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1 Cluster chemotaxis when chemoattractant regulates cell persistence τ

Within the main paper, we have assumed that the chemoattractant concentration S(r) regulates the susceptibility of a cell
to contact inhibition of locomotion βi, with βi = β̄S(ri). This models the stabilization of protrusions induced by contact
interactions. This is consistent with the results of Theveneau et al. [1], who find that protrusion stabilization is stronger
in clusters than in single cells. However, very similar results can be found if we assume that β is constant and the signal
regulates the time required for the cell’s polarity to relax, i.e. τ i = τ̄S(r). In this case, the mean polarity of a cell is
〈pi〉 = βτ i

∑
j∼i r̂

ij and we find
〈V〉 ≈ βτ̄M ·∇S (τ regulation) (S1)

where the mobility matrix M is the same as in the main paper, Mµν = 1
N

∑
i r
i
νq
i
µ. However, because τ varies over space,

the fluctuations will also vary: 〈(Vµ − 〈Vµ〉)2〉 = σ2N−2
∑
i τ
i = σ2N−1τ̄S, where S = N−1

∑
i S(ri) is the mean signal

across the cluster. For this reason, the chemotactic index in the τ -regulation model will depend on ∇S/S1/2
, and will not

be constant over a linear gradient.
In addition, a single cell with a persistence time τ that depends on the chemoattractant level will undergo biased motion.

This is shown in Fig. S1 below. This drift can be made smaller than the CIL-driven cluster drift, as it is independent of β,
while the cluster drift is proportional to β.
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Figure S1: Single cells in a spatially-varying τ develop a mean drift. The mean x and y velocities for a cell with
spatially varying τ are shown: τ = τ (S0 + |∇S|x), with τ = 1, S0 = 1, |∇S| = 0.025. Result is average over n = 105

iterations, each started at the origin; error bars indicate 〈[Vµ(t)− 〈Vµ(t)〉]2〉1/2/
√
n.

2 Derivation of the mobility matrices for Q-layer oligomers

We can compute the mobility matrix of the Q-layer oligomers for arbitrary Q. Our mobility matrix is given by

Mµν =
1

N

∑
i

qiµr
i
ν . (S2)

with qi =
∑
j∼i r̂

ij . To simplify the calculation, we can make a few assumptions. First, we note that Mxx = Myy, but

Mxy = Myx = 0 for the Q-layer oligomer. We only need to calculate M = 1
2 (Mxx +Myy). The only cells i in the sum

of Eq. S2 that are nonzero are those around the boundary. M does not depend on orientation, so we can compute the sum∑
i r
iqi for one face of the oligomer (Fig. S2), then multiply by six. However, this double-counts the corner cells, so we must
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Figure S2: Geometry of Q-layer oligomer, illustrated for Q = 3. The top face is highlighted by a dashed line.

weight them by 1/2. We then find M =
[
9
2Q

2 + 3
2Q
]
/N(Q), where N(Q) = 1 + 3Q + 3Q2 is the number of cells in the

cluster.
We present the mobility matrices for both Q-layer oligomers and other cluster shapes in Table S1.

Shape M Angularly averaged M

Dimer

1/2 0

0 0

 1/4

Trimer
1/2 0

0 1/2

 1/2

Tetramer
1/2 0

0 3/4

 5/8

Heptamer
6/7 0

0 6/7

 6/7

Q-layer oligomer
f(Q) 0

0 f(Q)

 f(Q) ≡ 9Q2+3Q
2+6Q+6Q2

Table S1: Mobility matrices M for several cell configurations. For each of the configurations shown, nearest-neighbor
cells have unit separation. A Q-layer oligomer has N(Q) = 1 + 3Q + 3Q2 cells. M is given for the orientation shown in
the left column; other orientations may be found by transforming the mobility tensor; M = 1

2 (Mxx +Myy) (see Section 3
below).

3 Rotational transformation and averaging of the mobility matrix

We can compute the mobility matrix of a rotated cluster of arbitrary shape from Eq. S2. If we rotate our cluster, which we
assume is centered at the origin, by an angle θ,

(
ri
)′

= R(θ)ri, we find that

M′µν = Rµα(θ)MαβRνβ(θ) (S3)

where we have assumed the Einstein summation convention and R(θ) is the rotation matrix

(
cos θ − sin θ
sin θ cos θ

)
. In matrix

terms, M′ = R(θ) · M · [R(θ)]
T

. If we average over θ, we find

1

2π

∫ 2π

0

dθM′(θ) =
1

2

(
Mxx +Myy Mxy −Myx

Myx −Mxy Mxx +Myy

)
(S4)
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We can show from the definition Eq. S2 that Mµν =Mνµ, so the off-diagonal entries of the averaged matrix are zero, and

therefore 1
2π

∫ 2π

0
dθM′µν(θ) = 1

2 (Mxx +Myy)δµν . In other words, when averaged over orientation, a cell cluster’s mobility

matrix is just the constant M times the identity.

4 Computing the chemotactic index

We showed in the main paper that within our model, assuming that the cluster rearrangement is slow with respect to the
polarity dynamics and thus each cell’s polarity is given by a biased Ornstein-Uhlenbeck process, the velocity of a rigid cell
cluster is

V = 〈V〉+ ∆ (S5)

where ∆ is a Gaussian random variable with zero mean and variance 〈∆µ∆ν〉 = Γ2δµν . We want to compute the chemotactic
index, CI; assuming the gradient is increasing in the x direction, this is

CI =
〈Vx〉
〈|V|〉

(S6)

where the average is both over time and over many trajectories. We note that this is a useful definition for us because, in
our model, neither 〈V〉 nor ∆ depend on the absolute value of the chemoattractant S. More care must be taken in other
cases. To compute CI, we need to compute 〈|V|〉. |V| is, in our case, given by a Rice distribution, and this moment can be
calculated.

〈|V|〉 = 〈
√

(〈Vx〉+ ∆x)2(〈Vy〉+ ∆y)2〉 (S7)

=
1

2πΓ2

∫
d∆xd∆y

√
(〈Vx〉+ ∆x)2 + (〈Vy〉+ ∆y)2 exp

[
−(∆2

x + ∆2
y)

2Γ2

]
(S8)

=
1

2πΓ2

∫
dVxdVyV exp

[
− 1

2Γ2

{
(Vx − 〈Vx〉)2 + (Vy − 〈Vy〉)2

}]
(S9)

where V =
√
V 2
x + V 2

y . We now switch to polar coordinates, Vx = V cosφ, Vy = V sinφ, and correspondingly write

〈Vx〉 = ν cos θ and 〈Vy〉 = ν sin θ, where ν2 = 〈Vx〉2 + 〈Vy〉2. Thus,

〈|V|〉 =
1

2πΓ2

∫ 2π

0

dφ

∫ ∞
0

dV V 2 exp

[
− 1

2Γ2

{
V 2 + ν2 − 2V ν cos(θ − φ)

}]
(S10)

=
1

Γ2

∫ ∞
0

dV V 2 exp

[
− 1

2Γ2

(
V 2 + ν2

)]
I0
(
V ν/Γ2

)
(S11)

where I0(x) is the modified Bessel function of the first kind. This integral may be evaluated, resulting in

〈|V|〉 = Γ
√
π/2L1/2(−ν2/2Γ2) (S12)

where the generalized Laguerre polynomial L1/2 is given by

L1/2(x) = ex/2 [(1− x)I0(−x/2)− xI1(−x/2)] . (S13)

Within our average over trajectories, we are averaging over the orientation of the cluster; thus we expect 〈Vy〉 = 0 for a

chemoattractant gradient in the x direction, and ν = 〈Vx〉 = β̄τM∂xS. Γ2 = 〈(Vx − 〈Vx〉)2〉 = 〈(Vy − 〈Vy〉)2〉 = σ2τ/N . This
leads to the result stated in the main paper,

CI =
√

2/πc/L1/2(−c2/2)

c =
〈Vx〉√

〈(Vµ − 〈Vµ〉)2〉
=
β̄τM∂xS

σ
√
τ/N

(S14)

where in our notation, we could also write c = ν/Γ. We plot the result of Eq. S14 in Fig. S3 below; we see that CI → 1 as
c� 1 (corresponding to cluster velocities much larger than the noise in cluster velocity) and CI→ 0 if |c| � 1 (cluster velocity
much smaller than the noise). We also note that chemotaxis could oppose the direction of the gradient (chemorepulsion) –
in this case, CI(−c) = −CI(c).
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Figure S3: Chemotactic index CI as a function of the parameter c.

5 Velocity and CI of irregular clusters

In the main paper, we presented results on the velocity and chemotactic index of Q-layer oligomers. Here, we show the
velocity and chemotactic index of imperfect clusters. We begin with a Q-layer oligomer, and then remove n cells at random
from the outer layer; this process is repeated 200 times for each n from 1 to 6Q (the number of cells in the outer layer). An
example is presented in Fig. S4, with Q = 5 and n = 5 cells removed. The mobility matrix is computed for each cluster, and
used to compute 〈Vx〉 and CI (Fig. S4). We see that though different configurations can lead to different mean velocities for
the same number of cells, the general trend is captured by the results for intact oligomers (dashed line and square symbols
in Fig. S4).

Figure S4: Cluster shape effects, in addition to cell number, can affect velocity and CI. Top: illustration of
Q-layer oligomer with a few cells removed from the external layer. Bottom: Velocity and chemotactic index for clusters of
different shapes. Different colors indicate the size of the base cluster from which cells are removed. Black squares connected
by dashed lines show the results for intact oligomers. For the CI plot, we apply our usual parameters and |∇S| = 0.025. All
results in this figure are theoretical results for rigid clusters only, not full simulations.

6 Transient rotation of clusters

Though we have primarily focused on the translational motion of the cluster, rotational motion can also occur in our model,
both through rotational diffusion and biased motion. We note that transient rotational events are observed in [2]. Under
assumptions similar to our main results, clusters have mean angular velocity ∼ A ·∇S, where A depends on cluster geometry.
This is again similar to an oddly-shaped particle sedimenting in a low Reynolds number flow [3]. However, the symmetric
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clusters in Table S1 have A = 0 and do not rotate. If A 6= 0, clusters rotate to a fixed angle to the gradient direction; there
is no persistent rotation in a linear gradient (rotational motion may also be suppressed if β̄ is large). However, in nonlinear
gradients, persistent rotation of asymmetric clusters may be induced.

We can analyze potential biases by determining the net “torque” Lz =
∑
i

[
δri × pi

]
z

applied to the cluster by the cells.
This torque is, on average,

〈Lz〉 =
∑
i

β̄τS(ri)
[
δri × qi

]
z

(S15)

where qi =
∑
j∼i r̂

ij and δri = ri − rcm is the displacement from the cluster center of mass.
What torque is required to cause the cluster to move at a fixed angular velocity? For a cluster moving in a rigid rotation

with angular velocity Ω, the cell velocities are vi = Ω
(
−δriy, δrix

)
. To achieve this, each cell must have a polarity of

pi = Ω
(
−δriy, δrix

)
, leading to Lz = Ω

∑
i |δri|2. The angular velocity is thus related to Lz by Ω = Lz/

∑
i |δri|2. We thus

find, for linear gradients, S = S0 + r · ∇S,
〈Ω〉 = β̄τA · ∇S (S16)

where the vector A only depends on the cluster geometry,

A =

∑
i δri

[
δri × qi

]
z∑

i |δri|2
(S17)

where qi is defined as above. (Note that
∑
i δri × qi =

∑
i r
i × qi = −

∑
i,j∼i

ri×rj
|ri−rj | = 0, allowing us to drop a center of

mass term.) For all of the shapes listed in Table S1, A = 0. Cell clusters must lack an inversion symmetry to be rotated by
the gradient.

However, even if A 6= 0, clusters will not persistently rotate. We can see that if we rotate the cell cluster around its
center of mass, A must also rotate as a vector. If the gradient is along the x direction, this lets us write 〈Ω〉 = 〈θ̇〉 =
β̄τ [Ax(0) cos θ −Ay(0) sin θ], where A(0) is Eq. S17 calculated for a reference geometry. We see that if A 6= 0, the cluster
will rotate to a stable angle θ∗ given by tan θ∗ = Ax(0)/Ay(0). In a linear gradient, there is no persistent rotation, though
in nonlinear gradients, persistent rotation of asymmetric clusters may be induced.

We note that Eq. S16 is not as quantitatively accurate as the corresponding result for translational motion, at least for
the parameter set in the main paper; this occurs because a small deviation from the equilibrium polarity 〈pi〉 can create a
relatively large change in torque, which often resists rotation. For instance, if the cluster is rotated by a small angle δ without
a corresponding change in 〈pi〉, there will be a restoring torque proportional to β̄τδ. Thus, Eq. S16 will be more accurate
for systems where the relaxation time τ is smaller compared to the rotational timescale of the cluster. For similar reasons,
for our rigid cluster parameter set, rotational diffusion can be quite slow (Movie S1).

7 Nonrigid cluster simulations

In this section, we present additional results on nonrigid clusters. We observe that the cluster anisotropy observed in Fig. 2
of the main paper persists in fluid clusters, but is somewhat weaker (Fig. S5). This occurs because the rotational diffusion
of pairs of cells at our nonrigid parameter set is significantly faster than that of the rigid parameter set (compare Movie S1,
Movie S2). As the cluster’s polarities 〈pi〉 are influenced by the cluster orientation over a timescale τ , as diffusion becomes
faster with respect to τ , anisotropy decreases. We also note that we would not expect our rigid-cluster results to be precisely
accurate even without this effect, as the pair’s separation will fluctuate around its equilibrium value, changing M.

We presented in the main paper a figure showing how the cluster velocity and chemotactic index depend on the cluster
size (Fig. 4 of the main paper). However, in Fig. 4, we treat all of the cells that were initially in contact as a single cluster,
even if they broke apart – thus we are plotting velocity and CI versus the total number of cells in the simulation. An alternate
way to compute a curve showing velocity and CI as a function of cluster size would be to look at a simulation in which an
initially large cluster breaks into smaller clusters (as seen in [1]), and then track the smaller clusters. Doing this can yield
different results, because the history of the smaller clusters matters. In particular, clusters are more likely to break off from
the side of the big cluster at higher S (see e.g. Movie S2) – leading to important biases. For instance, we note in Fig. S6a
that smaller clusters (which have been ejected) have a larger velocity than large ones, even though isolated small clusters
are slower than isolated large clusters. Similarly, we see in Fig. S6b that even isolated cells develop an apparent chemotactic
index. This occurs even though single isolated cells in our model have a behavior that is completely independent of the
chemotactic signal – if a single cell is isolated for a long enough time, its dynamics will again be unbiased. Interestingly, [1]
also observe that transient association with a larger cluster can cause chemotaxis – this may be a related effect.
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Figure S5: Anisotropy exists but is lower in nonrigid clusters. A pair of cells with our nonrigid cluster parameters
has anisotropic chemotaxis, but with a slightly weaker anisotropy. Trajectories here are measured over the time range 6.25τ
to 50τ ; n = 20, 200 trajectories are simulated. Rigid cluster results are computed using a cell-cell spacing of 0.75 to roughly
match the separation seen in simulations, so the curves plotted are 0.75× 1

2 cos2 θ and 0.75× 1
2 cos θ sin θ.

Figure S6: Analyzing clusters in the process of breaking down can lead to apparent single-cell chemotaxis.
Tracking clusters as they break off from a larger cluster leads to an increased velocity for smaller clusters, and a non-zero
chemotactic index even for single cells. This figure is generated by simulating clusters initially of 127 cells (6-layer oligomers)
over a time of 50τ (1000 minutes), and then computing the average velocity and average instantaneous chemotactic index
Vx/|V| as a function of the number of cells in a given sub-cluster; 200 different trajectories are used. We discard the first
25τ of the trajectory, so we are focusing on the late cluster breakup stage. Two cells are considered to be in the same cluster
if they are within a distance D0 of one another (e.g. the force between them is nonzero). We only show points in this figure
where we have at least 25τ of trajectory time with clusters of that size totaled over all 200 simulations. Clusters of, e.g. 50
cells are not typically seen, and therefore not shown in this figure.

8 Numerical details of full model simulation

For our simulations, we solve the model equations numerically using a standard Euler-Maruyama scheme. For our rigid
cluster simulations, we adapt the cell-cell force from [4]

Fij = r̂ij


vr
(
dij − 1

)
, dij < 1

va
dij−1
D0−1 , 1 ≤ dij < D0

0 dij > D0

(S18)

where dij = |ri − rj |. This force is a repulsive spring below the equilibrium separation (which is one in our units, 20 microns
in physical units), an attractive spring above it, and vanishes above D0. D0 = 1.2 in all of our simulations, and we use
vr = va = 500. This keeps the clusters very rigid.

For our non-rigid cluster simulations, we adapt the many-body force chosen by Warren to simulate vapor-liquid coexistence
[5],

Fij =
[
Aw(dij/D0) +B

(
ρi + ρj

)
w(dij)

]
r̂ij (S19)

where w(r) = (1 − r) for r ≤ 1 and 0 otherwise. The densities are defined by ρi =
∑
j wρ(d

ij), where the sum is over all

cells, including i, and wρ(r) = 6
π (1− r)2 for r ≤ 1 and 0 otherwise. The force of Eq. S19 is composed of an attractive force

that goes to zero at a separation of D0, and a repulsive force that is zero beyond the distance of cell-cell overlap (1 in our
units). Both attractive and repulsive forces have a finite value even with cells completely overlapping (“soft cores”). The
strength of the repulsive force increases with increasing cell density – this makes the force explicitly dependent on many-body
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interactions. This force makes developing fluid droplets relatively easy, even with short-range interactions [5], and we have
found that it is more robust than Eq. S18 in creating chemotaxing non-rigid clusters. This may be because the balance of
forces for edge cells is different, due to the density-dependent interactions – allowing edge cells to exert significant forces
without separating from the bulk. We use A = −23.1 and B = 7.35 for our non-rigid cluster simulations unless otherwise
noted. We chose these parameters to permit cell-cell rearrangements while still preserving cluster cohesion; the existence of
collective chemotaxis does not depend on the precise values.

We initialize our clusters centered at the origin. For rigid clusters, we start our simulations with the shapes given in Table
S1 but rotated to a random angle, and a spacing of the equilibrium spacing (unity) for rigid clusters. For non-rigid clusters,
we start with the appropriate Q-layer cluster at a random angle, but with a spacing of 0.7. For non-rigid clusters, we initialize
2-, 3-, and 4-cell clusters by removing the appropriate number of cells randomly from the outer layer of a heptamer. In both
cases, we initialize the polarity p to a random value from its distribution (i.e. βiτqi plus an appropriate noise).

9 Table of parameters

Parameter symbol Name Value in our units
τ Persistence time 1
σ Characteristic cell speed (OU noise parameter) 1
β̄ CIL strength 20 for rigid clusters, 1 for nonrigid clusters
va Adhesion strength 500 (rigid clusters only)
vr Cell repulsion strength 500 (rigid clusters only)
D0 Maximum interaction length 1.2
S0 Signal strength at origin 1
∆t Time step 10−4 for rigid clusters, 5× 10−3 for nonrigid clusters
A Attraction strength for Warren force (Eq. S19) -23.1 (nonrigid clusters only)
B Repulsion strength for Warren force (Eq. S19) 7.35 (nonrigid clusters only)

Table S2: Parameters used
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