SUPPLEMENTARY MATERIALS

	GD	PNP	G	OP	GD Bel	P● F ₃	GDP	AIF ₄	GD VC)P ●)₄ ³	GDP (VO ₃		
	Input	Pellet	Input	Pellet	Input	Pellet	Input	Pellet	Input	Pellet	Input	Pellet		
													←	EF-G
		(and	-		-		-	(and	-		-			
	-		-	-	-	-	-		-	-			←	S1
								1				_		12
												0	-	LZ
			_		-				_	-	-			
	-		-	-	-	-	-	-	-					
	-	=	=	=	=	=	=	=	=	-	-	-		
	-	-	-	-	-	-	-	=	=		-			
Ì														

SUPPLEMENTARY FIGURE 1. Binding of EF-G to vacant ribosomes in the presence of various nucleotides and phosphate analogues (as indicated) measured by the pelleting assay. EF-G was incubated with vacant ribosomes. Half of each sample was pelleted through a sucrose cushion (pellet); the other half was used as a loading control (input). Protein content of ribosome pellets was analyzed using SDS-PAGE. The band corresponding to EF-G, the largest ribosomal proteins S1 and L2 are indicated by arrows. The cropped version of this gel is shown in Fig.1.

SUPPLEMENTARY FIGURE 2. Pre-steady-state kinetics of translocation in the presence of synthetic analogues of GTP. mRNA translocation was induced by mixing pretranslocation ribosomes (35 nM after mixing) with EF-G (1 μ M after mixing) preincubated with 0.5 mM GTP (black), GDPNP (red), GDPCP (blue) or GTP γ S (magenta). Experiments were performed in polyamine buffer at pH 7.5. mRNA translocation was detected by the quenching of fluorescein attached to the 3' end of mRNA using a stopped-flow apparatus.

SUPPLEMENTARY TABLE 1. Rates of mRNA translocation catalyzed by EF-G in the presence of GDPCP and GTPγS.

Nucleotide	k_{I}, s^{-1}	k_2, s^{-1}	A ₁ /(A ₁ +A ₂)	k_{av}, s^{-1}
GDPCP	0.8±0.04	0.16±0.004	0.37±0.02	0.39±0.03
GTPγS	1.0±0.03	0.10±0.004	0.35±0.01	0.41 ± 0.01

Rates of translocation induced by EF-G in the presence of GDPCP or GTP γ S were measured in pre-steady-state stopped-flow kinetic experiments in polyamine buffer at pH 7.5. EF-G and ribosome concentrations after mixing were 1 µM and 35 nM, respectively. k_1 and k_2 are the rate constants of double-exponential fits of the mRNA translocation data; $A_1/(A_1+A_2)$ is the relative contribution of the faster phase to the total amplitude of fluorescein quenching. Weighted average values (k_{av}) for mRNA translocation rates were calculated by combining the rate constants derived from the two-exponential fits: $k_{av} = (k_1A_1 + k_2A_2)/(A_1 + A_2)$.

SUPPLEMENTARY TABLE 2. Rates of translocation induced by EF-G in the presence of GTP or GDP·BeF₃⁻ determined by fitting pre-steady-state stopped-flow kinetic data to stretched exponential function (Fig. 5).

Nucleotide	$k_{stretched}, \mathrm{s}^{-1}$	β
GTP, pH 7.5	1.5±0.2	0.56±0.02
GDP•BeF ₃ , pH 7.5	1.2±0.5	0.60±0.06

Fluorescein quenching in kinetic translocation assay was fit to the stretched exponential function $y=y_0 + A^* \exp(-k_{stretched} * t)^{\beta}$ where $k_{stretched}$ is stretched exponential rate constant; β is a stretched exponential numerical factor ($0 < \beta \le 1$).