
Supplement to “Mechanical heterogeneities in the subendothelial

matrix develop with age and decrease with exercise”

The additive model

To assess the age and exercise effects on arterial stiffness, we estimated the following additive

model: for mouse i and spatial location s = (sx, sy) of the elastic modulus map,

Yi(s) = x′
iβ + fi(s) + εi(s) (1)

where Yi(s) is the square-root-transformed elastic modulus, xi is the vector of predictors, β

is the corresponding vector of unknown regression coefficients to be estimated, fi(s) is the

unknown spatial variability term to be estimated, and εi(s) is the independent and identically

distributed measurement error, which is assumed to be normally distributed. The square-root

transformation of the elastic modulus is necessary to satisfy the normality assumption for the

measurement errors, εi(s). The vector of predictors, xi, contains indicators for the age and

exercise groups of each mouse, and does not depend on the spatial location. The regression

coefficients, β, may be interpreted as in a standard linear regression model, and inference

may be conducted on the group effects. The spatial locations, s, are not directly comparable

across mice: while the AFM measurements were recorded on an 11× 11 point grid within a

100µm×100µm area of each artery, the precise locations within each artery cannot be made

identical across mice. As a result, the spatial terms, fi(s), must be mouse-specific, and an

ideal estimator of fi(s) should be invariant to rotations of the spatial coordinate system for

s. The thin plate spline satisfies this and other optimality and smoothness properties, and

is easy to implement within the mgcv package in R.

For each spatial effects term, fi(s), the thin plate spline produces an accompanying

smoothing parameter. Consider a simplified setting in which we wish to model a response,

yi, as a smooth function of a (one-dimensional) predictor, xi: yi = f(xi) + εi, where εi is a
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random error term. The thin plate spline is the estimator of f which minimizes the penalized

least squares criterion ∑
i

(yi − f(xi))
2 + λJ1(f) (2)

where J1(f) =
∫

[f ′′(x)]2 dx penalizes functions with large (in magnitude) second derivatives,

i.e., rougher functions. The smoothing parameter, λ > 0, controls the trade-off between the

first term, which measures goodness-of-fit, and the second term, which measures roughness.

As λ→ 0, the first term dominates, and f approaches a rough interpolation of the data, yi;

as λ → ∞, the second term dominates, and f approaches a linear function. More details

can be found in (Wood, 2006).

Under model (1), the penalized least squares criterion (2) generalizes to

∑
i,s

(Yi(s)− x′
iβ − fi(s))

2
+
∑
i

λiJ2(fi) (3)

where

J2(f) =

∫ ∫ (
∂2f(sx, sy)

∂s2x

)2

+

(
∂2f(sx, sy)

∂sx∂sy

)2

+

(
∂2f(sx, sy)

∂s2y

)2

dsx dsy,

which extends J1 using partial derivatives to measure roughness in both spatial directions

sx and sy. The criterion (3) is minimized jointly over β and fi for all mice i. The smoothing

parameters, λi, corresponding to each mouse-specific spatial term, fi, are estimated from

the data using generalized cross validation for computational efficiency, but other procedures

produced similar results.

The bootstrap

To compare the spatial heterogeneity of the age and exercise groups, we computed the

within-group sample means of the log-smoothing parameters, log λi. The (natural) logarithm

transformation stabilizes the variance of λi, and produces more reasonable comparisons.
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Since the sampling distribution of log λi is unknown, we approximate it using the bootstrap

(Efron and Tibshirani, 1994). The bootstrap uses a re-sampling procedure to estimate the

sampling distribution based on the empirical distribution function of the data, and is broadly

applicable.

Let N = 22 be the number of mice. The bootstrap algorithm is the following:

For b = 1, . . . , B = 1, 000 bootstrap simulations,

1. Sample N = 22 mice with replacement from the data to form the bootstrap data,{
Y

(b)
i (s)

}
;

2. Estimate model (1) by solving (3) with the bootstrap data,
{
Y

(b)
i (s)

}
;

3. Compute the within-group sample means of the bootstrap log-smoothing parameters,{
log λ

(b)
i

}
.

The approximate sampling distributions of the within-group means of the log-smoothing

parameters may then be compared using the bootstrap simulations. Note that we re-sample

at the mouse level to preserve the within-mouse spatial structures, which is essential for

measuring spatial heterogeneity.
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