SUPPLEMENTAL MATERIAL

Kalchschmidt et al., http://www.jem.org/cgi/content/full/jem.20160120/DC1

Figure S1. Repression of BCL6 is independent of EBNA3C, and induction of AID is dependent on the ability of EBNA3C to interact with RBPJ. (A) Infection of primary B cells with recombinant EBV expressing active (3CRev or 3CHT +HT) or inactive (3CKO or 3CHT -HT) EBNA3C. Gene expression of *BCL6* was normalized to *GAPDH* or GNB2L1 and is shown relative to uninfected primary B cells. (B) Infection of primary B cells with recombinant EBNA3C mutant that is unable to bind to RBPJ (RBPJ-binding mutant EBNA3C). AID mRNA expression was normalized to *GNB2L1* and is shown relative to uninfected primary B cell. Results show mean \pm SD of two biological replicates using B cells from different donors.

Figure S2. **ChIP-qPCR verification of EBNA3C occupancy at regulatory regions of** *AICDA*. Anti-Flag ChIP was performed on LCLs with either EB-NA3C-TAP or untagged (wt) EBNA3C and determined by qPCR at the indicated regulatory regions of *AICDA*. ChIP values represent enrichment relative to input \pm SD of triplicate qPCR reactions for ChIP and input of each sample. These are representative results of two biological replicates.

JEM

Figure S3. **Higher order chromatin structure of the** *AICDA* **locus in LCL GM12878**. (A) Juicebox was used to display GM12878 in situ Mbol combined (4.9 B) Hi-C map at 1-kb resolution (Rao et al., 2014). The intensity of each pixel represents the normalized (balanced) observed number of contacts between a pair of loci. Gene location for *AICDA* and *MFAP5*, H3K27ac in LCL GM12878, topologically associating domain (yellow box), and locations of AID regulatory regions are indicated. (B) Schematic overview of higher order chromatin structure of the *AICDA* locus in LCL GM12878 with chromatin looping indicated by black arrows between the promoter region of *AICDA* and upstream enhancer elements IV, V, and VI.

Condition	Day	Technical replicate	Number of reads	Number of unique V–D–J rearrangements
-HT	0	A	198,362	11,219
		В	194,823	6,186
		С	149,604	8,850
		D	147,598	8,878
	15	A	201,034	9,582
	30	A	137,139	6,154
		В	184,503	3,756
	60	A	150,120	5,676
		В	164,873	3,156
+HT	15	A	179,405	9,541
	30	A	194,136	8,621
		В	191,113	3,613
	60	A	221,088	7,424
		В	187,481	3,559
		С	204,514	7,022

Table S1. Total number of sequencing reads and unique V-D-J rearrangements per sample

Clone color	V gene	V gene J gene Nucleotide iden		identity	tity Percentage of culture					
	V-region J-region		J-region	HT			+HT			
					d0	d30	d60	d30	d60	
Blue	IGHV3-23*01	IGHJ4*02	205/222	25/30	29.8	53.4	45.4	45.3	33.7	
Red	IGHV3-7*01	IGHJ4*02	200/219	31/31	31.3	39.6	54.5	39.7	65.9	
Green	IGHV6-1*02	IGHJ4*02	228/228	27/31	15.2	2.5	0.01	9.3	0.03	
Orange	IGHV7-4-1*02	IGHJ6*03	213/219	41/45	16.4	4.0	0.01	5.2	0.18	

Table S2. Characteristics of the four major clones according to the IMGT database

Table S3. Sequences of RT-qPCR primers

Gene	Primer sequence (5'-3')	Reference
AICDA	Forward: AGCCGTTCTTATTGCGAAGA	
	Reverse: TGATGAACCGGAGGAAGTTT	
BCL6	Forward: CTGCAGATGGAGCATGTTGT	Tran et al. (2010)
	Reverse: TCTTCACGAGGAGGCTTGAT	
GNB2L1	Forward: GCTTGCAGTTAGCCAGGTTC	Zhang et al. (2005)
	Reverse: GAGTGTGGCCTTCTCCTCTG	
GAPDH	Hs_GAPDH_2_SG QuantiTect primer assay, cat. no. QT01192646	QIAGEN

Table S4. Sequences of ChIP primers

Primer name	Primer sequence (5'-3')	Reference
Region I	Forward: GAGGAAGGCCAGTGCAATCA	
	Reverse: CAGGGAGGCAAGAAGACACT	
Region II	Forward: GCTAGTTAACTTTGTTGATC	
	Reverse: CTACTCAGGACAGAAATGAC	
Region IV	Forward: TGGACACCAGCTAGATTGTTCA	
	Reverse: TCACACTTTCACCCACACAGA	
Region V	Forward: CCTGTTCCTCTCCTTACCGC	
	Reverse: ACGGAAGCCCTTGTATCTTTGA	
Region VI	Forward: CAGCAAGTTTCCTTCTGCGA	
	Reverse: GCCATTTCTGACTCAGCAGC	
Control	Forward: GTCCTGTACAGTAACTAGAGAAAA	
	Reverse: GCAAAGCAAGACGACAAAGGA	
GAPDH	Forward: CGCTCTCTGCTCCTCC	EMD Millipore
	Reverse: TTTCTCTCCGCCCGTCCAC	
Myoglobin	Forward: GGAGAAAGAAGGGGAATCACA	Delbarre et al. (2010)
	Reverse: GATAAATATAGCCAACGCCACA	

REFERENCES

Delbarre, E., B.M. Jacobsen, A.H. Reiner, A.L. Sørensen, T. Küntziger, and P. Collas. 2010. Chromatin environment of histone variant H3.3 revealed by quantitative imaging and genome-scale chromatin and DNA immunoprecipitation. *Mol. Biol. Cell.* 21:1872–1884. http://dx.doi.org/10.1091/mbc.E09 -09-0839

Tran, T.H., F.E. Utama, J. Lin, N. Yang, A.B. Sjolund, A. Ryder, K.J. Johnson, L.M. Neilson, C. Liu, K.L. Brill, et al. 2010. Prolactin inhibits BCL6 expression in breast cancer through a Stat5a-dependent mechanism. *Cancer Res.* 70:1711–1721. http://dx.doi.org/10.1158/0008-5472.CAN-09-2314

Zhang, X., L. Ding, and A.J. Sandford. 2005. Selection of reference genes for gene expression studies in human neutrophils by real-time PCR. *BMC Mol. Biol.* 6:4. http://dx.doi.org/10.1186/1471-2199-6-4