 

N-M231 . . 21.7 18.6 

O-P186 O1+O2 O3-M122 35.0 30.0 

O1+O2 O1a-F589 O2-M268 34.1 29.2 

O2.160 . . 4.5 3.9 

O3.225 . . 7.5 6.4 

P-M45 Q1-L232 R-M207 35.0 30.0 

Q1-L232 Q1a-F903 Q1b-L612 32.5 27.8 

Q1a2a1-L54 Q1a2a1a1-M3 . 16.9 14.5 

Q1a2a1a1-M3 . . 15.0 12.8 

R-M207 R1-M173 R2a-M124 32.9 28.2 

R1-M173 R1a1a1-M417 R1b-M343 27.0 23.1 

R1a1a1b-Z645 R1a1a1b1a-Z282 R1a1a1b2-Z93 5.6 4.8 

R1a1a1b2-Z93 . . 5.3 4.5 

R1b1a2a1a-L11 . . 5.9 5.0 
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Supplementary Table 11 

Functional annotation of SNVs. Counts of variant effect types, ranked by severity 

(Supplementary Note 5). 

Consequence Effect Rank Count 

Stop gain Severe 1 2 

Splice acceptor Severe 2 7 

Splice donor Severe 3 8 

Missense Moderate 4 98 

3’ UTR Mild 5 74 

5’ UTR Mild 6 27 

TF binding site Mild 7 11 

Synonymous None 8 59 

Non-coding exon None 9 643 

Splice region None 10 32 

Intronic None 11 12,694 

Upstream gene None 12 3,502 

Downstream gene None 13 3,437 

Intergenic None 14 39,961 

TOTAL   60,555 

 

 

Supplementary Table 12 

Allele rarity versus presence of a functional effect. Fisher’s exact test indicates an enrichment 

of rare variants among those with functional effects (Supplementary Note 5). 

Allele Count With Effect No Effect Total P 

1, 2 181 40,993 41,174 0.0001 

>2 46 19,335 19,381  

Total 227 60,328 60,555  
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Supplementary Table 13 

Allele rarity versus CADD-based score (C-score) category6. Fisher’s exact test indicates no 

enrichment of rare variants among those with elevated C-scores (Supplementary Note 5). 

Allele Count 
C-Scores 

Total P 
≥ 10 < 10 

1, 2 66 41,108 41,174 0.91 

>2 30 19,351 19,381  

Total 96 60,459 60,555  

 
 

Supplementary Table 14 

Missense SNVs. Allele rarity versus CADD6, PolyPhen8, and SIFT7 annotations. P, Fisher’s 

exact test p-value (Supplementary Note 5). 

Allele Count 
C-Scores 

Total P  
≥ 10 < 10 

1, 2 24 53 77 0.036 

> 2 1 16 17  

Total 30 64 94  

    

    

Allele Count 
PolyPhen 

Total P 
Damaging Benign 

1, 2 31 46 77 0.099 

> 2 3 14 17  

Total 34 60 94  

    

    

Allele Count 
SIFT 

Total P 
Deleterious Tolerated 

1, 2 30 47 77 0.001 

> 2 0 17 17  

Total 30 64 94  
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Supplementary Table 15 

Mitochondrial heteroplasmy. Samples with four or more heteroplasmic mtDNA sites (Hets) 

prior to filtration (Supplementary Note 6.2). 

ID Hets 

HG03644 34 

HG02696 22 

HG03478 14 

HG03953 13 

HG02442 10 

HG03716 10 

HG02134 6 

HG01088 5 

HG01161 5 

HG01176 5 

HG02250 5 

HG00148 4 

HG00536 4 

HG01518 4 

HG01974 4 

HG02420 4 

HG02433 4 

HG02645 4 

HG03786 4 

NA19027 4 

NA19376 4 

NA19448 4 

NA19466 4 

NA19703 4 
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Supplementary Table 16 

Mutation rates used to model expected diversity. We assumed a 30-year generation time to 

convert per-generation rate estimates from the literature to per-year rates (Supplementary Note 

7.3). 

Genomic region Mutations per bp  

per generation 

Citation 

Autosomes 1.3  10–8 Fu et al.13 

X chromosome 0.97  10–8 Supplementary Note 7.3 

Y chromosome 2.3  10–8 Fu et al.13 

mtDNA 39  10–8 Rebolledo-Jaramillo et al.15 

 
  



 52 

Supplementary Table 17 

Nodes with evidence for growth. Node, index in Supplementary Figure 14; SNP, Defining 

mutation; T2, Number of generations from the node to the end of phase 2; Rate, Inferred average 

percentage growth; N2, Population size (in thousands) at the end of phase 2 (Supplementary 

Note 8). 

Haplogroup Node SNP Age (ky) Tc + T2 Rate (%) N2 (103) 

E1b 71 U290 4.7 90 15 236 

E1b 95 . 5.0 100 13 315 

E1b 384 . 5.3 109 13 637 

H1 66 M2854 7.3 238 6 2,640 

H1 94 Z5890 6.3 203 7 2,030 

L1 323 . 4.4 134 12 3,030 

O2b 160 . 4.5 123 11 286 

O3 225 . 7.5 183 8 1,930 

Q1a 319 M3 15.0 483 3 567 

ßR1a 161 Y7 4.4 142 12 6,000 

R1a 204 Y6 4.0 127 13 5,500 

R1a 206 . 4.2 135 12 5,700 

R1a 213 L657 4.5 144 12 12,500 

R1a 214 Z93 5.3 172 10 13,000 

R1b 189 DF27 5.5 115 12 638 

R1b 276 U152 5.5 115 13 1,250 

R1b 343 DF13 4.8 92 15 450 

R1b 347 M529 5.1 102 14 476 

R1b 357 P312 5.6 119 13 2,560 

R1b 417 P311 5.9 127 12 3,000 
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Supplementary Table 18 

Observed branching structure used in expansion analysis. Counts of the number of branches 

descending from each node with evidence for growth, at each sampling time (Supplementary 

Note 8). 

 Tree Height (SNVs) 

Node 3 4 5 6 7 8 9 10 11 12 

E1b, 71 25 27 27 27 27 27 27 28 30 31 

E1b, 95 26 29 33 35 35 35 35 35 35 36 

E1b, 384 40 46 50 54 58 58 58 60 60 60 

H1, 66 . . . 8 9 9 9 9 10 10 

H1, 94 10 10 10 10 10 10 10 10 10 10 

L1, 323 . 12 14 14 14 14 15 15 15 15 

O2b, 160 12 12 12 12 12 12 12 12 13 13 

O3, 225 14 14 14 15 15 15 16 16 16 16 

Q1a, 319 20 20 22 22 22 . . . . . 

R1a, 161 . 18 19 22 22 22 22 22 22 22 

R1a, 204 17 20 20 20 20 20 20 20 20 20 

R1a, 206 . 16 18 21 21 21 21 21 21 21 

R1a, 213 . 22 35 38 43 46 46 46 46 46 

R1a, 214 . 16 16 20 22 25 33 46 59 62 

R1b, 189 42 47 49 51 53 54 57 60 60 61 

R1b, 276 25 26 29 32 34 36 37 38 38 38 

R1b, 343 24 25 26 29 29 29 29 29 29 29 

R1b, 347 24 25 26 27 28 31 31 31 31 31 

R1b, 357 70 74 82 106 114 119 123 128 133 136 

R1b, 417 62 71 83 87 98 122 130 136 140 146 
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Supplementary Table 19 

Inferred parameters of phase-1 growth. N1, Number of individuals at the end of phase 1; T1, 

Duration of phase 1 (generations). Omitted values could not be calculated (Supplementary Note 

8.2). 

 Expected Sons Per Man   

Node Min Max Min N1 Min T1 

E1b, 71 1.46 . 93 1 

E1b, 95 1.22 2.43 504 9 

E1b, 384 1.22 1.66 1930 19 

H1, 66 1.10 . 17 1 

H1, 94 1.57 . 178 1 

L1, 323 1.10 . 14 1 

O2b, 160 1.17 . 41 1 

O3, 225 1.22 . 83 1 

Q1a, 319 1.40 . 199 1 

R1a, 161 1.20 1.91 301 13 

R1a, 204 1.34 4.45 317 6 

R1a, 206 1.18 2.56 370 9 

R1a, 213 1.17 1.57 1040 20 

R1a, 214 1.24 . 64 1 

R1b, 189 1.33 7.76 330 5 

R1b, 276 1.19 . 42 1 

R1b, 343 1.52 . 99 1 

R1b, 347 1.19 7.71 199 3 

R1b, 357 1.29 3.55 1466 15 

R1b, 417 1.23 2.10 2253 18 
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1 Single-Nucleotide Variants, Multiple-Nucleotide Variants, Indels 

1.1 Single-Nucleotide Variants 
G. David Poznik and Shane McCarthy 

 

The 1000 Genomes Project Consortium sequenced 2,535 individuals from 26 populations 

representing five global super-populations (Supplementary Table 1)16. For each of the 1,244 

males in the sample, we used SAMtools17 to download binary sequence alignment/map (BAM) 

files containing reads mapping to the GRCh37 Y-chromosome reference sequence. Please see 

the main publication for details on upstream processing.  

 

Confining our attention to the 10.3 Megabases (Mb) of the Y chromosome within which one can 

reliably call genotypes using short-read sequencing4, we applied six distinct genotype calling 

methods to these data to identify putative single-nucleotide variants (SNVs). We ran SAMtools17 

at the Sanger Institute, FreeBayes18 at Boston College, Platypus19 and Cortex_var20 at Oxford, 

and GATK Unified Genotyper21,22 in haploid mode at Cornell and in diploid mode at Stanford. 

 

To construct a preliminary consensus callset, we input the list of all putative sites to FreeBayes18. 

We then imposed six filters, restricting to (a) biallelic SNVs with (b) genotype quality (QUAL) 

greater than one; (c) filtered-read depth across all samples in the range 2000 to 6000 (1.6 to 

4.8), which represents a six-median-absolute-deviation interval centered at the median depth 

across sites; (d) no more than 10% of reads with mapping quality scores of zero; (e) no more 

than 400 samples (approximately one third of the total) with zero high-quality reads mapping to 

the site; and (f) no more than 200 samples whose maximum-likelihood genotype state was 

heterozygous.  

 

Upon conducting a phylogenetic analysis and mapping SNVs to branches of the tree (section 

4.3), we observed that a greater than expected proportion of sites were incompatible with the 

phylogeny. We found that incompatibilities were often traceable either to (a) reference genotype 

calls for which read data were contradictory and a no-call would have been most appropriate; or 

to (b) cases where the read data supported a non-reference genotype call but were not sufficient 

to surmount the strong prior induced by over 1,000 reference genotype calls in the sample. 

Concluding that the genotype calls in this preliminary consensus callset were marred by 

reference bias, we replaced the FreeBayes calls by the maximum-likelihood genotype state for 

each sample, subject to the condition that the likelihoods for reference and non-reference states 

differed by two log units. When the absolute difference in likelihoods was less than or equal to 

two log units, we assigned a no-call. 

 

This approach yielded a genotype callset of 59,675 SNVs. We then identified additional biallelic 

SNVs by splitting complex sites into biallelic components using BCFtools23. We applied 

identical filters and added the remaining 880 sites to complete a final callset, numbering 60,555 

SNVs.  

 

We used this final callset to construct a tree (section 4.2). Then, as described in Poznik et al.4, 

we leveraged the inferred phylogeny to impute the 6.3% of genotypes that were missing (section 

4.3). 
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1.2 Multiple-Nucleotide Variants and Indels 
Shane McCarthy, G. David Poznik, Yali Xue 

  

We processed multiple-nucleotide variants (MNVs) and small insertions/deletions (indels) 

similarly to SNVs. First, we split sites into biallelic components and normalized (left-aligned) 

representations. Second, we applied the same filters and maximum-likelihood genotyping calling 

approach as described for the SNVs to yield an initial set of 2,706 biallelic indels and MNVs. 

Third, we imposed additional filters, excluding 1,279 sites that, according to the UCSC genome 

browser repeat-mask track24, overlapped simple-repeat sequences (n = 290), SINEs (n = 367) or 

LINEs (n = 622). The false-discovery rate among the remaining 1,427 variants was 3.6%. Finally, 

we mapped the remaining sites to the phylogeny inferred from the SNVs and imputed genotypes 

accordingly. 

 

1.3 Validation 
Yali Xue, Yuan Chen, and Chris Tyler-Smith 

1.3.1 False Discovery Rate 
To measure the false discovery rate (FDR), we adapted the method described in the project’s 

main paper16, using high-coverage PCR-free genome sequences, which were available for 11 of 

the 1,244 males. We used these data to construct a “truth” set with which to test genotype calls 

based on the corresponding low-coverage sequences.  

 

The number of non-reference calls per chromosome varies greatly as a function of haplogroup, 

as most of the Y-chromosome reference sequence is derived from a single R1b individual. 

Therefore, rather than basing our FDR estimate on alternative allele calls, we instead used 

derived alleles. For each derived genotype call in the 11 low-coverage Y chromosomes, we 

assessed whether or not it was supported in the corresponding high-coverage data. We report the 

FDR as the proportion of low-coverage genotypes that were not supported. For biallelic SNVs, 

the FDR was 3.9%, and for the combined set of indels and MNVs, the FDR was 3.6%. Both 

values meet the project target of less than 5%.  

 

High-coverage Complete Genomics (CG) sequences were available for 143 males, so we also 

used these sequences to measure the SNV FDR. Using these data, we estimated an FDR of 1.6% 

(249/15,376). 

1.3.2 False Negative Rate 
We used the 143 high-coverage CG sequences to estimate the false negative rate, comparing the 

variable sites called in these sequences to those based on the corresponding low-coverage data. 

We observed 17,194 sites in the CG data. Of these, 13,360 were called in both datasets and 3,834 

(22%) were not called in the low-coverage data. Most of these (3,343; 87%) appear to be false 

negative singletons (Supplementary Figure 1). The 85 common sites among them, those with 

more than ten instances of each allele (10 < AC < 133), largely overlapped with the set of sites 

that did not meet our filtration criteria.  
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In a second round of curation, we observed four individuals with high numbers of false negative 

singleton sites: NA12413, with 632 unobserved singletons, had by far the lowest coverage 

(0.4); HG00628, with 209 unobserved singletons, had the tenth lowest coverage overall (2.2) 

and carried an isolate lineage of haplogroup C3, so would be expected to have a large number of 

singletons; likewise, HG00559 carries an isolated O3 lineage and missed 130 singletons; and 

HG02090 in hgQ had 120 singletons unique to the CG data, but this would render the sample’s 

branch length far longer than phylogenetically proximal samples of 8 or greater coverage, so 

we suspect false positives in the CG data for this sample. We deemed these four outliers, as the 

number of singleton false negatives among the other samples ranged from 2 to 67, with a median 

of 12, and with fewer than 25 false negative sites in 81.5% of samples (115/143). A total of 535 

sites, mostly common false negative sites, had another SNV or indel within 30 base pairs (bp). 

Upon excluding from this calculation the four outlier individuals and these 535 sites, the overall 

rate of unobserved sites was 14.2% (2,208/15,568). We retained the four individuals in down-

stream analyses. 

1.3.3 Genotype Concordance 
We measured alternative allele concordance (Supplementary Table 2) and derived allele 

concordance (Supplementary Table 3) between the phase 3 low-coverage callset and that of the 

high-coverage CG data, stratifying by allele counts in the 143 samples. Concordance overall was 

greater than 99%, but we observed a surprising pattern, where the concordance for singletons 

was greater than that for more frequent variants. This is most likely due to the fact that the 

calling algorithm we employed requires strong evidence to call singletons but is able to call 

genotypes with weaker evidence at sites for which the existence of the SNV is strongly 

supported by reads from other samples. In contrast, less strong evidence is required to call an 

allele for which another sample has strong evidence. Therefore, the existence of a high-quality 

variant called in one sample can drive miscalling of genotypes samples with one or two 

erroneous reads. We manually checked read depth at the 21 doubleton sites at which a 

discordancy was observed and found that, indeed, the average depth among the discordant 

individuals was 2.3, whereas the average depth among the confirmed carriers was 5.3. 

 

By querying the associated BAM files, we measured genotype concordance with the high-

coverage PCR-free genomes to be 95%. This low concordance is due to one of the samples 

having a 3-Mb AMELY deletion (into which some reads were mismapped in the high-coverage 

genome) and to three samples belonging to haplogroup R1b. The R1b individuals had very few 

alternative allele counts, in which case a single discordance would represent a large proportion. 

Upon excluding these four samples, alternative allele concordance was 97%.  

 

The genotype concordance for the indels and MNVs, as compared with the 11 high-coverage 

PCR-free genomes, was 96.4% (319/331). 

1.3.4 Transition-Transversion Ratio and the False-Positive Singleton Rate 
G. David Poznik and Fernando L. Mendez 

 

In section 4.3, we describe mapping the 60,555 SNVs to branches of the phylogeny that we had 

partitioned into eight components. Allowing each site to map to branches in multiple components, 

we observed 63,230 mutation events: 24,027 shared on internal branches of the tree and 39,203 

singletons. Among SNVs mapping to internal branches of the tree, we observed a transition-
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transversion ratio (ti/tv) of 1.73 (15,213 / 8,814), a value lower than expected for autosomes but 

consistent with two recent literature estimates for the portion of the Y-chromosome under 

consideration. Helgason et al. estimated this ratio to be 1.74 for de novo mutations14, and 

Scozzari et al. estimated a ratio of 1.7225, noting that this value is within the range of genome-

wide estimates for de novo events26–28. Among singletons, we observed 24,358 transitions (si) 

and 14,845 transversions (sv), yielding a lower ratio of 1.64, which suggests that singletons are 

enriched for false-positive sites, as expected.  

 

We leveraged the ti/tv differential between singletons and shared SNVs to gain insight into the 

singleton false-positive rate. First, define s1 and s2 to represent the number of true- and false-

positive singletons, respectively. Then, let 1 and 2 represent the ti/tv among true positives and 

false positives, respectively, and let i = i / (1 + i) and i = 1 / (1 + i) represent the transition 

and transversion proportions, respectively for true positives (i = 1) and false positives (i = 2). 

Decomposing the observed counts of each mutation type into contributions from true and false 

positives, we have: 
 

 
 

As we expect the false-positive rate to be quite low on the internal branches, we take γ1 = 1.73, 

and we take γ2 = 0.5, assuming errors are uniformly allocated amongst the three alternative bases, 

one of which is a transition and two of which are transversions. Using these values, we can solve 

the system of equations to estimate the false-positive rate among singletons (s1 / s2): 3.9%. 
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2 Copy-Number Variants 

2.1 Discovery and Genotyping 

2.1.1 Genome STRiP 
Robert Handsaker, Seva Kashin, and Steven McCarroll 

 

We performed copy-number variation (CNV) discovery and genotyping using Genome STRiP29, 

analyzing the Y chromosome in 1,234 male individuals with a pre-release version of the program 

(r1.04.1447). We excluded 10 samples for which the read depth across the chromosome (after 

normalization and correction for GC-bias) was either less than 0.8 times the expected coverage 

or greater than 1.2 times the expected coverage (based on genome-wide read depth), suggesting 

the potential presence of cell-line-specific clonal aneuploidy. 

 

We ascertained CNVs by two methods. In the first method (discovery set 1, targeting uniquely 

alignable sequence), we ran the standard Genome STRiP CNV pipeline to find CNVs using read 

depth in uniquely alignable regions of the genome. We ran this CNV pipeline twice, once with 

an initial window size of 5 kb (overlapping windows by 2.5 kb) and once with an initial window 

size of 10 kb (overlapping windows by 5 kb). Other parameters were set to default values in each 

run. For both runs, the raw CNV calls were filtered using the following criteria: 

 

 Minimum call rate: 0.8 

 Minimum density of alignable positions: 0.3 

 Minimum cluster separation: 5.0 (standard deviations) 

 

In addition, for the 5-kb run, sites were excluded if they were called only in samples with high 

numbers of variants (more than 45 variants per sample). 

 

We estimated the false discovery rate (FDR) for these CNV calls using the intensity rank-sum 

(IRS) method29 and probe intensity data from Affymetrix 6.0 SNP arrays that were run on the 

same individuals. For sites longer than 20 kb, the estimated FDR was zero. We included in the 

callset all sites longer than 20 kb and those shorter sites (under 20 kb) that contained at least one 

array probe and had an IRS estimated p-value < 0.01. 

 

Calls from the 5-kb and 10-kb runs were merged and re-genotyped, and duplicate calls were 

removed using the standard Genome STRiP duplicate-removal filters. The sites were then 

manually reviewed and 27 calls were eliminated as being either (a) likely duplicate calls that 

were not detected by the default filters or (b) sites with weak evidence of copy-number variation. 

 

The second method used for CNV ascertainment (discovery set 2) targeted regions of segmental 

duplication. In this method, segmental duplications annotated on the UCSC genome browser 

were prospectively genotyped for total copy number, using an expected reference copy number 

of two copies. The raw CNV calls were filtered using the following criteria, which were chosen 

based on manual review of the genotyped sites: 

 

 Minimum call rate: 0.8 
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 Minimum density of alignable positions: 0.25 

 Minimum cluster separation: 5.0 (standard deviations) 

 

In the VCF file containing the CNV calls, the CNVs detected from segmental duplication 

analysis (discovery set 2) have site identifiers that start with “GS_SD_M2”. For the segmental 

duplication calls, the locations of the two segmental duplication intervals are encoded in the site 

ID. The POS/END attributes in the VCF file specify the leftmost of these two segmental 

duplication intervals. 

 

The final CNV callset consisted of 97 sites called from the first method (discovery set 1) and 13 

segmental duplication sites called from the second method (discovery set 2). Copy-number 

genotypes were encoded in the VCF file using the GT field, assuming that the reference allele 

has one copy for sites from discovery set 1 and that the reference allele has two copies for 

segmental duplication sites from discovery set 2. 

2.1.2 CnvHitSeq 
Haojing Shao and Lachlan Coin 

 

We use a modified version of the cnvHitSeq algorithm to identify deletions and duplications on 

the Y chromosome. cnvHitSeq integrates read depth, paired-end insert-size aberration, and split 

reads via a hidden Markov Model (HMM)30. Preliminary analysis indicated substantial read-

depth artifacts due to difficulty in mapping reads to repetitive regions of the Y chromosome. 

Rather than excluding these regions, we developed a population approach to model read-depth 

variation in a manner robust to the presence of repetitive regions. 

 

We divided the Y chromosome into 500-bp windows and used SAMtools to calculate the total 

read depth, Dij, for every sample j, in each window i. Rather than modeling read depth relative to 

the average genome-wide value for a particular sample, as in the standard cnvHitSeq model, we 

instead modeled the proportion of reads in window i for sample j, relative the proportion of reads 

in window i in the entire population. As in the usual cnvHitSeq model, we considered the copy 

number of sample j in window i, CNij, as the hidden state of our HMM. The emission probability 

of Dij was calculated using a binomial distribution conditional on: the total number of reads 

sequenced for sample j, Sj; the total number of reads mapping to window i across all samples, Wi 

= ΣjDij; the total number of reads sequenced for all samples, T = ΣjSj; and the copy number, CNij. 

That is,  
 

P[Dij | CNij, Wi, Sj, T] ~ Binomial(Sj, CNij  Wi / T), 
 

with Sj the number of trials and (CNij  Wi / T) the probability of success. We assumed CNij can 

take any value in {0, 1, 2} and used these emission probabilities in the cnvHitSeq HMM with a 

transition model as previously described30. We found the most likely path through the HMM 

with the Viterbi algorithm. 

 

In order to detect mosaic copy number variation, we modified this algorithm to allow the copy 

number variant to affect just a fraction c of cells, resulting in a mean copy number of: 
 

CNij = c  CNij* + (1 – c)  1 = 1 + c  (CNij* – 1), 
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where CNij* represents the number of copies of window i in the affected cells of sample j. The 

emission probability of Dij under this generalization is therefore given by: 
 

P[Dij | CNij, Wi, Sj, T, c] ~ Binomial(Sj , (1 + c  (CNij* – 1))  Wi / T ). 
 

We trained the parameter c within the expectation-maximization procedure used to fit the model. 

Using this approach, we identified four samples with mosaic deletions of the entire Y 

chromosome: HG02053 (c = 0.45), NA12413 (c = 0.94); NA20754 (c = 0.60), and HG00246 (c 

= 0.78). 

2.1.3 Array Comparative Genomic Hybridization 
Andrea Massaia, Ankit Malhotra, Charles Lee, Ruby Banerjee, Fengtang Yang, Qasim Ayub, 

Yali Xue, and Chris Tyler-Smith 

 

To expand the set of SVs discovered with the Genome STRiP approach, we conducted structural 

variant (SV) discovery on array comparative genomic hybridization (aCGH) data. Log2 intensity 

ratios were produced for 1,243 males in the 1000 Genomes Project phase 3 set, using sample 

NA10851 as reference. Each sample was analyzed on a separate array. 

 

We excluded from the analysis 9 samples showing abnormally high or low median of log2 

intensity ratios (Supplementary Figure 2). The karyotype of these samples was also tested by 

24-color fluorescence in situ hybridization (FISH), and six (HG00246, HG01967, HG02053, 

HG03615, NA12413, NA20754) appeared as mosaics (Supplementary Table 7). 

 

Intensities for the 1,234 remaining samples were normalised by subtracting each sample’s 

median log2 intensity ratio across all probes from its measured value at each probe. We called 

CNVs from the same set of 2,714 probes that was employed for SV validation, as described in 

the section 2.2. Segmentation was performed using the algorithm GADA, as implemented for the 

R statistical computing environment31, with arguments estim.sigma2=TRUE, aAlpha=0.8 

for the sparse Bayesian learning step, and with T=5.5, MinSegLen=10 for the backward 

elimination procedure32. We used stringent calling criteria in order to minimise oversegmentation 

and false discovery rate. 

 

The calling algorithm identified a total of 5,240 segments. To classify them into gains and losses, 

we employed an additive background model for the log2 ratios, relating intensity to copy number 

in a manner similar to that of Conrad et al.33. According to this model, it is possible to estimate 

the copy number of the test and reference samples associated with the log2 ratio of a segment and 

a given reference copy number, i.e., 

 

y = log2

a+ c

b+ c

æ

è
ç

ö

ø
÷, 

 

where y is the segment’s mean log2 ratio, a is the intensity of the target, b the intensity of the 

reference, and c is the noise. Both the segment’s mean log2 ratio and the noise are estimated by 

the calling algorithm. For b, we assumed a reference intensity of 1, unless a segment overlapped 

for 80% of its length with a segmental duplication (SD), as annotated in the UCSC genome 

browser, in which case we assumed a reference intensity of 2. 
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We refined the initial segmentation by removing segments that appeared to be highly similar to 

the reference (± 0.2 copies, as estimated using the additive background model explained above) 

and segments that included the centromere. Moreover, as uneven distribution and low density of 

aCGH probes can result in false, overly long, calls, we manually checked segments longer than 1 

Mb by inspecting the log2 intensity ratios plots. Of 305 such segments, we removed 24 as false 

positives. This resulted in a final callset of 1,892 segments identified in 857 samples. 

 

To characterize the subset of aCGH-discovered variants that were not identified by the Genome 

STRiP analysis of sequencing data, we used the Bedtools intersect tool34,35 with the -v option, 

comparing the two callsets. In the set of 1,892 aCGH calls, 613 did not overlap with any call in 

the Genome STRiP set. These 613 segments clustered into 15 CNV regions (CNVRs) across the 

male-specific Y (MSY). 

 

We curated the calls that overlapped any of the 15 CNVRs, inspecting the log2 intensity ratio 

plots in order to distinguish between false positives and true variants. One of the 15 CNVRs was 

identified by one call in just one sample, and it seemed likely to be a false positive. A second, 

within the AZFc region, was supported by a large number of calls but was unreliable due to the 

low density of aCGH probes in that region. 

 

The 13 remaining CNVRs include 11 variants, with two appearing in two CNVRs each. This set 

includes a ~3-Mb deletion on the short arm of the Y chromosome (Y:6,103,728–9,397,666), 

encompassing the Y-linked amelogenin gene (AMELY) (Supplementary Figure 3). This 

polymorphic deletion is well known in literature36 and was also detected by Genome STRiP, 

although not as a single event.  

 

Alleles were assigned based on the distribution of mean log2 intensity ratios, as estimated by the 

calling algorithm. Most of the variants in the aCGH-only callset (9 of 11) do not include 

intrachromosomal SDs, and the mean log2 intensity ratios of calls produced by the segmentation 

algorithm show a unimodal distribution, indicating a single duplication or deletion event. 

 

Based on the genomic features of the respective regions, we assigned two variants to two 

CNVRs each: one to Y:6,115,346–6,124,150 and Y:9,196,977–9,384,475, and the other to 

Y:22,218957–22,369,669 and 22,419,003–22,508,011. The first pair represents paralogous 

regions. Y:9,196,977–9,384,475 spans the TSPY array37 and includes several highly similar 

copies (~95.5% identity) of Y:6,115,346–6,124,150 interspersed with single-copy spacers. This 

peculiar structure accounts for the vastly different lengths of the two CNVRs (8.8 kb versus 

187.5 kb). As the aCGH design does not allow us to discriminate among the different copies in 

the two CNVRs, we treated these two regions as a single variant, pooling the calls within them. 

To call alleles in these regions, we considered two copies the reference allele and assigned a 

score of +1 to samples called as duplicated and a score of –1 to samples called as deleted, 

summing scores for samples called in both regions. This model may represent an 

oversimplification, but aCGH is unlikely to be able to give separate signals from two highly 

similar regions, and the model differentiates samples called as deleted or duplicated twice across 

the two regions from samples with just one call. 
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The second pair of regions for which we considered the reference allele to be two copies was 

Y:22,218,957–22,369,669 and Y:22,419,687–22,508,011. Although these regions are not 

annotated as SDs, they nearly cover two arrays of LTR12B repeats, at Y:22,216,565–22,369,669 

and Y:22,419,687–22,512,935, respectively. These arrays, separated by a 50-kb unique spacer, 

contain 33 and 15 elements, respectively, and individual elements range in length from ~300 bp 

to ~18 kb. These regions were included in a single CNVR, and the empirical probability density 

function of log2 intensity ratios of calls covering this interval shows a trimodal distribution 

(Supplementary Figure 4), with peaks around –2, –0.5, and 0.4 likely corresponding to large 

deletions, small deletions, and duplications, respectively. We manually checked the log2 intensity 

ratios for these calls to confirm that the distribution of segments’ mean log2 ratios represented 

actual gains or drops of probe intensities. Upon confirming, we assigned values of 0, 1, and 3 

copies to the samples called under the respective peaks. 

 

2.2 Validation 

2.2.1 Array Comparative Genomic Hybridization 
Andrea Massaia, Ankit Malhotra, Charles Lee, Yali Xue, and Chris Tyler-Smith 

 

Structural variants identified by Genome STRiP were validated using array comparative genomic 

hybridization (aCGH) intensities. The aCGH experiment was performed on the 1000 Genomes 

Project phase 3 samples, using sample NA10851 as reference. A total of 6,250 unique probes, 

ranging from 44 to 61 bp in length, were hybridized to the MSY, covering a total of 341,631 bp. 

 

We used aCGH data from the 1,291 phase 3 females to filter probes to those yielding signals 

specific to the Y chromosome. Y-specific probes are expected to give low or no signal in females, 

that is, a log2 intensity ratio < 0. Assuming the log2 ratios of probes not specific to the Y 

chromosome follow a normal distribution across the 1,291 female samples, we retained those 

probes for which the mean log2 ratio was more than two standard deviations below 0. This left in 

2,714 probes (43.4%) for SV validation. 

 

Upon filtering to Y-specific probes, we normalized the log2 ratios by subtracting each sample’s 

median log2 intensity ratio across all probes from its measured value at each probe. We then 

estimated the concordance between the Genome STRiP calls and the aCGH log2 ratios. 

 

For each variant, we selected the samples called as REF by Genome STRiP and computed, for 

each one of them, the median of log2 ratios for the probes covering the variant. We assumed the 

medians of log2 ratios across REF samples to be normally distributed, and considered the (µ ± 

2σ) confidence interval of this distribution. We then considered, separately for each ALT sample, 

the median log2 ratio for the same set of probes, confirming as ALT those samples for which this 

median fell outside the confidence interval. Specifically, for each sample called as duplicated, we 

confirmed the call if the median of log2 ratios was greater than or equal to the upper limit (µ + 

2σ) of the confidence interval and rejected it otherwise. Likewise, for each sample called as 

deleted, we confirmed the call if the median of log2 ratios was less than or equal to the lower 

limit (µ − 2σ) and rejected the call otherwise. When validating the variants called as segmental 

duplications (with 2 copies being the reference allele), we pooled the probes falling in both 

reference copies. 
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Overall, 76 of the 97 copy-number variants (CNVs) and 9 of the 13 SDs called by Genome 

STRiP were covered by at least one aCGH probe. For each of these variants, we counted the 

number of ALT samples whose log2 ratios were compatible with the Genome STRiP call and 

those that were not (Supplementary Figure 5). All of the 76 CNVs covered by the aCGH 

probes were validated in at least one sample. Notably, most of the variants with low proportions 

of confirmed ALT samples were covered by a low number of probes (1 to 3). The one exception 

is the variant in Y:17,998,351–18,007,190, with three samples called as ALT (a deletion in 

HG00183 and a duplication in HG00372 in HG03976), that was covered by 7 probes. 

 

Supplementary Figure 6 summarizes SD validation. Of 13 variants covered by aCGH probes, 

three were not validated in any of the aCGH samples. These three were called as ALT in 4, 4, 

and 8 samples. Another, called as ALT in 13 samples, was validated in just one of the aCGH 

samples. It is worth noting, however, that the complexity of regions defined as SDs might make 

it difficult to design aCGH probes specific for these regions, as suggested by our observation that 

CNVs and SDs differ in their densities of filtered probes, where we define probe density as the 

number of probes for a variant divided by its length (p = 3.5 × 10–4, Mann-Whitney test) 

(Supplementary Figure 7). 

2.2.2 Fluorescence In Situ Hybridization onto DNA Fibres 

Alkaline Lysis Fibre-FISH 

Ruby Banerjee, Sandra Louzada, and Fengtang Yang 

Methods 

To further validate CNV calls, we conducted fibre-FISH experiments, following a previously 

described protocol38. Briefly, stretched DNA fibres were prepared by alkaline lysis of 

lymphoblastoid cells purchased from Coriell Biorepository39. Bacterial artificial chromosome 

(BAC) clones that span the CNV regions of the human Y chromosome were obtained from the 

clone archive resource of The Wellcome Trust Sanger Institute. DNA from each BAC clone was 

prepared using the Phase-Prep BAC DNA kit (Sigma-Aldrich), following the manufacturer’s 

protocol, and was labeled with digoxigenin (DIG)-11-dUTP, biotin (BIO)-16-dUTP, or 

dinitrophenol (DNP)-11-dUTP (Jena Bioscience). BIO-labeled probes were detected with 

CF543-conjugated streptavidin (Biotium) or DyLight 488 conjugated streptavidin (Vector Labs); 

DIG-labeled probes were detected with monoclonal mouse anti-DIG IgG (Sigma-Aldrich) and 

Texas red conjugated donkey anti-mouse IgG (Molecular Probes); DNP–labeled probes were 

visualized using rabbit anti-DNP and Alexa 488 conjugated goat anti-rabbit IgG (Molecular 

Probes). After detection, slides were mounted with SlowFade Gold® mounting solution 

containing 4’,6-diamidino-2-phenylindole (DAPI) (Molecular Probes) and kept at 4 °C. 

 

All FISH images were captured on a Zeiss Axioplan epifluorescence microscope, equipped with 

narrow band-pass filter sets for DAPI, fluorescein, Spectra Gold, and Texas red fluorescence and 

a cooled CCD camera (Hamamatsu ORCA-ER). They were processed with the SmartCapture® 

software (Digital Scientific UK). 
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Results 

Fibre-FISH was used to test two duplications. We elected to test duplications, as this type of 

CNV has been less thoroughly investigated and validated than deletions. Furthermore, there was 

a greater opportunity to generate novel insights about duplications than about deletions, as fibre-

FISH provides information about the location of the duplicated copy, whereas neither sequence 

data nor genotype array data are able to do so. 

 

The first duplicated region we tested was “CNV region 1” (GRCh37 Y:2,888,555–3,014,661), 

which includes variants CNV_Y_2888555_3014661 and CNV_Y_2892962_2900130. DNA 

sequence analysis indicated the presence of the reference structure in most individuals, including 

HG00096, which we used as a control in the experiment. Duplicated alternative alleles were 

inferred for samples HG03856 and GM19082, the test subjects. Two BACs, overlapping by 18.5 

kb, were labeled red or green and hybridized to the control (Supplementary Figure 8). As 

expected, and consistent with a structure matching the reference sequence in this individual, we 

observed overlapping red and green signals, best illustrated in the downward shifted image in the 

middle panel for this cell line. In contrast, we observed duplication structures in both individuals 

classified as carrying alternative alleles by the DNA sequence analyses (Supplementary Figure 

8). In each sample, we observed two pairs of red and green signals separated by a non-

hybridizing region. Though fibre stretching is non-uniform, we observed a consistent pattern of 

relative lengths of the red and green signals in the two duplicated structures. In both HG03856 

and GM19082, the red signal is longer than the green in the first copy and shorter than the green 

in the second copy, and these differences are consistent across multiple fibres. This experiment 

confirms the presence of a local but non-tandem duplication. To elucidate the full details of the 

duplicated structures will require further work. 

 

DNA sequence analysis indicated that the second region, CNV region 4 (Y:16,077,197–

16,251,571), was also present in the reference structure in most individuals, including HG00096, 

and that it occurred as a complex set of duplicated alternative alleles 

(CNV_Y_16077197_16094785, GS_SD_M2_Y_16093532_16131537_Y_16134952_16172355, 

CNV_Y_16134600_16211237, CNV_Y_16134975_16251571, and CNV_Y_16160861 

_16214056) in a few individuals, including HG01377. Again, two BACs, in this case 

overlapping by ~100 kb, were labeled in red or green and hybridized to HG00096. We observed 

extensive overlapping signals (Supplementary Figure 9), consistent with a structure matching 

the reference sequence. In HG01377, a different structure was observed: a duplication of the red 

signal and a trace of the green signal, separated by a non-hybridizing gap. Thus, this experiment 

also confirms a local but non-tandem duplication in HG01377. 

Molecular Combing Fibre-FISH 

Sandra Louzada, Andrea Massaia, and Fengtang Yang 

 

In this subsubsection, we describe the laboratory methods for the experiment to validate the 

deletion in HG00183. We describe the results in the main text and illustrate them in Figure 1d. 

 

We purchased human lymphoblastoid B-cell lines from the Coriell Biorepository39 and prepared 

single-DNA-molecule fibres using the molecular combing method described in Polley et al.40 

and following instructions from the manufacturer, Genomic Vision. Briefly, we embedded the 
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cells in plugs of 1.2% Lonza low melting-point agarose at a density of 1 million cells/plug. We 

followed this with overnight proteinase K digestion at 50°C, a wash with 1× TE buffer, and 

overnight digestion at 42°C with β-agarase enzyme from BioLabs. The next day, we 

mechanically stretched the DNA fibres onto coated coverslips (Genomic Vision) using a 

Molecular Combing System (Genomic Vision). We followed this with baking for 4 hours at 

68°C. 

 

We used four fibre-FISH probes, including three custom probes (“P1,” “P2,” “P3”) from the 

CNV region (GRCh37 Y:17,986,693–18,017,210) and one from a human BAC clone (RP11-

12J24) obtained from the clone archive resource of Wellcome Trust Sanger Institute. We 

produced the custom probes using long-range PCR amplification with primers designed with the 

web-based version of Primer341,42 using the following parameters: 
 

 PRIMER_MIN_SIZE=21 

 PRIMER_OPT_SIZE=23 

 PRIMER_MAX_SIZE=25 

 PRIMER_MIN_TM=57.0 

 PRIMER_OPT_TM=61.0 

 PRIMER_MAX_TM=63.0 

 PRIMER_PAIR_MAX_TM_DIFF=2.0 

 PRIMER_PRODUCT_SIZE_RANGE=4500-5500 
 

We amplified using the Bioline RANGER Mix following the manufacturer’s instructions for the 

reaction set-up, but employing the following touchdown protocol: 
 

 1 minute initial denaturation at 95°C 

 15 cycles of denaturation for 10 seconds at 98°C, followed by annealing/extension for 5 

minutes, starting at 63°C and decreasing the temperature by 0.5°C each cycle 

 30 cycles of denaturation for 10 seconds at 98°C, followed by annealing/extension for 5 

minutes at 56°C 

 10 minutes of final extension at 72°C 
 

We purified the PCR products using a Qiagen QIAquick PCR purification kit according to the 

manufacturer’s instructions. 

 

We amplified the purified BAC DNA and PCR products using the GenomePlex® Whole 

Genome Amplification (WGA) kit from Sigma-Aldrich, following the manufacturer’s protocol. 

We then labeled them using a modified WGA reamplification kit from Sigma-Aldrich, as 

described by Carpenter et al.43. We labeled the BAC clone with biotin-16-dUTP, P1 with 

digoxigenin-11-dUTP, P2 with DNP-11-dUTP, and P3 with Fluorescein-12-dUTP. The first 

three labels were from Jena Bioscience, and the fourth was from ThermoScientific. 

 

We followed the fibre-FISH protocol of Carpenter et al.43 with slight changes. After dehydrating 

through a 70%, 80%, and 100% ethanol series, we aged the combed coverslips in 100% ethanol 

for 30 seconds at 65°C and incubated them in alkaline denaturing solution (Sigma-Aldrich) for 8 

minutes, followed by three washes in 1× PBS (Invitrogen) and dehydration through a 70%, 80% 

and 100% ethanol series. We denatured the probe mix at 65 °C for 10 minutes, added it to the 

coverslip, and then hybridized overnight at 37°C. Post-hybridization washes consisted of two 

rounds of 50% formamide/2×SSC (v/v), followed by two additional washes in 2×SSC. All 
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washes were at 25°C for 5 minutes with gentle agitation. We detected digoxigenin-labeled 

probes using a 1:100 dilution of monoclonal mouse anti-DIG antibody (Sigma-Aldrich) and a 

1:100 dilution of Texas Red-X-conjugated goat anti-mouse IgG (Invitrogen). To detect DNP-

labeled probes we used a 1:100 dilution of Alexa 488-conjugated rabbit anti-DNP IgG and 1:100 

Alexa Fluor® 647 donkey anti-rabbit IgG (Abcam). For biotin-labeled probes, we detected with 

1:100 of Cy3-streptavidin (Sigma-Aldrich) and 1:50 anti-streptavidin CF543. For this 

customized antibody, we labeled streptavidin (Vector Laboratories) with CF543 using the Mix-n-

stain antibody labeling kit (Biotium) according to the manufacturer’s instructions. Lastly, we 

detected fluorescein-labeled probes with 1:100 sheep anti-FITC (Southern Biotech) and donkey 

anti-sheep IgG Alexa Fluor® 488 (Thermo Scientific). After detection, we mounted slides with 

SlowFade Gold® mounting solution containing 4’, 6-diamidino-2-phenylindole (Invitrogen). We 

viewed images on a Zeiss AxioImager D1 fluorescent microscope equipped with narrow band-

pass filters for DAPI, FITC, Cy3, Cy5, and Texas Red fluorescence and on an ORCA-EA CCD 

camera (Hamamatsu). We used SmartCapture software (Digital Scientific, UK) to capture and 

process the digital images. 

2.2.3 Karyotyping for Sex-Chromosome Aneuploidies 
Ruby Banerjee and Fengtang Yang 

Methods 

Following a standard protocol44, we prepared metaphase chromosomes from lymphoblastoid cell 

lines purchased from Coriell Biorepository39. Briefly, the cultures were first treated with 0.01 

μg/mL colemid for 1 hour to arrest the dividing cells at the metaphase stage and were then 

treated with hypotonic solution (75 mM KCl) for 15 minutes. After two rounds of fixation and 

wash in methanol/acetic acid (3:1) fixative, the metaphase preparations were resuspended in 

fixative and stored at −20 °C until use.  

 

Chromosome-specific paint probes for the human X and Y chromosomes were generated from 

5,000 copies of flow-sorted chromosomes, provided by the Flow Cytometry Core Facility of The 

Wellcome Trust Sanger Institute, using the GenomePlex® Whole Genome Amplification kit 

(Sigma-Aldrich). X-chromosome probes were labeled with Aminoallyl-dUTP-Texas red and Y-

chromosome probes were labeled with Aminoallyl-dUTP-XX-ATTO488 (Jena Bioscience). 

Fluorescence in situ hybridization (FISH) with the X and Y paint probes followed the multi-color 

strategy described in Gribble et al.45.  

Results 

We selected 13 cell lines for karyotype analysis. One (HG02372) had been observed by 

Handsaker and colleagues to show female-level intensities of X-chromosome SNPs, as well as 

male-level intensities of Y-chromosome SNPs. The other 12 samples had lower levels of reads 

mapping to the Y chromosome than expected from median genome coverage or had median log2 

ratios that differed from the mean value across all samples by more than 3 standard deviations 

(Supplementary Figure 2). 

 

We observed a 47,XXY karyotype in all HG02372 cells we examined (Supplementary Table 7). 

This karyotype, known as Klinefelter Syndrome, is the most common constitutive chromosomal 

anomaly. It is reported to affect 1 in 500 to 1 in 1000 males and is often undiagnosed46. 

Therefore, it is not surprising to find one example in a sample of 1,244 males. 
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Of the 12 other cell lines, six exhibited karyotypes mosaic for the presence of 45,X at 

frequencies ranging from 27% to 62% (Supplementary Table 7). This mosaicism explains the 

low Y-chromosome read coverage or low aCGH signal in almost half of the samples showing 

unusual patterns. Our data do not indicate the timing of the Y-chromosome losses; they may 

have occurred after the establishment of the cell lines. 

 

2.3 Analysis 
Andrea Massaia, Yali Xue, Yuan Chen, and Chris Tyler-Smith 

2.3.1 Mutation Events 
To estimate the distribution of mutation events associated with Y-chromosome CNVs, we 

mapped the variants onto the phylogeny and counted the minimum number of mutation events in 

the history of each locus. We considered CNVs discovered from both sequence data and aCGH 

intensities (section 2.1) but excluded 16 variants within Y:23,632,158–27,687,750, as this region 

includes the RMBY and DAZ gene clusters and spans a set of well-known structural variants47,48. 

Although we have no reason to doubt the variation we observed in this region, its peculiar 

structure could cause oversegmentation and confound allele assignment and breakpoint 

definition. This left 105 loci (Supplementary Figure 10). Of these, 7 overlapped physically with 

and yielded similar genotype calls to other loci in the set. As these 7 loci may represent true gain 

or loss of genetic material oversegmented by the calling algorithms, we excluded them in this 

subsection but retained them when investigating the sequence context (subsection 2.3.2) and 

genomic impact (subsection 2.3.3) of the variants. 

 

For the remaining 98 loci, we inferred the minimum number of duplication and deletion events 

that would lead to the observed genotypes. We inferred exclusively duplication events at 63 loci, 

exclusively deletion events at 22, and both (del/dups) at 13 loci. Thirty-eight of the 76 total 

duplications and 14 of the 35 total deletions were singletons—sites for which just one individual 

possessed the alternative allele, corresponding to a single event. Overall, we inferred a total of 

360 duplication events, 1 to 105 per locus (mean: 4.74, median: 1), and 275 deletion events, 1 to 

58 per locus (mean: 7.61, median: 1). 

 

Nine loci required more than ten events to explain the observed genotypes. We manually 

checked these loci for sequence features that could explain such variability. Two of these loci, 

segmental duplications at (Y:6,543,373–6,559,148, Y:6,559,149–6,574,923) and (Y:17,986,738–

17,995,460, Y:18,008,099–18,016,824), are within regions with high X-Y similarity and 

therefore may reflect X-chromosome variation randomly mapped to the Y chromosome in some 

samples. However, we retained the deletion call of the second locus in HG00183, as we validated 

it by fibre-FISH. One locus, a segmental duplication at (Y:7,446,529–7,540,962, Y:24,803,840–

24,900,423), partially includes variation in the RMBY and DAZ regions47,48 and may be 

confounded by the repetitive structure of these regions. Two loci, Y:13,135,703–14,045,110 and 

Y:28,783,131–28,814,512, lie adjacent to the centromeric heterochromatin and to the large q-arm 

heterochromatic block, respectively49. These loci may therefore reflect expansion or contraction 

of heterochromatic regions, or they may carry signal from similar heterochromatic blocks on 

different chromosomes. Moreover, locus Y:28,783,131–28,814,512 includes the DYZ18 locus49, 

the size of which is unknown, as it hasn’t been fully sequenced. Therefore, only the absence of 
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the locus could be stated with accuracy. Finally, the locus Y:15,590,833–15,592,476, does not 

correspond to any element usually associated with high copy number variability nor with any 

feature suggesting a false positive. To validate the variant at this site, we manually checked read 

depth in the samples inferred to possess the alternative allele, as well as in 30 samples called as 

carrying the reference allele, including the sample used as a reference in the aCGH experiment 

(NA10851). As read-level data did not support the simple deletion called via aCGH and instead 

suggested a more complex mode of variation, we removed this locus and the events associated 

with it from further analyses. 

 

We excluded five of the six loci described above, ascribing them to limitations in the calling 

techniques or to a “shadowing” effect, wherein reads from CNV sites elsewhere in the genome 

mismap to the Y chromosome and CGH probes cross-hybridize. We re-annotated the sixth as a 

deletion in a single sample (HG00183), but we excluded it due to overlap with another call in a 

larger region (Y:17,986,693–18,017,210) in the same sample. This exclusion brought to 8 the 

number of loci excluded due to overlap. 

 

We retained the remaining three loci with more than ten events. Two of the three are located in 

the TSPY arrays, which are well known for being prone to frequent rearrangements37. The third 

locus entails an array of highly similar LTR12B elements on the long arm of the chromosome—a 

plausible hotspot of structural variation. This locus is the most variable in our entire dataset, with 

154 inferred mutation events. It encompasses two arrays of LTR12B repeats at Y:22,216,565–

22,369,669 and Y:22,419,687–22,512,935. 

 

To test whether or not we could exclude a shadowing effect for the most variable CNV, we 

constructed a maximum-likelihood tree of all 211 LTR12B elements in the human genome. To do 

so, we downloaded each FASTA sequence from the UCSC database24 and ran MEGA61 with a 

Jukes-Cantor model and the default options (Supplementary Figure 11). The LTR12B elements 

in the Y-CNV arrays form a monophyletic clade that does not include any other element, so it is 

unlikely that reads from elsewhere in the genome mismapped here. Furthermore, the tree 

indicates that the elements in these arrays are quite homogeneous and may therefore be highly 

prone to CNV events. Indeed, the two arrays contain 48 of the genome’s 211 LTR12B elements, 

more than any autosome.  

 

Following the manual check, 92 CNV loci remained for analysis, including 62 duplications, 20 

deletions, and 10 del/dups. We inferred a low number of mutation events for most CNV loci, 

with just one event for 44 of 72 duplications and for 21 of 31 deletions (Supplementary Figure 

12, Supplementary Data File 1). 

2.3.2 Mutation Processes 
To gain insight into the mutation processes underlying CNV events on the Y chromosome, we 

analysed the regions around the inferred breakpoints for 100 loci—the 92 above plus the 8 

excluded due to overlap with other loci (5 duplications and 3 deletions). We grouped them into 

48 partially overlapping regions of ~4.5 kb to ~3.7 Mb, with each region containing 1 to 12 

variants. To investigate sequence self-similarity, we aligned each region against itself using 

Dotter50 with the default parameters. We detected self-similarity near the inferred breakpoints in 

56 of 100 cases. In each case, we manually confirmed the presence of repetitive elements, 

including Alu elements, LINEs, ERVs, satellite repeats, or intrachromosomal segmental 
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duplications. To do so, we used the UCSC genome browser24 and BLAT51 to align the sequences 

revealed by Dotter against the full human genome. We confirmed for each case that both 

sequences involved mapped to one of the repetitive elements listed above. Overall, we observed 

these elements near 10 of 23 deletions (43%), 38 of 67 duplications (57%), and 8 of 10 del/dups 

(80%). These observations indicate that repetitive sequences influence the majority of Y-

chromosome.  

 

As previously observed by Conrad et al.33, we found that repeat-mediated variants are 

significantly longer than those that are not repeat-mediated. The mean lengths are 169,391 bp 

and 72,678 bp, respectively, and the median lengths are 48,689 bp and 15,138 bp, respectively (p 

= 0.026, Mann-Whitney two-sided test). The result holds when restricting to the pruned set of 92 

variants (p = 0.013, Mann-Whitney two-sided test) and when excluding from this set the ~3 Mb 

repeat-mediated AMELY deletion (p = 0.019, Mann-Whitney two-sided test). 

2.3.3 Genomic Impact 
We investigated the potential impact of CNVs by considering their overlap with genes, as 

annotated in the Ensembl 75 database52. We found that 60 overlap at least one gene: 5 overlap 

protein-coding genes alone, 15 overlap both protein-coding genes and non-protein-coding genes 

(including genes annotated as miRNAs, pseudogenes, lincRNAs, antisense, miscRNAs, rRNAs, 

or snRNAs), and 40 overlap only non-protein-coding genes. This set of 60 CNVs includes 12 

deletions, 43 duplications and 5 del/dups, among which 6 deletions, 12 duplications, and 2 

del/dups overlap at least one protein-coding gene. We compared the distribution of duplications 

and deletions among the 119 mutation events associated with variants overlapping protein-

coding genes (75 duplications versus 44 deletions) to the distribution among the 286 mutation 

events associated with CNVs not overlapping protein-coding genes (205 duplications versus 81 

deletions), but we did not observe a significant difference (p > 0.05, Fisher’s exact test). 

 

For both the Y chromosome and the autosomes, we compared the proportion of deletions 

overlapping genes to the corresponding proportion for duplications. For the Y chromosome, we 

restricted the set of CNVs to include those with only duplications or with only deletions. Of the 

22 deletion-only CNVs, 6 (27%) overlapped protein-coding genes, and 12 of 68 (18%) 

duplications did so. The ratio of these proportions is 1.5. To compare this observation to 

autosomal data, we extracted the number of deletions and duplications from the 1000 Genomes 

Project phase 3 data16 and used Ensembl’s Variant Effect Predictor (VEP)53 to determine which 

variants overlapped genes. We found that of 38,258 autosomal deletions, 25,524 (66.7%) 

overlapped protein-coding genes, and 4,657 of 5,896 (79.0%) duplications did so. The ratio of 

these proportions is 0.84. Whereas, on the autosomes, deletions are less likely to overlap protein-

coding genes than duplications are, we found the reverse to be true for the Y chromosome. 

 

We considered the position of the events in the phylogeny, classifying each as terminal or 

internal, and found that 108 of the 119 events associated with CNVs overlapping protein-coding 

genes occurred on terminal branches. This proportion was similar to that among CNVs not 

overlapping protein-coding genes (p > 0.05, Fisher’s exact test). In this class, 243 of 286 events 

were on terminal branches. Stratifying by variant subtype (deletion or duplication) yielded no 

additional insight. 
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2.3.4 Comparison to Prior Work 
Finally, we compared the variants discovered in our study with the variants reported in the recent 

studies on Y-chromosome CNVs54–56. Espinosa et al.54 studied structural variants in 70 males 

from the pilot phase of the 1000 Genomes Project and reported 19 variants across the MSY, 15 

of which overlap with those reported here. Wei et al.55 reported 34 raw CNV events 

(rawCNVEs) in a cohort of 411 healthy UK males and merged these events into 21 curated CNV 

events. We found that 32 of their 34 raw events overlap with our discovery set. Johansson et al.56 

reanalysed a set of 1,718 males, collected from several studies, and reported 25 CNV patterns on 

the MSY, but they did not report exact start and end positions. Fifty of the 121 genomic regions 

in our initial dataset are novel with respect to these three papers. 
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3 Short Tandem Repeats 
Thomas Willems, Melissa Gymrek, and Yaniv Erlich 

 

To estimate Y-STR mutation rates, we used an approach that we have fully described in a second 

manuscript, “Population-Scale Sequencing Data Enables Precise Estimates of Y-STR Mutation 

Rates”57. We include a brief synopsis in the following sections, but we encourage readers to 

consult the companion paper for the full details and for updated mutation rate estimates. 

 

3.1 Callset  

3.1.1 Generation 
For our STR analyses, it was particularly important to use indel-sensitive alignments. These 

became available from the 1000 Genomes Project FTP site in the later stages of our work, but 

only relative to the GRCh38 reference. Thus, in contrast to our analyses of the other variant 

classes which were based on GRCh37 alignments, we downloaded BWA-MEM58 alignments to 

the GRCh38 Y-chromosome reference sequence. Next, we obtained from our companion paper57, 

a set of Y-STR regions to genotype. These regions were generated using both the Tandem 

Repeats Finder program59 and published primers for Y-STR markers. To ensure high quality 

genotypes, we only selected regions that passed a series of stringent quality control filters for a 

higher coverage dataset. After merging the individual BAMs using SAMtools17, we ran GitHub 

version g853f1a1 of HipSTR60 using these regions and the following options: min-

reads=100, haploid-chrs=chrY, hide-allreads. To mitigate genotyping errors, we 

removed all homopolymers, loci with more than 15 genotyped females, loci with 

DFLANKINDEL/DP > 0.075, and individual calls with DFLANKINDEL/DP > 0.1, where DP 

indicates the total number of reads, and DFLANKINDEL indicates the number of reads with 

indels in the regions flanking the STR. We further removed loci at which more than 5% of 

samples had out-of-frame STR calls. Lastly, to generate the final callset, we removed out-of-

frame calls and calls with low posterior quality scores (Q < 0.66), and we selected only 

multiallelic Y-STRs with at least 100 genotyped males.  

3.1.2 Quality Assessment 
To assess the quality of the callset, we compared STR genotypes across 3 father-son pairs. As 

even the most polymorphic STRs typically mutate at rates less than 10–2 mutations per 

generation (mpg), the fraction of concordant genotypes should exceed 99% in the absence of 

genotyping errors. Of the nearly 1,711 pairs of father-son Y-STR calls, we observed a 

concordance rate of 95.8%. Restricting to STRs with a major allele frequency below 95%, the 

concordance rate fell to 88.9%, but the overwhelming majority of these errors were likely the 

result of PCR stutter—1 or 2 repeat-unit differences in loci with dinucleotide motifs 

(Supplementary Table 4).  

 

We also compared HipSTR calls to those generated by capillary electrophoresis for 15 of the loci 

in the PowerPlex Y23 panel. Routinely used for forensic and paternity-related analyses, this set 

of loci is highly polymorphic and therefore provides a challenging validation set. Encouragingly, 

97.5% of the 4,058 resulting comparisons were concordant (Supplementary Table 5), and the 

bulk of the discrepancies again involved single repeat-unit differences (Supplementary Table 6). 
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3.2 Mutation Rates 

3.2.1 Y-STR Mutation Model 
We assumed that STR mutations stem from a length-dependent variant of a generalized stepwise 

mutation model. This model is characterized by a per-generation mutation rate μ, a geometric 

step size distribution with parameter ρm, and a spring-like length constraint β that causes alleles 

to mutate back towards a central allele. The flexible nature of this model captures many of the 

salient features of microsatellite mutations. In particular, decreasing the value of the geometric 

step size parameter can alter the model from a single-step only model to one allowing multi-step 

changes. Furthermore, the length constraint controls the extent to which shorter STRs 

preferentially expand and longer STRs preferentially contract, a known feature of many STR 

mutation models. For more details on the model, please refer to the Methods section of our 

companion paper57.  

3.2.2 Estimating Mutation Rates 
The fundamental idea behind our approach is that a Y-SNP phylogeny is sufficiently detailed and 

precise to estimate a Y-STR’s mutational dynamics. As a result, our approach begins by building 

a single phylogeny relating all samples using only Y-SNP genotypes. Next, for each Y-STR, it 

learns an error model to account for PCR stutter artifacts and alignment errors that are 

problematic in the 1000 Genomes Project’s low-coverage data. To model these artifacts, we 

assume that their sizes follow a geometric distribution with parameter s and that they increase or 

decrease a read’s STR size with probabilities u and d, respectively. For each Y-STR, our 

approach learns these locus-specific models by analyzing reads across all samples and applying 

an expectation-maximization algorithm. It then uses a uniform prior and the learned stutter 

model to compute each sample’s genotype posteriors, which correspond to the probabilities for 

the leaves of the phylogeny. Because the likelihood of a given mutation model can be efficiently 

evaluated using a variant of Felsenstein’s tree-pruning algorithm61, we initialize each mutation 

model and use numerical optimization to iteratively improve its likelihood until convergence, 

resulting in an estimate for the mutation rate. For full details, please refer to Figure 1 and the 

Methods section of the companion paper57. 

3.2.3 Mutation Rate Simulations 
To validate our approach, we simulated various STR mutation models using the 1000 Genomes 

Project phylogeny. Each of these simulations resulted in a set of known STR genotypes, for 

which we then simulated reads under various stutter models. When we applied our estimation 

method to these simulated reads, we obtained unbiased mutation rate estimates for nearly all 

scenarios we considered. In contrast, estimates obtained without accounting for stutter resulted in 

marked upward biases. These findings are summarized in Figure 2 and Supplemental Figures 4 

and 5 of our companion paper57. 

3.2.4 Results 
We estimated the mutation rates of 702 Y-STRs (Supplementary Data File 2). To validate, we 

compared our estimates for 106 loci to those from a large-scale father-son study and obtained an 

R2 of 0.64. We also applied our method to an orthogonal high coverage dataset and found that the 

resulting estimates were remarkably correlated with those generated in this study (R2 = 0.92), 

lending further support to the robustness and accuracy of our method. These comparisons are 

outlined in extensive detail in Figure 3 of the companion paper57. 
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4 Phylogeny 

4.1 Haplogroup Classification and Distribution 
G. David Poznik  

 

We assigned a haplogroup affiliation to each individual (Supplementary Data File 3 and 

Supplementary Table 8) using the definitions within the January 18, 2014 version of the SNP 

Compendium maintained by the International Society of Genetic Genealogy (ISOGG)62. To do 

so, we probed each sample for derived alleles at any site and then removed all inconsistencies 

due to homoplasy, genotype error, or database misspecification. Left with a consistent path 

through the phylogenetic decision tree for each individual, we called the haplogroup based on the 

most derived SNP remaining. 

 

Initially, based on the ISOGG Compendium alone, we could not classify 13 individuals more 

precisely than haplogroup F (hgF), the megahaplogroup that includes most non-African lineages. 

Therefore, to supplement the ISOGG resource, we constructed a list of 20 SNPs we had found to 

be present in the derived state in both a hgH individual4 and a hgF3 lineage63. We used this 

shared branch to define a new subgroup of hgH, which we provisionally dub “H0.” We found 

that 12 of the 13 putatively F* individuals possessed the derived allele for these sites, so we 

classified them as belonging to hgH0. 

 

4.2 Tree Inference 

4.2.1 Total-Evidence Maximum-Likelihood Tree 
Apurva Narechania, G. David Poznik, Juan Rodriguez-Flores, Rob Desalle 

 

To construct a total-evidence maximum-likelihood (ML) tree, we converted genotype calls for 

the 60,555 biallelic SNVs to nexus format and ran RAxML864 using the ASC_GTRGAMMA 

model. We then conducted 100 ML bootstraps and mapped these to the total-evidence tree. 

 

Using prior knowledge65, we rooted the tree to the midpoint of the split between A0 and A1 and 

then used MEGA566 to manually rotate internal nodes to conform to the canonical representation. 

We used FigTree2 to plot (Supplementary Data File 4a). 

4.2.2 Rooted Tree 
Yuan Chen, G. David Poznik, and Yali Xue  

 

Because the “chimpanzee and human Y chromosomes are remarkably divergent”67, we were not 

able to use a non-human outgroup for the full 10.3 Mb under analysis. However, using Enredo 

Pecan/Ortheus (EPO) alignment68 within the Ensembl genome browser69, we identified regions 

where the human and chimpanzee Y chromosomes align one-to-one. Upon restricting to these 

9.58 Mb, we again used RAxML864 to construct a second, rooted, version of the phylogeny, 

which indicates the relative lengths of the roots of A0 and A1 (Supplementary Data File 4b). 
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4.3 Mapping SNVs to the Tree 
G. David Poznik 

 

We mapped each SNV to one or more branches of the inferred topology. Doing so has four 

benefits. First, the number of SNVs mapping to a given branch is an interpretable distance 

measure that we can use to estimate split times (section 4.5). Second, once mapped, each SNV 

becomes a diagnostic marker with which one can classify future samples. Such sequencing-based 

rosters of phylogenetically placed SNVs are particularly valuable for ancient DNA (aDNA) 

studies, in which sequencing coverage can be quite low, such as Schroeder et al.70. Third, we can 

identify the ancestral state for each SNV, and fourth, we can impute missing genotypes. 

4.3.1 Results 
Prior to mapping SNVs to the phylogeny, we partitioned the ML tree into eight overlapping 

subtrees (Supplementary Figure 13). For each subtree, we defined a set of SNVs that were 

variable within it and assigned each site to the internal branch constituting the minimum superset 

of carriers of one allele or the other (Supplementary Data File 5). Let M represent this 

minimum superset. We designated the derived state to the allele that was observed only within M 

and the ancestral state to the other allele. When the dichotomy was clean (i.e., no ancestral alleles 

were observed within M), we deemed the site compatible with the subtree and imputed missing 

genotypes accordingly. Otherwise, for sites incompatible with the subtree, we did not impute 

missing genotypes.  

 

Of the 60,555 sites, 56,714 (93.7%) mapped compatibly to exactly one of the eight subtrees, 

2,518 (4.2%) mapped to two, and 443 (0.7%) mapped to three or more, whereas 880 (1.5%) did 

not map compatibly to any. This set of 880 sites differs substantially from the set of 880 sites 

referred to in section 1.1; the equivalent cardinalities of these two sets is merely coincidental. In 

total, we observed 63,230 mutation events. One thousand fifty-two sites (1.7%) mapped 

incompatibly with one subtree, and 649 (1.1%) mapped incompatibly with two or more subtrees. 

These calculations exclude branches duplicated between subtrees and count each of the 2,487 (2n 

– 1) branches of the full phylogeny exactly once. 

 

Supplementary Figure 14 shows the eight subtrees with each branch length drawn proportional 

to the number of SNVs mapping compatibly. We comment on noteworthy features of this 

observed phylogeny in section 4.4.  

4.3.2 Discussion 

Partitioning the Sample Prior to Tree Construction 

We extracted the subtrees from the total-evidence tree for consistency, but another approach 

would be to leverage preexisting information about the phylogeny and partition the sample based 

on observed haplogroups prior to tree construction. To do so would lead to no information loss 

and would be more computationally efficient. Initially, this was the primary motivation for the 

subtree-based analysis. However, another benefit of mapping SNVs to branches on a subtree-by-

subtree basis is that doing so reduces the probability that any given SNV will be rendered 

incompatible due either to recurrent mutations (i.e., homoplasy) or to genotype error at a 

disparate location in the tree.  
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Inferring Ancestral States 

By including in each subtree a small set of samples that overlapped with neighboring subtrees, 

we polarized ancestral and derived states for all branches but the most basal of the global 

phylogeny; we could not polarize SNVs mapping to the two branches separating hgA0 from the 

rest of the tree, as no outgroup was available for this most ancient split. Due to reversion 

mutations, alleles that are ancestral in one subtree may be derived in another, so we determined 

the globally ancestral allele based on the outermost subtree in which we observed a SNV 

(Supplementary Data File 5). 

Isolate Lineages 

A caveat to our SNV-to-branch mapping procedure is that though it works well for well-balanced 

regions of the tree, where the superposition of lineages elicits high effective coverage on the 

internal branches of the tree, it breaks down in instances where the outgroup of a clade is 

represented by just one or two low-coverage samples. When an outgroup lacks data for a given 

site, the site cannot be assigned to the branch immediately upstream of the outgroup. Instead, 

these sites will be misassigned to the root of the sister clade. Therefore, the lengths of branches 

adjacent to isolate lineages (such as the hgF* individual in Supplementary Figure 14b or the 

hgK2a1* individual in Supplementary Figure 14d) must be interpreted with caution, as must 

ancestral allele imputations in samples from isolated regions of the tree. 

Topology Refinements 

In rapidly diversifying regions of the tree, with few SNPs to support branching events, tree-

inference errors occur. In order to identify and resolve such errors, we manually curated those 

regions of the tree analyzed for signals of growth in chapter 8 and made minor rearrangements to 

local topologies when doing so increased the number of SNVs compatible with the tree. We 

deemed a putative rearrangement permissible if and only if the set of compatible SNPs after the 

arrangement was a proper superset of the set preceding it. Through this effort, we were able to 

place 98 initially incompatible SNPs onto the tree. 

Missingness and In Vitro Mutations 

Due to modest sequencing coverage, data missingness was a principal concern, but the impact on 

our downstream analysis was minimal. Type 2 errors primarily affect low frequency variants, at 

which missing genotypes lead to unobserved singletons and, to a lesser degree, doubletons 

misclassified as singletons and missing doubletons. In contrast, we can accurately infer the 

phylogenetic placement of higher-frequency variants using only those samples with data for any 

given site. We therefore eschewed the use of information from low-frequency variants—those 

corresponding to the tips of the tree—in all our downstream analyses and instead leveraged 

information from internal branches of the tree. 

 

In vitro mutations likewise had little impact on our downstream analyses. These de novo 

mutations are generally unique to a given sample and therefore present as singletons—at the tips 

of the phylogenetic tree. The fact that we observed clusters of nearly identical lineages within, 

for example, haplogroup E1b (Supplementary Figure 14a) indicates that the impact is minimal. 

But because we did not use singleton branch lengths in our downstream analyses due to the 

greater bias from missing data, in vitro mutations did not affect our results. 
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4.4 Features of the Tree 
G. David Poznik, Fernando L. Mendez, and Peter A. Underhill 

 

In this section, we describe the haplogroup distribution of our sample and indicate noteworthy 

features of the phylogenetic tree revealed by the sequencing and analysis undertaken in this work. 

In particular, we highlight novel structures (Supplementary Figure 15) and describe instances 

of short internal branching, a phenomenon whose extreme is a “star-like” phylogeny.  

 

We comment on five star-like phylogenies within: E1b in Africa, R1b and I1 in Europe, R1a in 

South Asia, and Q1a in the Americas. Under a Wright-Fisher model, one expects longer 

branches toward the root of the tree, where there are fewer lineages and, consequently, longer 

coalescence waiting times. Short internal branches and, in particular, star-like phylogenies may 

reflect the breaking of one or both of the Wright-Fisher assumptions of: (a) constant population 

size, which is violated by population growth; or (b) exchangeability, which is violated when 

populations cease exchanging genes (e.g., due to migration). We model haplogroup expansions 

in chapter 8. 

 

We have arranged subsections 4.4.1–4.4.15 in phylogenetic, rather than alphabetic, order 

(Supplementary Figure 13). Of the 20 haplogroups lettered A though T, 16 are terminal 

monophyletic clades. The letters F, K, and P refer to a nested set of megahaplogroups: F is the 

ancestor to haplogroups G, H, I, J, and K; K includes L, T, N, O, M, S, and P; and P is the parent 

of Q and R. Finally, A is paraphyletic, encompassing four distinct clades. At its highest level, the 

known Y-chromosome phylogeny is (A00, (A0, (A1a, (A1b1, BT)))), where hgBT is the 

ancestor to all haplogroups lettered B through T. The overwhelming majority of living men carry 

lineages that descend from this clade. 

 

When appropriate, we compare our tree to those of the seven studies that have previously 

evaluated at least 1 Mb of Y-chromosome sequence in at least 30 individuals (n): Wei et al. 2013 

(8.97 Mb, n = 36)71, Poznik et al. 2013 (9.99 Mb, n = 69)4, Francalacci et al. 2013 (8.97 Mb, n = 

1208)63, Scozzari et al. 2014 (1.5 Mb, n = 68)25, Yan et al. 2014 (3.9 Mb, n = 78)72, Hallast et al. 

2015 (3.7 Mb, n = 448)73, and Karmin et al. 2015 (8.8 Mb, n = 456)74. 

4.4.1 Haplogroups A0 and A1a: Rare African Lineages 
Of the four previous studies to evaluate 8 Mb or more of Y-chromosome sequence, each 

included at least one A1b1 lineage, and one (Karmin et al.74) sequenced two A00 individuals, but 

none had sequenced representatives of A0 or A1a. Though our sample did not include the rare 

A00 haplogroup, a product of the most ancient known split that was first reported in 201375, it 

did include the first two full sequences of hgA0 (Supplementary Figure 14a), which itself arose 

from the second-most ancient known split65. We observed both A0 lineages within individuals of 

West-African ancestry: one Gambian and one African Caribbean from Barbados, and we note a 

deep split between the two. These A0 sequences enabled us to infer ancestral and derived states 

for SNVs that occur within the rest of the tree. The sample also includes the first three full A1a 

sequences, each of which we observed in a Gambian individual. 

4.4.2 Haplogroup B: A Novel Subgroup, B3 
In the extant phylogeny, African haplogroup B bifurcates into the rare B1-M236 and the more 

common B2-M182. Four of the seven Y-chromosome sequencing studies included lineages 
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descending from B2-M1824,25,73,74, and one included B125. We observed seven B lineages: four 

B2 and three (two Mende and one Gambian) that form a distinct clade (Supplementary Figure 

14a). Based on high-coverage capture-sequencing of ~1.5 Mb, Scozzari et al.25 report 23 SNPs 

on the branch leading to B1. Because each of the three individuals in the 1000 Genomes Project 

sample carries exclusively ancestral alleles at each of the 23 sites, we conclude that they are not 

B1. Rather, these lineages constitute a novel subclade, which we provisionally name “B3.” 

 

To define the new topology of haplogroup B, we again use SNPs from25. Of the 33 SNPs they 

report on the branch leading to B2, we observe two in the derived state in each of the three B3 

individuals: M8711 (8,139,185 AG) and M8719 (8,481,949 CG). This sharing indicates that 

B3 split with B2 relatively quickly after their parent lineage split with B1, thus yielding the 

following new topology: (B1, (B2, B3)). 

4.4.3 Haplogroup D: Specific to Japanese Samples 
Haplogroup D was the only major clade with perfect population specificity within our sample. 

We observed each of the 20 D lineages among Japanese individuals (Supplementary Figure 

14a), though the haplogroup is also known to occur in Tibet and Southeast Asia3. 

4.4.4 Haplogroup E: The Predominant Haplogroup of Africa 
Haplogroup E includes three major branches: E1a, E1b, and E2. We observe 20 E1a, exclusively 

among individuals with West-African ancestry, and our sample includes the first five full 

sequences of E2 (Supplementary Figure 14a). 

 

Half of all individuals sequenced belonged to E1b, R1b, or O3, with E1b the single most 

common group, accounting for 24% (n = 298) of the sample. At least 65% of each African 

population were E1b, including 100% (53/53) of the Esan. Within E1b, a deep split separates 

E1b1a-M2 from E1b1b-M35 (Supplementary Figure 14a). All six European E1b were E1b1b-

M35, and, but for two Gambians and four Luhya, all African E1b were E1b1a-M2. In this 

African E1b1a-M2 branch, we observe a large star-like phylogeny, as seen in Poznik et al.4. This 

structure likely reflects rapid growth associated with the Bantu expansion. 

4.4.5 Haplogroup C: Asian Haplogroup with Recently Resolved Internal Structure 
Our sample includes 31 haplogroup-C sequences (Supplementary Figure 14a): four Japanese 

C1-M8; ten C3-M217, of which nine occurred in East-Asian populations; and 17 C5-M356 that 

were exclusive to South Asia, with at least one representative in each of the five populations. The 

structure at the base of haplogroup C was unresolved until recently, with these three major 

subgroups forming a trichotomy. We identified five SNPs for which haplogroups C1-M8 and 

C5-M356 share the derived alleles and for which C3-M217 retains the ancestral allele, 

confirming the topology worked out in Karmin et al.74: ((C1-M8, C5-M356), C3-M217).  

 

The parent of hgC and megahaplogroup F, CF-P143, is another short internal branch. These 

clades share just four SNPs, including the previously known P143. 

 

4.4.6 Paragroup F*: An Isolate Lineage Reveals New Internal Structure, GHIJK 
We observed one lineage, carried by the Vietnamese sample HG02040, that is derived for F-M89 

and most other SNPs shared by the rest of megahaplogroup F. However, the individual carried 
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the ancestral allele for four SNPs present in the derived state in all other hgF representatives. 

These SNPs include M3658 (85,89,031, CT), M3680 (14,237,670, CT), M3684 (14,367,181 

GA), and 14,565,310 CA. The lineage therefore constitutes an outgroup to the rest of the 

clade and is the only one that we classify as belonging to paragroup F*. As haplogroup G was 

the most basal subgroup of F in any of the seven aforementioned studies, this lineage is novel. 

 

This first full sequence of an F* lineage enabled us to define new internal structure of the 

phylogeny. The 4 SNPs for which the lineage retains the ancestral allele define a new internal 

branch of the tree, GHIJK, that is immediately upstream of the one-SNP HIJK branch identified 

by Poznik et al.4 (Supplementary Figure 14b and Supplementary Figure 15). No HG02040 

reads were available for an additional 11 hgF SNPs. Due to low coverage and the isolated 

position of this lineage (please see the caveat in subsection 4.3.2), the greedy algorithm assigned 

these 11 SNPs to the GHIJK branch as well (for a total of 15), but it is unlikely that the F* 

lineage actually retains the ancestral allele at more than one of these additional sites (p = 0.03, 

binomial test), given that it carried the derived allele at 147/151 observed hgF SNPs. 

 

Karmin et al.74 recently noted in the high-coverage sequences of Wong et al.76 the presence of an 

F2 lineage, carried by the Malay sample SSM072, that also lies outside the main GHIJK 

subgroup of F. 

4.4.7 Haplogroup G 
Haplogroup G is relatively rare in the sample, with just 19 lineages, primarily from European 

and northern South-Asian populations, plus one Mende individual clustering most closely with 

an Iberian lineage (Supplementary Figure 14b), which likely resulted from recent gene flow. 

4.4.8 Haplogroup H: Twelve Individuals Define a Novel Subgroup, H0 
Twelve samples, all of South-Asian ancestry, initially appeared to be F*. They possessed derived 

alleles for M89-equivalent SNPs and no downstream ISOGG markers. However, we identified 

24 SNPs shared between these lineages and haplogroup H (Supplementary Figure 14b). 

Therefore, we propose to redefine hgH by one of these 24 SNPs (e.g., M2713, a GA mutation 

at coordinate 6,855,809) (Supplementary Figure 15) rather than M69, which occurs 

downstream. As the group represented by these twelve lineages should be considered a proper 

subgroup of H, we have provisionally labeled this new clade “H0”. Comparing this new clade to 

the two most recently published Y-chromosome sequencing studies, we found that each included 

one representative. Hallast et al. 201573 included an isolate Nepali lineage “nep-0186” and 

Karmin et al. 201574 included an isolate Malayali lineage from Southern India, “16806.” Both of 

these lineages are most closely related to that of our H0 Punjabi sample HG02684. 

 

We observe considerable structure within the poorly characterized haplogroup H1-M52. Just two 

H2-Apt lineages occur within the sample (both Telugu), but a sister clade of three lineages shares 

38 SNPs (Supplementary Figure 14b). 

4.4.9 Haplogroups I and J: Star-Like I1 and European/South-Asian Structure in J2 
We observe haplogroups I1, I2, and J1 across European populations and populations with known 

European admixture, as well as in a single non-European, a Punjabi carrier of J1. Haplogroup J2, 

on the other hand, is evenly split between Europe (27/61) and South Asia (34/61). Lineages 

cluster by superpopulation, but not as two distinct clades. Rather, there are several 



 83 

superpopulation-specific clusters (Supplementary Figure 14c and Supplementary Figure 16). 

In I1, we see a star-like phylogeny that is mirrored in R1b (Supplementary Figure 14e). 

4.4.10 Haplogroups L and T (K1) 
Within megahaplogroup K, the first bifurcation is between K1, also known as “LT”, and K2, also 

known as “K(xLT).” K1, in turn, splits into haplogroups L and T (Supplementary Figure 14d). 

We observed 27 L lineages, with at least two in each South-Asian population and zero elsewhere. 

The eight hgT individuals in our sample occur in European and Admixed-American populations. 

4.4.11 Paragroup K2a1*: An Isolate Lineage Reveals Novel Substructure That 

Informs Reanalysis of Ust’-Ishim and Oase1 
Within haplogroup K2, we observed one Y chromosome that did not fit into the known 

phylogeny. The lineage, carried by Telugu sample HG03742, is derived for the SNPs that define 

megahaplogroup K and for M526, which defines K(xLT), recently renamed K25. Though the 

lineage was ancestral for M214, which defines hgK2a/NO, it shared five derived alleles with the 

NO branch: M2308 (7,690,182 AT), M2313 (8,674,808 CT), M2335 (19,513,070 CT), 

M2339 (21,797,754 TC), and M2346 (23,617,006 GA). Thus, we initially classified it as a 

novel NO* lineage requiring redefinition of hgNO (Supplementary Figure 14d). No such 

lineage occurs in any of the seven prior Y-chromosome sequencing studies, however Karmin et 

al.74 identified the presence of such a lineage, carried by the Malay sample SSM016, within the 

sequences of Wong et al.76. 

Ust’-Ishim, “a 45,000-year-old modern human from western Siberia” 

The Telugu lineage became particularly informative with the publication of the “Genome 

sequence of a 45,000-year-old modern human from western Siberia”13. We checked the “Ust’-

Ishim” K2 lineage reported therein at each of the five sites listed above. The ancient human 

carried the derived T, with 22 reads of support, at M2308 and the ancestral allele at the other four 

sites. Thus, upon redefining K2a with M2308, we classify Ust’-Ishim as K2a*. We then define 

the parent branch of NO to be K2a1-M2313 and classify the isolate Telugu lineage, HG03742, as 

K2a1* (Supplementary Figure 15). 

 

We checked the allele status in both HG03742 and Ust’-Ishim for the five known sites on 

lineages K2c-P261, K2c-P263, K2d-P402, and K2d-P403, and we checked the single-base 

insertion K2e-M147 that has been observed exclusively in two Indian samples77. We observed 

the reference (ancestral) allele at all sites in both individuals. 

Oase1, “an early modern human from Romania with a recent Neanderthal ancestor” 

The new branches that we defined above as ancestral to NO—K2a-M2308 and K2a1-M2313, 

which are united as branch #269 in Supplementary Figure 14d—inform our understanding of 

the Y-chromosome lineage of Oase1, “An early modern human from Romania with a recent 

Neanderthal ancestor”78. Based on ISOGG SNPs alone, the authors could not ascribe the lineage 

to any specific haplogroup of megagroup F, but we have increased granularity by reanalyzing 

these data. 

 

Three Oase1 genotypes overlap with the IJK branch, and all were derived: 7,702,973 (TA), 

7,792,789 (GA), and 21,571,895 (GA). Further, one genotype overlaps with the K branch, 

and Oase1 also carried the derived allele for this SNP: 15,842,844 (GA). Next, Oase1 carried 
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the derived T at the M2308 transversion shared by Ust’-Ishim. Finally, data were available for 

just one of the four K2a1 SNPs, M2346, and Oase1 possessed an ancestral G. Therefore, the 

Oase1 lineage branches from our phylogeny before the Telugu lineage split with NO, but no 

earlier than the emergence of the Ust’-Ishim lineage.  

4.4.12 Haplogroup N: A North-Eurasia Connection 
We observe two principle clades within haplogroup N (Supplementary Figure 14d). Five of 

seven instances of the smaller branch occur in Han Chinese in Beijing. The larger branch, N1, 

itself divides into two distinct clades, one with two members in Asia and the other with 23 

Finnish individuals. Rootsi et al.79 have ascribed this pattern to a hypothesized late Pleistocene–

Holocene migration toward Northwestern Europe from an ancestral East-Asian source. 

4.4.13 Haplogroup O: The Predominant Haplogroup of East Asia 
Haplogroup O is the most common in Asia, and we observed it almost exclusively within East-

Asian populations, with four (of 208) exceptions occurring in Bengali individuals. O2 and O3 

were especially common, with 75 and 114 representatives, respectively. There were at least 

seven O2 and at least ten O3 in each East-Asian population. In contrast to R1a and R1b, there is 

an abundance of relatively deep structure within O2 and O3 (Supplementary Figure 14d). 

4.4.14 Haplogroup Q: The Predominant Haplogroup of the Americas 
Within haplogroup Q, the first bifurcation we observe is between three South-Asian Q1b-L275 

and 42 carriers of Q1a-L472 (Supplementary Figure 14e and Supplementary Figure 17). Q1a 

is an ancestor of Q-L54, the most common indigenous American haplogroup. Each of the 36 

instances of Q-L54 occurs within the Americas. Most also carry the M3 SNP, which is known to 

be present in Siberia and predominant among Native-American paternal lineages80,81. The Q-M3 

subtree exhibits a star-like pattern, which may coincide with the initial colonization of the 

Americas. Subclusters of Q-M3 are population-specific (Supplementary Figure 17), a fact that 

may reflect the halting of gene flow subsequent to the founding of the groups from which these 

modern populations descend. 

 

Interestingly, one Peruvian Q lineage, that of HG01944, does not belong to the Q-L54 subgroup. 

Rather, the lineage clusters most closely with two Vietnamese samples (Supplementary Figure 

17). We hypothesized that this individual carries hgQ not due to Native-American paternal 

inheritance, but rather, due to post-Columbian Asian admixture. Peru has in fact been home to 

Asian immigrant communities since the early 17th century82. 

 

Admixture analysis confirmed this hypothesis. Upon merging 1000 Genomes Affymetrix 6.0 

array genotypes with data from indigenous Americans83 and running the program 

ADMIXTURE84 with K = 4 clusters, we observe the following ancestry proportions across the 

autosomes of HG01944: 51% Native American, 39% East Asian, 9% European, and 1% African. 

 

The distribution of Y chromosomes among Admixed-American populations reflects a 

significantly gender-biased admixture process, wherein Native-American Y chromosomes are 

underrepresented with respect to genome-wide ancestry proportions (Supplementary Table 9). 

In particular, 0 of 54 Puerto Rican men carry an indigenous Y chromosome, despite 13% Native-

American ancestry (binomial p = 0.0005). 
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4.4.15 Haplogroup R: The Predominant Haplogroup of Europe 
We observed 216 instances of hgR1b, the most common haplogroup in Europe. Men from each 

of the European populations, and from each of the Admixed-American and Caribbean 

populations, carried R1b. Within the clade, we observe a massive star-like phylogeny 

(Supplementary Figure 14e), which likely reflects recent rapid growth within Europe.  

 

Haplogroup R1a is also present, though at far lower frequency, in all sampled European 

populations, but we observe R1a primarily among South Asians, with at least ten instances in 

each of the five South-Asian populations. R1a is also star-like (Supplementary Figure 14e). R2 

(n = 29) was specific to, and represented across, South Asia. 

 

4.5 Split Times 
G. David Poznik 

4.5.1 Unsuitability of Terminal Branches 
Low sequencing coverage leads to missing genotypes and to undetected SNVs, which, in turn, 

lead to unreliable branch-length measurements toward the tips of the tree. But the bias for any 

particular branch is not a simple function of the true branch length and its sequencing coverage. 

Rather, it is a complex interaction of these factors along with the true lengths of upstream 

branches and the sequencing coverages of lineages descending from them. 

 

To illustrate, consider the simplest subtree: two lineages, a and b, with one shared branch, c, and 

let the true lengths of the three branches be da, db, and dc, respectively (Supplementary Figure 

18). For the purposes of this example, we make two assumptions: 

1. We detect a SNV if and only if we observe at least two (high-quality) sequencing reads 

between the two samples. 

2. The number of reads observed in an individual at an arbitrary site is Poisson distributed, 

with mean equal to the average sequencing coverage of the individual across all sites, i. 

Finally, let i0, i1, and i2+ be the probabilities of observing zero, one, and two or more reads in 

lineage i, where i  {a, b}. 

 

Under the first assumption, we will fail to detect a singleton whenever we observe fewer than 

two sequencing reads from the one sample possessing it. This leads to an expected shortening of 

observed singleton branch i by an amount di(i0 + i1). Furthermore, we expect to misclassify 

branch-c doubletons as singletons when we observe zero reads in one of the two individuals and 

at least two in the other. This leads to an expected lengthening of branch a by an amount dcb0a2+ 

and of branch b by dca0b2+. Finally, we will miss a doubleton entirely when we observe fewer 

than two reads between the two samples, and we will correctly call doubletons if and only if one 

or more reads are observed in each sample, an event with probability (1 – a0)(1 – b0). Therefore, 

our observations of the lengths of each branch will be biased by an amount i, with: 
 

a = dcb0a2+ – da(a0 + a1), 

b = dca0b2+ – db(b0 + b1), 

c = – dc(a0 + b0 – a0b0). 
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Under the second assumption, with a = 2.5 and b = 5, we have a0b2+ ≈ 0.08 and b0 + b1 ≈ 0.04. 

Therefore, if dc > db/2, then b > 0. That is, we expect to infer more SNVs on branch b than its 

true length, and the number we expect to infer grows linearly with the true length of c. In 

contrast, because b0 is small (~0.007), a ≈ – da(a0 + a1). That is, the number of SNVs we expect 

to infer on branch a is approximately independent of the true lengths of the other branches. 

 

This example illustrates the fact one cannot simply “correct for missing singletons.” Furthermore, 

as the subtree size and complexity grows, it becomes intractable to model the ensemble of 

interactions. Consequently, we cannot use the terminal branch lengths of the full tree to estimate 

the ages of its internal nodes. Instead, we used two alternative approaches to estimate split times, 

and Supplementary Table 10 lists point estimates for the major nodes of the tree. 

4.5.2 Approach 1: Pruning Sample to Higher-Coverage Sequences 
We re-ran all phylogenetic analysis for the three most represented haplogroups: E (n = 323), O (n 

= 208), and R (n = 331). This time, we restricted to sequences with 5 or greater coverage 

(Supplementary Data File 5), a level that reduced singleton missingness rates but left a 

sufficient number of descendants to yield reliable estimates for the important subclades. 

According to the assumptions outlined in subsection 4.5.1, singleton missingness at 5 should 

be under 5%. For each node of interest, we calculated the mean tip-to-root height of the subclade 

defined by that node and scaled by the mutation period (subsection 4.5.4) to estimate the split 

time. 

4.5.3 Approach 2: Traversing Internal Branches 
For the less represented haplogroups, we instead used exclusively internal branches. Branches in 

the interior of the tree have high sequencing coverage, as we effectively sequence an internal 

branch each time we sequence an individual who descends from it4. Consequently, we expect 

little bias, and we can avoid the complications of low-coverage sequencing by traversing internal 

branches to estimate split times.  

 

Supplementary Figure 19 outlines a procedure to estimate a split time by measuring the height 

of a node to be dated, relative to a reference node with a known age. First, we measure the SNV-

count distance, dra, from a reference node, r, to the most recent common ancestor, a, of r and the 

node to be dated, n. Then, we subtract from dra the distance between a and n, dan, and convert the 

resulting height difference, drn, to an age difference by multiplying by an estimate of the 

mutation period, -1. With tr representing the known age of the reference node, we estimate the 

age of n, Tn, as: 
 

Tn = drn-1 + tr. 

4.5.4 Mutation Rate 
To calibrate, we used the Y-chromosome mutation rate estimate of Fu et al. Based on their 

sequence analysis of the 45,000-year-old Ust’-Ishim sample, they estimated 0.76 × 10–9 SNV 

mutations per bp per year13. Given that there are approximately 10 million callable positions 

within the 10.3-Mb region we analyzed4, this estimate corresponds to a mutation period of 

~131.6 years per SNV (0.76 × 10–9 SNVs per bp per year × 107 positions)-1. 
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The Fu et al. estimate is a bit lower than that of Helgason et al.14. Using 274 Icelandic patrilines, 

Helgason et al. estimated 0.888 × 10–9 per bp per year for X-degenerate sequence. It is important 

to note that, due to uncertainties in the age of the Ust’-Ishim fossil and other factors, the 

pedigree-based estimate is more precise. However, it may be less applicable to estimating deep 

split times, as it averages over a far more recent time-scale, and it is unclear how close the rate of 

spontaneous mutations is to the rate of accumulation of mutations over evolutionary time periods. 

In light of proposals that the mutation rate per year has changed over the course of Hominidae 

evolution85,86, we chose to use an estimate that incorporates information from deeper history, 

with the goal of minimizing bias, albeit with greater estimation variance. For comparison, we 

include in Supplementary Table 10 split-time point estimates implied by both mutation rate 

estimates. 

 

We chose the Q-M3 clade (node 319 of Supplementary Figure 14e) as the reference point for 

the traversal-based split-time estimation outlined in subsection 4.5.3. Therefore, to set tr, we had 

to estimate the TMRCA of Q-M3. To do so, we restricted to the four sequences with at least 7× 

coverage, yielding predicted singleton missingness below 1%. These lineages (HG01974, 

HG01977, HG01979, and HG01967) descend independently from Q-M3 and have accumulated 

118, 117, 109, and 111 SNVs, respectively, with a sample mean of 113.75. Scaling by the 

mutation period estimate yields an estimated TMRCA equal to 15.0 ky (113.75 SNVs × 0.1316 ky 

per SNV).  

 

This estimate, 15.0 ky for the TMRCA of Q-M3, provides a good sanity check for the mutation rate 

estimate we have chosen to use. Our sample includes 34 Native Americans within this clade. 

Together, they form a star-like phylogeny (Supplementary Figure 14e and Supplementary 

Figure 17) that strongly suggests coincidence with the time of initial human expansion into the 

Americas, a time that several well-dated archaeological sites87–89 indicate most likely occurred 

~15 kya87.  

 

Fifteen SNPs separate Q-M3 from its sister clade that also descends from Q-L54. Setting drn = 15 

SNPs, -1 = 0.1316 ky per SNP, and tr = 15 ky yields an estimated Q-L54 split time of 16.9 ky. 

This value is identical to the point estimate based on a transversions-only analysis of the genome 

of a Late Pleistocene human from a Clovis burial site90, providing another sanity check. In prior 

work4, we argued that the Q-L54 split was roughly coincident with the peopling of the Americas, 

but the larger sample herein has enabled us to improve upon this approximation.  
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5 Functional Annotation 
Qasim Ayub, Yuan Chen, Graham Ritchie, Yali Xue, and Chris Tyler-Smith 

 

We used Ensembl’s Variant Effect Predictor (VEP)53 to functionally annotate 60,555 single 

nucleotide variants (SNVs). Single annotations were obtained for 49,311 variants, whereas 

11,244 variants had two or more associated functional annotations. The 14 annotation 

consequences observed in this dataset were ranked into three categories on the basis of the 

severity of their expected effect. For each variant with multiple annotations, only the most severe 

effect was considered (Supplementary Table 11). 

 

As expected, the vast majority of the variants were either intergenic or intronic, with no 

functional effect, and only 159 were coding, two of which cause a severe loss of function 

(Supplementary Figure 20). Rare variants, described here as singletons or doubletons, were 

significantly enriched in functional annotation categories with severe, moderate or mild effects 

(Supplementary Table 12) (p = 0.0001, Fisher’s exact test). 

 

We also examined Combined Annotation-Dependent Depletion (CADD) scores (C-scores), 

which indicate the deleteriousness of SNVs6 (Supplementary Figure 21). We downloaded C-

scores91 and interrogated the variants using custom scripts. Unexpectedly, when using a scaled 

C-score cut-off of 10 to include SNVs with the highest 10% of C-scores genome-wide, we do not 

observe an overall enrichment for rare deleterious variants (p = 0.91, Fisher’s exact test) 

(Supplementary Table 13). This can be attributed to difficulties in Y assembly and alignment 

and a lack of power for conservation scores on the Y chromosome, as this chromosome has not 

been sequenced in many species. In addition, there is sparse ENCODE regulatory data for the Y 

chromosome. 

 

The stop-gain variants were present as singletons in two males, one affecting AMELY in 

haplogroup R2 and the other USP9Y in an N1 individual. Approximately one third of the 98 

missense variants were identified as “deleterious” by SIFT7 or “possibly/probably damaging” by 

PolyPhen8 (Supplementary Figure 22, Supplementary Data File 6). Rare deleterious missense 

variants (singleton or doubleton non-ref allele counts) were significantly enriched on the Y 

chromosome. Comparison of 94/98 missense variants annotated by all three methods (CADD, 

PolyPhen, and SIFT) shows a significant enrichment for rare variants designated as “deleterious” 

by SIFT (p = 0.001, Fisher’s exact test) or with scaled C-scores greater than or equal to 10 (p = 

0.036, Fisher’s exact test), but not for rare variants annotated as “probably/possibly damaging” 

by PolyPhen (p = 0.099, Fisher’s exact test) (Supplementary Table 14). 

 

Eight of the 11 variants that affect transcription factor binding are predicted to disrupt the motif 

for the transcriptional repressor CCCTC-binding factor, CTCF, a zinc finger protein. There is an 

equal proportion of variants that enhance and destroy CTCF motifs (Supplementary Figure 23). 

The remainder change motifs for HNF4A in 5 males and change motifs for REST and GABPA in 

two separate individuals, but these are not predicted to disrupt binding. 
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6 Mitochondrial DNA 
Maria Cerezo, G. David Poznik, Apurva Narechania, Shane A. McCarthy, Yali Xue, and Chris 

Tyler-Smith 

6.1 Phylogenetic Analysis 
 

To analyze the mitochondrial genomes (mtDNA) of the 1,244 males, we used the 1000 Genomes 

Project phase 3 SAMtools17 callset (subsection 9.2.3). Coverage was high, ranging from 42 to 

11,834, with a median of 2,115 and a mean of 2,135.  

 

We excluded deletions, generated a FASTA file using VCFtools23, and aligned the sequences to 

the revised Cambridge Reference Sequence (rCRS) using MEGA61. As recommended by 

PhyloTree v.1692, we did not use the following variants for phylogenetic reconstruction due of 

their rapid mutation rates: 309.1C(C) (an insertion of one or two cytosines after coordinate 309), 

315.1C, AC indels at 515–522, 16182C, 16183C, 16193.1C(C), and 16519. We re-assigned 

heterozygous genotype calls to the more likely of the two nucleotides according to the PhyloTree 

phylogeny. We then manually added deletions identified in the Boston College callset 

(subsection 9.2.3), as they were more consistent with known phylogenetic placements than those 

of the SAMtools callset. 

 

We assigned haplogroups to each sample with HaploGrep93, inferred the mtDNA phylogeny 

using RAxML64, and plotted the tree using FigTree2, manually rotating internal nodes to conform 

to the canonical representation (Supplementary Data File 7).  

 

6.2 Heteroplasmy 
 

As the mean autosomal coverage was ~7, mismapping nuclear mitochondrial DNAs (NUMTs), 

if present, could have contributed at most a very low proportion of reads. To yield a conservative 

but reliable set of heteroplasmy calls, we thresholded the proportion of reads supporting a 

heteroplasmy at 10%. Especially in light of the mapping quality threshold of -C50, this 10% 

cutoff should be sufficient to exclude possible NUMT contamination for all samples, with the 

possible exception of the one with the lowest mtDNA coverage (42), HG03478. We checked 

this sample and did not observe any overrepresentation. 

 

Using the 10% threshold, we observed 0 to 34 heteroplasmic sites per sample. Some may 

represent genuine heteroplasmy, and others may indicate the presence of contamination at levels 

not detected by the Project’s standard QC. More than half of the samples (n = 758, 61%) had no 

heteroplasmy; 305, 108, and 49 individuals had 1, 2, or 3 heteroplasmic sites, respectively. We 

identified 24 samples with at least four heteroplasmic sites (Supplementary Table 15), 

including two with unusually high counts of 22 and 34. These outlying values could suggest 

sample contamination, but we did not find evidence for contamination in the corresponding 

autosomal data. Another possible explanation is cell culture mutation. Since others have 

extensively studied mtDNA heteroplasmy in different tissues (e.g. Hughes et al.94), and most of 

our samples are from cell lines, we deemed the biology of these heteroplasmies of limited 

novelty and interest, so we did not investigate further. 
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7 Diversity 
Melissa A. Wilson Sayres, Yuan Chen, and Yali Xue 

 

To compare diversity of the mitochondrial genome (mtDNA) to that of the Y chromosome, we 

used 141 high-coverage sequences generated with Complete Genomics technology. We observed 

fairly high ratios of mtDNA diversity to autosomal diversity, with values ranging from ~0.26 to 

0.69 (Supplementary Figure 24a). In most populations, the observed ratio was much higher 

than 0.25, the expectation under a neutral model with equal variance in male and female 

reproductive success. In contrast, on the Y chromosome, we observed ratios that were much 

lower than the expected 0.25. Similar to previous estimates10, values ranged from 0.011 to 0.083 

(Supplementary Figure 24b). 

 

We tested a series of models of a recent male bottleneck that may be able to explain low Y 

diversity relative to autosomes, high mtDNA diversity relative to autosomes, and only a slight 

increase in X-chromosome versus autosomal diversity95. In these models, we also considered 

their effect on absolute diversity across the autosomes, for which previous demographic models 

have been built11,12. In brief, we explore whether there is a scenario of recent and severe male 

bottlenecks that does not also dramatically reduce diversity on the autosomes, and so will be 

consistent with patterns of diversity across all genomic regions. 

 

7.1 Demographic Model 
 

For African and European demographic histories, we assume population-specific models that 

have been described in detail elsewhere11,12. We added to these models a male-specific 

bottleneck occurring 4,500 years ago (Supplementary Figure 25). The effect of a bottleneck on 

genetic diversity depends on the ratio of the bottleneck’s duration (length) to the effective 

number of individuals within it (strength), so it is difficult to disentangle the exact values of the 

length and strength of a bottleneck11. In this set of simulations, we set the bottleneck to last for a 

number of generations equal to the number of males in the bottleneck. This fixed ratio is 

expected to reduce Y chromosome diversity to a level that is independent of the specific value of 

the length and strength. However, because the Y chromosome does not evolve independently of 

the autosomes and X chromosome, we can vary the absolute strength (and length) to attempt to 

explain the reduction in Y-chromosome diversity in the context of observed diversity across the 

rest of the genome. In each demographic model, we reduced the effective number of males, from 

the modern estimate to a small number and then returned it to the modern estimate. We 

simulated a bottleneck of size 100 Y chromosomes for 100 generations, and repeated for 50, 10, 

and an extreme value of 1 Y chromosome for 1 generation.  

 

7.2 Effective Population Size 
 

We assessed these different bottlenecks under various assumptions about the long-term effective 

numbers of males, Nm, and females, Nf. We computed each quantity assuming the effective 

population size of the autosomes, NA, remains constant for a given set of population-specific 

parameters, regardless of the skew in Nm and Nf. Imposing this constraint preserves the fit of the 



 91 

population-specific demographic models that were derived from autosomal data. We do not 

apply this assumption at the male bottleneck, for which we allow a reduction in Nm and observe 

that reduction’s effect on the diversity of the autosomes, X, Y, and mtDNA. 

 

We fix NA because reducing Nm without increasing Nf leads to a severe reduction in NA that is 

inconsistent with empirical observations. In previous analyses, the effects on X-, Y-, and mtDNA 

diversity were qualitatively the same when reducing Nm and keeping Nf fixed, allowing NA to 

bottom out10. Our primary interests here are the ratios of NA to the effective population sizes of 

the other chromosome types: NchrX, NchrY, and NmtDNA. These ratios change equally with 

variations in Nm/Nf, whether or not NA is fixed, but fixing NA allows us to investigate the 

variations in NchrX, NchrY, and NmtDNA while maintaining a reasonable approximation of NA. 

 

For given male and female effective population sizes, the effective population sizes for each 

chromosome type are96:  

 

      NA = 4NmNf / (Nm + Nf) 

   NchrX = 9NmNf / (4Nm + 2Nf) 

   NchrY = Nm /2 

NmtDNA = Nf /2. 

 

For a fixed ratio of males to females (R = Nm/Nf) and a fixed total effective population size, NA = 

4NmNf / (Nm + Nf), we can write the male and female effective population sizes as: 

 

Nf = NA (1 + R-1) / 4 

Nm = Nf  R. 

 

Using these equations, we used standard neutral coalescent simulations implemented in the 

program ms97 to simulate data for the four chromosome types while varying R, but keeping NA 

constant. We keep NA constant to mimic the real data, as the demographic parameters were 

originally estimated from autosomal markers.  

 

7.3 Mutation Rates 
 

In Supplementary Table 16, we list mutation rates per bp per generation for the autosomes, Y 

chromosome, and mtDNA. Assuming a generation time of 30 years, the Y-chromosome 

mutation rate of 0.76 × 10–9 mutations per bp per year equates to 2.3 × 10–8 mutations per bp per 

year. There is not yet a whole-genome pedigree estimate of the X-chromosome mutation rate, but 

if mutations are primarily due to errors occurring during replication, then mutation rates on each 

of the chromosomes are expected to vary with respect to the time spent in the male and female 

germlines: 

 

μA = ½ μm + ½ μf 

μX = ⅓ μm + ⅔ μf 

μY = μm 
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Thus, we use estimates of the autosomal and Y-chromosome mutation rates and assumptions 

about time spent in the male and female germlines to estimate the mutation rate on the X 

chromosome. To estimate μf, we rearrange the first equation above and substitute values for μA 

and for μY = μm: 

 

μf = 2 μA – μm = 2 μA – μY 

    = 2  1.3  10–8 – 2.3  10–8 

    = 0.3  10–8 mutations per bp per generation. 

 

We then use this value to estimate the mutation rate on the X chromosome: 

 

μX = ⅓ μm + ⅔ μf 

     = ⅓ (2.3  10–8) + ⅔ (0.3  10–8) 

     = 0.97  10–8 mutations per bp per generation. 

 

7.4 Results and Discussion 
 

Modeling variance in male reproductive success, with an assumption of growth in African 

populations and a bottleneck in European populations, shows that an extreme variance in male 

reproductive success can lead to high diversity on the mtDNA relative to the autosomes, 

increased diversity on the X chromosome, and reduced diversity on the Y10. But this long-term 

reduction in Nm relative to Nf is not sufficient to explain observed levels. However, a recent and 

extreme bottleneck in the male lineage can further reduce diversity on the Y chromosome 

relative to the autosomes under all models of variance in male reproductive success 

(Supplementary Figure 26). Some of the models that combine high variance in male 

reproductive success and a recent extreme male bottleneck are consistent with observed levels of 

diversity, relative to the autosome, on the X, Y, and mtDNA. Specifically, models assuming 

Nm/Nf equal to 0.5 or 0.25, for a bottleneck of 50 males, starting 150 generations ago and lasting 

for 50 generations yielded reasonable values (Supplementary Figure 27). 

 

One concern is that reducing the effective number of males will not only affect relative levels of 

diversity on the X, Y, and mtDNA versus the autosomes but will also reduce the absolute level 

of diversity on the autosomes. We show that bottlenecks of 1 or 10 males reduce absolute levels 

of diversity on the autosomes to those much lower than observed, but bottlenecks in the male 

lineage of 50 males for 50 generations or 100 males for 100 generations are not expected to 

severely reduce autosomal diversity (Supplementary Figure 28). 
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8 Haplogroup Expansion 
Fernando L. Mendez and G. David Poznik 

 

In section 4.4, we noted several haplogroups that appear to have diversified rapidly at some 

point in the past (Supplementary Figure 14). To gain insight into these events, we developed a 

model with two phases of exponential growth, the first of which corresponds with the rapid 

diversification. This phase could represent either a period in which the haplogroup became 

common within a population or a period of rapid population growth, which may have been 

driven by a technological or cultural innovation, social selection, or by the opportunity to expand 

into a previously uninhabited region. These driving factors may or may not be shared by other 

lineages. Because such phenomena and their abilities to drive rapid growth are necessarily 

transitory, we model a second phase of more moderate population growth between the period of 

rapid growth and a time for which reasonable estimates of historical population sizes exist. 

 

We investigated growth within 10 haplogroups, representing each of the five superpopulations. 

These included: E1b in Africa; I1 and R1b in Europe; H1, L1, R1a, and R2 in South Asia; O2b 

and O3 in East Asia; and Q1a in the Americas. Supplementary Table 17 describes properties of 

the nodes in which we observed growth. We did not observe clear signals of growth in our 

analysis of I1 or R2; we had greatest power in haplogroups E1b, R1a, and R1b, as the nodes 

suggesting rapid growth in these groups left the greatest number of descendants in our sample. 

 

8.1 Inference Framework 

8.1.1 Two-Phase Growth Model 
We partition the time since the onset of growth into three intervals (Supplementary Figure 29): 

two phases that we model explicitly, followed by the most recent period leading to the present, 

which we do not model, primarily because very recent growth rates are known to be distinctly 

greater than those of the past.  

 

Let Tj and Nj be the duration of phase j and the effective number of carriers of the haplogroup at 

its conclusion. We define the first phase to coincide with an apparent rapid haplogroup 

expansion, and our primary objective is to infer maximum likelihood values of T1 and N1, from 

which we can compute the growth rate, 1, the mean number of sons per man per generation. The 

role of the second phase is to link the period of rapid expansion to the earliest time for which 

reasonable estimates exist for the size of the relevant population; the quantities N2 and T3 are 

fixed constraints in our model. 

 

We conduct maximum-likelihood inference over a grid of (T1, N1) points. Since N2 is fixed, for 

each (T1, N1), we need one additional parameter, T2, in order to specify the full demographic 

model for simulations of two-phase growth. We can estimate T2 using the TMRCA of the node of 

interest, a third fixed constraint. Because it is generally the case that the MRCA of a modern 

sample would have had closely related contemporaries who experienced the same growth context 

but who have no living male-line descendants, the first growth phase typically begins prior to the 

TMRCA of the subtree under investigation. It is therefore convenient to partition the first phase: 
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with Tc equal to the mean coalescence time of lineages sampled at the end of phase 1 and Tb 

representing the mean time during which growth occurred prior to the MRCA. We then have: 
 

 
 

With T3 and TMRCA fixed constraints, an estimate of Tc leads directly to an estimate of T2. 

 

Each (T1, N1) point corresponds to a single 1: 
 

 
 

with N0 = 1, the founder. To estimate Tc and, thereby, T2 for a given (T1, N1), we ran 10,000 ms 

coalescent simulations97 with a growth rate of 1 and a sample size of 20 chromosomes; the 

sample size has little influence on the mean coalescence time, except when growth rates are very 

low. With T2 and N2 in hand, we have 2 and could therefore simulate two-phase growth to 

construct a reference distribution of site frequency spectra (SFS) against which to compare the 

observed data. 

8.1.2 Reference Distribution of Site Frequency Spectra  
For each phylogenetic node of interest, we analyzed a sequence of pruned subtrees, defining each 

by a fixed root-to-tip height (number of SNPs) and pruning away all branches whose origins are 

greater than this number of SNPs downstream of the subtree root (Supplementary Figure 29). 

We consider heights (h) ranging from as few as 3 to as many 12 SNPs. Each height corresponds 

to a “sampling” time, with the age of the subtree at the time of sampling given by: 
 

 
 

where -1, the inverse of the mutation rate, is the mutation period—the number of generations 

represented by each SNP. 

 

There are two important advantages to confining our attention to these internal regions of the tree. 

First, doing so reduces the impact of missing data, especially unobserved singletons, as internal 

braches have high coverage. Second, it reduces the effect on the genealogy of recent population 

structure and regional expansions, as the pruned subtrees are largely agnostic to recent 

phenomena. 

 

We assembled a reference distribution of site frequency spectra for each point of a three-

dimensional lattice of (T1, N1, Ts) values, allowing T1 to range from 1 to 48 generations and 

distributing 32 N1 values in a geometric progression between 13.6 and 200,000 individuals, with 

each value approximately 36% greater than the previous. With up to ten possible Ts values, the 

lattice contained up to 15,360 (483210) points, and for each, we conducted 16,384 (214) ms 

simulations of two-phase growth, fixing the number of lineages equal to that of the pruned 

observed tree (Supplementary Table 18). 

 

For a point on the lattice, Ts may or may not exceed the corresponding Tc. When it does, we 

simulate phase-1 growth, with rate 1, to last T1 generations and phase-2 growth to endure from 

end of phase 1 to the time of sampling: (Ts – Tc) generations. When Ts < Tc, sampling occurs 
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prior to the end of phase 1. In this case, we simulate growth at rate 1 lasting for (Tb + Ts) 

generations and do not simulate the second phase of growth.  

 

When the coalescence time of the simulated tree differed from Ts by more than one generation, 

we rejected the simulation and repeated. Doing so ensures that the reference distribution of SFS 

is consistent with the model specification. The rejection rate was low because the coalescence 

time of an exponentially growing population has a small variance. 

 

We computed the SFS for each simulation, adjusting the number of singletons to achieve 

uniform root-to-tip height among lineages, in accord with the pruned subtrees. We use this 

summary statistic for likelihood-based inference. For each level of the lattice (i.e., for each Ts 

value), we infer joint confidence intervals for T1 and N1 by comparing the frequency spectrum of 

the observed pruned subtree to the reference distribution of spectra obtained from the simulated 

genealogies.  

8.1.3 Distance Measure for Site Frequency Spectra 
We defined a distance measure to compare the frequency spectrum of a pruned observed tree to 

those of the genealogies simulated with the same number of lineages and number of SNPs per 

lineage. For spectra f and g, each of length (n – 1), we compute a vector of differences, 
 

 
 

and a vector of reverse-cumulative differences, wf,g, with: 
 

 
 

We then define the distance between f and g as the L1 norm of the truncated vector 

 
 

 
 

This function has the desirable property that it is small for pairs of spectra with similar 

frequencies. As a consequence, it is robust to minor differences in genealogies that may arise 

from the random sampling of lineages. 

 

The distance function does not consider singletons because the singleton counts are constrained 

both in the observed subtree and in the simulations; we pruned the observed subtrees such that 

the number of SNPs is the same for all lineages, and we adjusted the number of singletons in the 

simulations to conform to this constraint. 
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It is clear that d is non-negative and symmetric and that d(f, g) = 0 if and only if f = g. To 

demonstrate that d obeys the triangle inequality and is therefore a proper distance measure, we 

note that: 
 

 
 

and that: 
 

 
 

Therefore, 
 

 

8.1.4 Inference 
Consider a single sampling height corresponding to one level of the three-dimensional parameter 

lattice. Using the SFS as a summary statistic, we could approximate the likelihood of a particular 

(T1, N1) point of the grid by calculating the proportion of simulations that yield spectra identical 

to that of the observed tree (i.e., d(simulated, observed) = 0). For robustness to noise, and for 

computational tractability, we instead deem the SFS of a simulated genealogy to “match” that of 

the observed genealogy if the distance between them was within the lowermost 0.5% tail of the 

~25 million distances computed over the grid—16,384 simulations at each of 1,536 (4832) grid 

points. We estimate the likelihood of a (T1, N1) pair as the fraction of simulations whose SFS 

“matched” that of the observed tree according to this definition. We then plot joint confidence 

bounds and marginalize, using the likelihood ratio criterion with one degree of freedom to 

estimate confidence bounds independently for T1, N1, and  . When our estimate of   is 

significantly greater than the haplogroup’s average growth rate over the first two phases, we 

reject the null hypothesis of single-phase growth,   = 2. 

 

We defined 95% confidence intervals based on the asymptotic likelihood ratio criterion 

(Supplementary Figure 30), but a number of assumptions and approximations could potentially 

impact our inference. These include constraining the root-to-tip heights of trees and conditioning 

simulations on TMRCA. To test whether our inference procedure yields appropriate coverage 

probabilities, we simulated 900 trees for each of 12 sets of T1, N1, and n values corresponding to 

inferred expansions. We then filtered the simulations to those for which the number of branches 

at a representative sampling time equaled the number in the corresponding real data. We then 

conducted inference as described above. Among the 101 simulations that remained, the inferred 

95% confidence interval contained the true growth rate 93 times (Supplementary Data File 8a), 
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giving an estimated coverage probability of 92% (95% CI: 85–97%). In each of the 8 instances 

in which the true growth rate was falsely rejected, it lay slightly below the CI lower bound. 

8.1.5 Considerations 
In this subsection, we discuss five factors that influence analysis: the height of a pruned subtree, 

the assumption that growth predates the MRCA, sensitivity to SNPs incompatible with the tree, 

sensitivity to the mutation rate parameter, and estimation of and sensitivity to N2. 

 

First, inference for a given node may vary with the height of the pruned subtree. Although taller 

subtrees may contain more branches and therefore have greater power, they are also more likely 

to bear the influence of population structure. For instance, within node 71 of E1b, subtrees of 

heights greater than 10 contain branches specific to each of three populations: YRI, ACB, and 

LWK. Consequently, we determined the tree heights appropriate for analysis on a case-by-case 

basis.  

 

A second consideration is that our model assumes that the onset of growth predated the MRCA. 

However, under this assumption, we may falsely detect a signal of growth in a node that predates 

the onset of expansion, but which has descendants that experienced growth, as similar patterns of 

genetic diversity could emerge from the two scenarios. R1a node 206 serves as an illustrative 

example. Of the two branches descending from this node, one leads to a subtree, rooted at node 

204, with 22 representatives, and the other is a single lineage carried by HG03911 alone (branch 

205). Since branch 204 is short, with just 2 SNPs, the subtrees rooted at 204 and 206 yield highly 

similar growth inferences. However, if the lineage defined by node 206 had been growing 

exponentially, it is unlikely that we would have observed such an extreme asymmetry in its 

descendants. Rather, it is more likely that growth commenced after the time of node 206 but 

within the subsequent interval during which our inference method is sensitive to growth. 

 

Third, inference may be sensitive to the presence of common SNPs not correctly assigned to the 

appropriate internal branches of the phylogeny. Misassignment can occur due to recurrent or 

reversion mutations, genotyping errors, or incorrect reconstruction of the tree topology. We 

minimized tree reconstruction error through manual curation of the phylogeny (section 4.3). 

 

Fourth, growth-rate estimates depend on the mutation-rate parameter, which influences both the 

coalescent simulations and the estimated TMRCA. An under- or over-estimate of  would lead to a 

corresponding under- or over-estimate of the growth rate.  

 

Finally, our model requires estimates of the number of carriers of each haplogroup at some point 

prior to the onset of the extraordinary recent growth experienced across the world. To estimate 

N2 for a given haplogroup, we used rough population-size estimates from the literature and 

scaled to account for the frequency of the haplogroup within the population. We also scaled by a 

factor of one-fifth to account for the facts that males generally represent approximately half of 

the population and that most males do not contribute to the Y-chromosome pool and effective 

population size.  

 

N2 estimates affect inference of 2. However, the degree of influence is mitigated by the fact that 

one or both of N1 and T2 are generally large. When N1 is large, phase 2 is marked by a low 
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coalescence rate, leading to trees that are largely independent of N2, and when T2 is large, large 

errors in N2 correspond to small errors of 2. 

 

For subgroups of E1b1a, we used an estimated sub-Saharan African population of ~11 million by 

1 A.D.98 (cited in Durand et al.99). Of these ~11 million individuals, we estimate that ~30% lived 

in the area containing modern-day Nigeria and Sierra Leone, the most likely origin of the 

branches analyzed. For haplogroups R1b and I1, we use Beloch’s estimate of 23 million 

individuals living in the European portion of the Roman Empire by 1 A.D.100 (cited in Durand et 

al.99), and for haplogroups R1a, H1, L1 and R2 in South Asia, we use the 1880 census size of 

~255 million101. For haplogroup O3 in East Asia, we used a figure of ~60 million individuals, 

based on a Chinese census of 2 A.D.102. For haplogroup O2b in Japan, we used an estimate of ~5 

million individuals in the year 800 A.D.103, and for haplogroup Q1a, we used a figure of 6 

million individuals, the geometric mean of the upper and lower estimates cited in Snow et al.104.  

 

8.2 Results 
 

For each node, we analyzed up to ten sampling heights, and we summarize results by combining 

confidence intervals across these analyses (Supplementary Table 19). We have plotted 

likelihood contours for a subset of E1b, R1b, and R1a nodes in Supplementary Figure 31 and 

for all nodes in Supplementary Data File 8b. 

8.2.1 Africa 

Haplogroup E1b 

Within African haplogroup E1b (Supplementary Figure 14a), we observed signals of expansion 

in nodes 71, 95 and 384 (Supplementary Figure 31a). Node 95 exhibits levels of growth of 

between 22% and 143% per generation for subtrees of height 8 or greater. An important 

component of this signal is due to very rapid growth in a descendant, node 71, whose growth 

exceeds 40% per generation. Subtrees rooted at node 384 and of height 8 or greater also exhibit a 

signal of growth, with rates ranging from 20% to 70% per generation. We inferred similar 

growth parameters for nodes 95 and 384, and the two have very similar estimated ages of about 

5,000 years, so both may reflect the same event (Supplementary Table 19). There is no clear 

signal of growth in the much older node 388, for which the model may be a poor fit.  

8.2.2 Europe 

Haplogroup R1b 

We observed evidence of growth in each of the six European R1b nodes (Supplementary 

Figure 14e) that we analyzed: 189, 276, 343, 347, 357, and 417 (Supplementary Figure 31b). 

We inferred the growth rate of the subtree rooted at 347 to be 19% to 670% per generation, but 

because this node differs from node 343 only by its inclusion of two additional samples 

(HG02014 and HG00243), the growth we observed in 347 may be entirely due to that of 343. As 

was the case for node 71 of haplogroup E1b, the duration of phase 1 was small, and the growth 

rate was large.  
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Haplogroup I1 

In haplogroup I1 (Supplementary Figure 14c), we observed frequency spectra consistent with a 

single phase of growth. This may be due to the fact that our approach has reduced power to 

detect low growth rates, especially with small samples. In addition, our inference for this 

haplogroup may be more sensitive to assumed values of N2 and the TMRCA, given its recent age.  

8.2.3 South Asia 

Haplogroup R1a 

In the South Asian portion of haplogroup R1a (Supplementary Figure 14e), nodes 161 and 204 

both exhibit signals of growth, with rates ranging from 20% to 90% and 34% to 345% per 

generation, respectively (Supplementary Figure 31c and Supplementary Table 19). Upon 

combining information across sampling heights, we can reject values of T1 below 10 generations 

for each node, and in both cases, the upper bounds of the T1 confidence intervals were outside 

the explored range. In both subtrees, we infer that N1 exceeded 300 and may have attained a 

value on the order of 105. 

 

The R1a subtree rooted at node 206 includes the subtree rooted at node 204 plus one additional 

lineage. Since branch 204 is short, with just 2 SNPs, the two subtrees yield highly similar growth 

inferences. Similarly, with large sampling heights, we recover a signal of growth for the subtree 

rooted at node 213, which includes both subtrees 161 and 206, each of which have short roots. 

The tree rooted at node 214 is not exclusive to South Asia. 

Haplogroup H1 

We observed evidence of growth in the subtrees rooted at nodes 66 and 94 of haplogroup H1 

(Supplementary Figure 14b). The observed signal was relatively weak in the node-66 subtree; 

at ~10%, it was barely enough to reject a single phase. However, the tree associated with node 94 

exhibits a much stronger signal of at least 55%, with an N1 of at least 220. We did not observe a 

signal of growth in the subtrees rooted at nodes 95, 97, 98 or 99. 

Haplogroup L1 

As for haplogroup I1, we observed a relatively weak signal of growth in L1 (Supplementary 

Figure 14d). We did not reject single-phase growth, however we had reduced power due to 

small sample size. 

Haplogroup R2 

Again, we cannot reject a single phase of growth for haplogroup R2 (Supplementary Figure 

14e), which has an older TMRCA and a lower estimated average growth rate than L1. 

8.2.4 East Asia 

Haplogroup O2b 

We observe a phase-1 growth rate of at least 17% within the branch-160 subtree of haplogroup 

O2b (Supplementary Figure 14d), a lineage restricted to Japan. This rate is sufficiently great to 

reject single-phase growth. 
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Haplogroups O3 

The subhaplogroup of O3 defined by node 225 (Supplementary Figure 14d) exhibits evidence 

of growth in East Asia, with a rate of at least 22% per generation.  

8.2.5 The Americas 

Haplogroup Q1a 

Haplogroup Q1a is associated with Native-American populations (section 4.1). In particular, 

branch 319 (Supplementary Figure 14e), marked by the M3 mutation, occurs exclusively in the 

Americas and Siberia105. We observed rapid growth of at least 40% per generation in this subtree, 

and we can definitively reject a single phase of growth. The period of rapid growth appears to 

have been relatively brief; trees with more recent “sampling” times point to a T1 of fewer than 20 

generations. However, population clustering within our sample suggests that the assumption of 

no population structure may not be valid for the full duration of the first phase. Unfortunately, 

trees based on more ancient sampling times have reduced power to detect the transition between 

the two phases of growth. 

 

8.3 Conclusions 
 

Our haplogroup expansion analyses led to three key observations. First, we note that several 

haplogroups experienced growth consistent with two exponential phases. This finding lends 

insight into the causes of these expansions, as it implies that the driving processes changed over 

time. Haplogroup-specific expansion could in principle be driven by natural selection, social 

selection, or differential growth rates among subpopulations. However, our findings indicate that 

it is unlikely natural selection played a key role in the expansions or in the concomitant drop in 

genetic diversity within continental populations. Were natural selection a principal driver, the 

growth rate differences between selected and non-selected haplogroups would probably have 

persisted for more than a few tens of generations. But, in contrast, we observed that the first 

phase of growth was generally brief and marked by a far greater growth rate than the second 

phase. Furthermore, if large intra-population differences in haplogroup growth rates were 

primarily due to selection, and some portion of the differential selection persisted through time, 

we would expect the non-selected haplogroups to have been crowded out and exist at low 

frequencies, if at all. Instead, we observed that slowly-growing haplogroups with ancient 

diversification coexist alongside recently expanded ones. 

 

Second, we inferred the presence of several explosive expansions, including those in the subtrees 

rooted at branch 71 of haplogroup E1b (U290) and branches 189 (DF27), 276 (U152), and 343 

(DF13) of R1b. Though it is possible that strong social selection may yield such an effect, as has 

been proposed106, the growth signals we observed in most cases were best explained by strong 

and sustained expansions rather than by explosive growth lasting very few generations.  

 

Third, we observed multiple subtrees with similar inferred ages and growth rates within each of 

E1b (nodes 95 and 384), R1a (161 and 204), and R1b (189 and 276). These similarities may 

reflect shared demographic events. 
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In addition to the considerations cited in section 8.1, five assumptions and approximations may 

have influenced our inference. First, we assumed a two-phase growth model in which all lineages 

descending from a given node expand at the same rate. Though this model enabled us to hone in 

on signals of rapid growth, it may oversimplify historical demographic changes. Second, we 

assumed that population structure did not affect the branching patterns we observed immediately 

downstream of the nodes of interest. Third, to control for variances in coalescence times we 

conditioned on the inferred TMRCA of each node. This assumption was likely conservative in that 

it led to overestimated likelihoods of very small growth rates. Fourth, we assumed that the 

number of mutations accumulated in a branch is a good proxy for its length measured in 

generations. This assumption may be problematic for small sampling times with small root-to-tip 

heights, but, on the other hand, using larger sampling times would also be problematic, as the 

assumed lack of population structure would be less likely to hold. Finally, though our estimation 

makes use of the likelihood ratio criterion, for computational efficiency we used an approximate 

likelihood estimated through coalescent simulations and a distance defined between frequency 

spectra. Though we did not thoroughly explore the general validity of this approach, it worked 

well with simulated data. 
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9 Data Availability 
G. David Poznik 

9.1 Supplementary Data File 
 

A zipped archive of supporting data is available on the journal’s website, as well as on the 1000 

Genomes Project FTP site (section 9.2). The archive includes the following files and 

subdirectories: 

 
0.README.txt 

Details the contents and format of each file 
 

1.CNV.summary.txt 

Summary of inferred CNV mutation events 
 

2.STR.summary.txt 

Point estimates and confidence intervals for Y-STR mutation rates 
 

3.haplogroups.txt 

Short-form and long-form haplogroup calls for each individual 
 

4a.ML.tree/ 

Total-evidence maximum-likelihood tree 
4b.rooted.tree/ 

Tree based on restricted regions, with chimpanzee outgroup 
 

5.snp.to.branch.mappings/ 

branches/ 

    Files mapping each branch to a set of descendants 
snps/ 

    Files indicating for each branch, which SNPs map to it 
subset.with.5x+.coverage/ 

    As above, but with the sample pruned to sequences with 5 or greater coverage 
 

6.functional.analyses.xlsx 

Summary of functional analysis 
 

7.mtDNA.tree/ 

Total evidence maximum-likelihood tree of male mtDNAs 
 

8.expansions/ 

Likelihood contours for simulations and analysis 
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9.2 FTP Site 

9.2.1 Information 
 

A full description of data management and community access can be found in Clarke et al.107. 

1000 Genomes Project FTP sites 

 

Europe: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/  

USA: ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/  

 

Tutorials for access and use 

 
http://www.1000genomes.org/using-1000-genomes-data  

 

Email 

 

Support for using the 1000 Genomes Project data can be obtained via email:  

 
info@1000genomes.org 

 

  

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/
http://www.1000genomes.org/using-1000-genomes-data
mailto:info@1000genomes.org
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9.2.2 Sequence Read Alignments (BAM Files) 

Alignments to the GRCh37 Reference Sequence 

Index File 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/ 

20130502.phase3.low_coverage.alignment.index  

 

Main Directory 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/  
 

Example Full Path 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG00160/alignment/ 

HG00160.mapped.ILLUMINA.bwa.GBR.low_coverage.20120522.bam  

 
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG00160/alignment/ 

HG00160.mapped.ILLUMINA.bwa.GBR.low_coverage.20120522.bam.bai  

 

Alignments to the GRCh38 Reference Sequence (Used in STR Analysis) 

Main Directory 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/ 

1000_genomes_project/data 

 

Example Full Path 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/ 

1000_genomes_project/data/ACB/HG01890/alignment/ 

HG01890.alt_bwamem_GRCh38DH.20150718.ACB.low_coverage.cram  

 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/ 

1000_genomes_project/data/ACB/HG01890/alignment/ 

HG01890.alt_bwamem_GRCh38DH.20150718.ACB.low_coverage.cram.crai  

  

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/20130502.phase3.low_coverage.alignment.index
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/20130502.phase3.low_coverage.alignment.index
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG00160/alignment/HG00160.mapped.ILLUMINA.bwa.GBR.low_coverage.20120522.bam
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG00160/alignment/HG00160.mapped.ILLUMINA.bwa.GBR.low_coverage.20120522.bam
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG00160/alignment/HG00160.mapped.ILLUMINA.bwa.GBR.low_coverage.20120522.bam.bai
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG00160/alignment/HG00160.mapped.ILLUMINA.bwa.GBR.low_coverage.20120522.bam.bai
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/data
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/data
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/data/ACB/HG01890/alignment/HG01890.alt_bwamem_GRCh38DH.20150718.ACB.low_coverage.cram
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/data/ACB/HG01890/alignment/HG01890.alt_bwamem_GRCh38DH.20150718.ACB.low_coverage.cram
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/data/ACB/HG01890/alignment/HG01890.alt_bwamem_GRCh38DH.20150718.ACB.low_coverage.cram
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/data/ACB/HG01890/alignment/HG01890.alt_bwamem_GRCh38DH.20150718.ACB.low_coverage.cram.crai
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/data/ACB/HG01890/alignment/HG01890.alt_bwamem_GRCh38DH.20150718.ACB.low_coverage.cram.crai
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/data/ACB/HG01890/alignment/HG01890.alt_bwamem_GRCh38DH.20150718.ACB.low_coverage.cram.crai
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9.2.3 Genotype Calls (VCF Files) 

SNVs 

Unimputed 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/ 

ALL.chrY_10Mbp_mask.glia_freebayes_maxLikGT_siteQC. 

20130502.60555_biallelic_snps.vcf.gz 

 
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/

ALL.chrY_10Mbp_mask.glia_freebayes_maxLikGT_siteQC. 

20130502.60555_biallelic_snps.vcf.gz.tbi  

 

Phylogenetically Imputed 

 
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/

ALL.chrY_10Mbp_mask.glia_freebayes_maxLikGT_siteQC_phyloImputedV5. 

20130502.60555_biallelic_snps.vcf.gz  

 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/

ALL.chrY_10Mbp_mask.glia_freebayes_maxLikGT_siteQC_phyloImputedV5. 

20130502.60555_biallelic_snps.vcf.gz.tbi  

 

Indels and MNVs 

Unimputed 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/

ALL.chrY_10Mbp_mask.glia_freebayes_maxLikGT_siteQC. 

20130502.biallelic_indelsAndMNPs.vcf.gz  

 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/

ALL.chrY_10Mbp_mask.glia_freebayes_maxLikGT_siteQC. 

20130502.biallelic_indelsAndMNPs.vcf.gz.tbi  

 

Phylogenetically Imputed 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/

ALL.chrY_10Mbp_mask.glia_freebayes_maxLikGT_siteQC_phyloImputedV5. 

20130502.biallelic_indelsAndMNPs.vcf.gz  

 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/

ALL.chrY_10Mbp_mask.glia_freebayes_maxLikGT_siteQC_phyloImputedV5. 

20130502.biallelic_indelsAndMNPs.vcf.gz.tbi  

  

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/ALL.chrY_10Mbp_mask.glia_freebayes_maxLikGT_siteQC.20130502.60555_biallelic_snps.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/ALL.chrY_10Mbp_mask.glia_freebayes_maxLikGT_siteQC.20130502.60555_biallelic_snps.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/ALL.chrY_10Mbp_mask.glia_freebayes_maxLikGT_siteQC.20130502.60555_biallelic_snps.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/ALL.chrY_10Mbp_mask.glia_freebayes_maxLikGT_siteQC.20130502.60555_biallelic_snps.vcf.gz.tbi
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/ALL.chrY_10Mbp_mask.glia_freebayes_maxLikGT_siteQC.20130502.60555_biallelic_snps.vcf.gz.tbi
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/ALL.chrY_10Mbp_mask.glia_freebayes_maxLikGT_siteQC.20130502.60555_biallelic_snps.vcf.gz.tbi
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/ALL.chrY_10Mbp_mask.glia_freebayes_maxLikGT_siteQC_phyloImputedV5.20130502.60555_biallelic_snps.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/ALL.chrY_10Mbp_mask.glia_freebayes_maxLikGT_siteQC_phyloImputedV5.20130502.60555_biallelic_snps.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/ALL.chrY_10Mbp_mask.glia_freebayes_maxLikGT_siteQC_phyloImputedV5.20130502.60555_biallelic_snps.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/ALL.chrY_10Mbp_mask.glia_freebayes_maxLikGT_siteQC_phyloImputedV5.20130502.60555_biallelic_snps.vcf.gz.tbi
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/ALL.chrY_10Mbp_mask.glia_freebayes_maxLikGT_siteQC_phyloImputedV5.20130502.60555_biallelic_snps.vcf.gz.tbi
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/ALL.chrY_10Mbp_mask.glia_freebayes_maxLikGT_siteQC_phyloImputedV5.20130502.60555_biallelic_snps.vcf.gz.tbi
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/ALL.chrY_10Mbp_mask.glia_freebayes_maxLikGT_siteQC.20130502.biallelic_indelsAndMNPs.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/ALL.chrY_10Mbp_mask.glia_freebayes_maxLikGT_siteQC.20130502.biallelic_indelsAndMNPs.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/ALL.chrY_10Mbp_mask.glia_freebayes_maxLikGT_siteQC.20130502.biallelic_indelsAndMNPs.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/ALL.chrY_10Mbp_mask.glia_freebayes_maxLikGT_siteQC.20130502.biallelic_indelsAndMNPs.vcf.gz.tbi
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/ALL.chrY_10Mbp_mask.glia_freebayes_maxLikGT_siteQC.20130502.biallelic_indelsAndMNPs.vcf.gz.tbi
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/ALL.chrY_10Mbp_mask.glia_freebayes_maxLikGT_siteQC.20130502.biallelic_indelsAndMNPs.vcf.gz.tbi
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/ALL.chrY_10Mbp_mask.glia_freebayes_maxLikGT_siteQC_phyloImputedV5.20130502.biallelic_indelsAndMNPs.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/ALL.chrY_10Mbp_mask.glia_freebayes_maxLikGT_siteQC_phyloImputedV5.20130502.biallelic_indelsAndMNPs.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/ALL.chrY_10Mbp_mask.glia_freebayes_maxLikGT_siteQC_phyloImputedV5.20130502.biallelic_indelsAndMNPs.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/ALL.chrY_10Mbp_mask.glia_freebayes_maxLikGT_siteQC_phyloImputedV5.20130502.biallelic_indelsAndMNPs.vcf.gz.tbi
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/ALL.chrY_10Mbp_mask.glia_freebayes_maxLikGT_siteQC_phyloImputedV5.20130502.biallelic_indelsAndMNPs.vcf.gz.tbi
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/ALL.chrY_10Mbp_mask.glia_freebayes_maxLikGT_siteQC_phyloImputedV5.20130502.biallelic_indelsAndMNPs.vcf.gz.tbi
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CNVs 

 
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/

README_ALL.chrY.phase3_cnv_broad_genome_strip.20130502. 

cnv.low_coverage.genotypes.copy.txt  

 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/

ALL.chrY.phase3_cnv_broad_genome_strip.20130502. 

cnv.low_coverage.genotypes.copy.vcf.gz  

 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/

ALL.chrY.phase3_cnv_broad_genome_strip.20130502. 

cnv.low_coverage.genotypes.copy.vcf.gz.tbi  

 

STRs 

 
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/

ALL.chrY.HipSTR.20130502.STRs.vcf.gz  

 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/

ALL.chrY.HipSTR.20130502.STRs.vcf.gz.tbi  

 

MtDNA 

SAMtools callset 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/ 

20130723_phase3_wg/si/ALL.chromMT.samtools.20130502. 

snps_indels.low_coverage.genotypes.vcf.gz  

 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/ 

20130723_phase3_wg/si/ALL.chromMT.samtools.20130502. 

snps_indels.low_coverage.genotypes.vcf.gz.tbi  

 

Boston College callset 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/ 

20130723_phase3_wg/bc/ALL.chrMT.bc_haplotypes_3bp_1pct.20130502. 

low_coverage.genotypes.vcf.gz  

 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/ 

20130723_phase3_wg/bc/ALL.chrMT.bc_haplotypes_3bp_1pct.20130502. 

low_coverage.genotypes.vcf.gz.tbi  

 

 

   

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/README_ALL.chrY.phase3_cnv_broad_genome_strip.20130502.cnv.low_coverage.genotypes.copy.txt
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/README_ALL.chrY.phase3_cnv_broad_genome_strip.20130502.cnv.low_coverage.genotypes.copy.txt
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/README_ALL.chrY.phase3_cnv_broad_genome_strip.20130502.cnv.low_coverage.genotypes.copy.txt
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/ALL.chrY.phase3_cnv_broad_genome_strip.20130502.cnv.low_coverage.genotypes.copy.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/ALL.chrY.phase3_cnv_broad_genome_strip.20130502.cnv.low_coverage.genotypes.copy.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/ALL.chrY.phase3_cnv_broad_genome_strip.20130502.cnv.low_coverage.genotypes.copy.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/ALL.chrY.phase3_cnv_broad_genome_strip.20130502.cnv.low_coverage.genotypes.copy.vcf.gz.tbi
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/ALL.chrY.phase3_cnv_broad_genome_strip.20130502.cnv.low_coverage.genotypes.copy.vcf.gz.tbi
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/ALL.chrY.phase3_cnv_broad_genome_strip.20130502.cnv.low_coverage.genotypes.copy.vcf.gz.tbi
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/ALL.chrY.HipSTR.20130502.STRs.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/ALL.chrY.HipSTR.20130502.STRs.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/ALL.chrY.HipSTR.20130502.STRs.vcf.gz.tbi
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/chrY/ALL.chrY.HipSTR.20130502.STRs.vcf.gz.tbi
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130723_phase3_wg/si/ALL.chromMT.samtools.20130502.snps_indels.low_coverage.genotypes.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130723_phase3_wg/si/ALL.chromMT.samtools.20130502.snps_indels.low_coverage.genotypes.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130723_phase3_wg/si/ALL.chromMT.samtools.20130502.snps_indels.low_coverage.genotypes.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130723_phase3_wg/si/ALL.chromMT.samtools.20130502.snps_indels.low_coverage.genotypes.vcf.gz.tbi
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130723_phase3_wg/si/ALL.chromMT.samtools.20130502.snps_indels.low_coverage.genotypes.vcf.gz.tbi
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130723_phase3_wg/si/ALL.chromMT.samtools.20130502.snps_indels.low_coverage.genotypes.vcf.gz.tbi
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130723_phase3_wg/bc/ALL.chrMT.bc_haplotypes_3bp_1pct.20130502.low_coverage.genotypes.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130723_phase3_wg/bc/ALL.chrMT.bc_haplotypes_3bp_1pct.20130502.low_coverage.genotypes.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130723_phase3_wg/bc/ALL.chrMT.bc_haplotypes_3bp_1pct.20130502.low_coverage.genotypes.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130723_phase3_wg/bc/ALL.chrMT.bc_haplotypes_3bp_1pct.20130502.low_coverage.genotypes.vcf.gz.tbi
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130723_phase3_wg/bc/ALL.chrMT.bc_haplotypes_3bp_1pct.20130502.low_coverage.genotypes.vcf.gz.tbi
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130723_phase3_wg/bc/ALL.chrMT.bc_haplotypes_3bp_1pct.20130502.low_coverage.genotypes.vcf.gz.tbi
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