Current Biology, Volume 21

Supplemental Information

Heme Synthesis by Plastid

Ferrochelatase I Regulates

Nuclear Gene Expression in Plants

Jesse D. Woodson, Juan M. Perez-Ruiz, and Joanne Chory

Figure S1.

Figure S1. Phenotypes of *gun6-1D* and Other Ferrochelatase Transgenic Lines (Related to Figure 1)

(A) Schematic of the 24 kb region of chromosome five surrounding the causative T-DNA in *gun6-1D* mutants. Genes are indicated by arrow boxes that are labeled underneath. mRNA transcript levels (relative to wt) are indicated below. For genes At5g26010, At5g26015, and At5g26020 no transcript could be detected in either genotype. The right border of T-DNA (RB) still contained multimerized 35S enhancer elements.

(B) Shown is the distribution of *gun* mutants among the various stable transgenic *Arabidopsis* over-expression lines used in this study. The *gun* phenotype of these lines was assessed by scoring the growth phenotype of ~30 NF-treated T2 seedlings from independent T1 lines when challenged with hygromycin. All lines contain the pOCA107-2 [1] that contains a hygromycin resistance cassette under the control of a minimal *LHCB1.2* promoter. After seven days, a seedling with a *gun* phenotype will de-repress *LHCB*, induce hygromycin resistance, and will still be growing. Conversely, seedlings with a wt phenotype will have repressed *LHCB* expression, will not induce hygromycin resistance, and will die. Lines were scored as resistant (*gun* mutants) if at least 25% of the T2 seedlings were hygromycin resistant. The total number of lines is indicated on the y-axis. When constructs did not result in any lines with a *gun* phenotype, C/YFP expression was measured by confocal microscopy. The number of lines with protein accumulation (Lines with C/YFP expression/Total number of lines checked) are indicated above the bars. The use of *Zea mays* (Zma) genes is indicated.

(C) Histochemical staining of NF-treated seedlings with the *uidA* (*GUS*) gene under the control of the *LHCB1.2* minimal promoter. Blue color indicates tissue where LHCB promoter is derepressed.

(D) Shown is the level of mRNA transcript accumulation in *FC1*- and *FC2*-OX lines. RT-qPCR analysis of steady-state mRNA transcript levels was measured in 7-day old NF-treated seedlings. Data shown are the mean +/- SEM of triplicate reactions of a representative experiment.

(E) Western blot analysis of ferrochelatase protein from overexpression lines and

(F) Catalytically inactive ferrochelatase protein. An equal amount of total protein was fractioned by SDS-PAGE and blotted. Filters were probed with antibodies specific for the proteins indicated to the right.

(G) Ferrochelatase activity in 5 day old NF-treated seedling (total and crude plastid) extracts. Activity was measured using the codeuteroporphyrin assay and calculated by determining the amount of substrate used min⁻¹ mg⁻¹ protein. Data shown are the mean +/- SEM of duplicate reactions of a representative experiment. The inset shows the fold-enrichment in crude plastid ferrochelatase activity compared to total extracts.

(H) Western blot analysis of enriched plastid membrane fractions from NF-treated seedlings; T, total protein; PM, plastid membrane fraction. Protein from Total (T) (15 ug) and Plastid Membrane (PM) (6 ug) fractions were fractioned by SDS-PAGE and blotted. Filters were probed with antibodies specific for the proteins indicated to the right. Plastocyanin (PC) and ATPC were used as controls for soluble and membrane-bound plastid protein content, respectively.

А

Figure S2.

Figure S2. Effects of *FC1* and *FC2* Overexpression on the Tetrapyrrole Pathway (Related to Figure 2)

(A) Shown are the first cauline leaf of four-week-old *FC1* and *FC2* overexpression lines (indicated above the image).

(B) Chlorophyll levels of 3-day-old seedlings grown under cycling conditions (16 hours light/8 hours dark) of 65 μ mol/m²/s without sucrose supplementation. Data shown are the mean +/-SEM of biological duplicates.

(C) RT-qPCR analysis of steady-state *HY1* and *HY2* mRNA transcript levels of 7-day old NF-treated seedlings. Data shown are the mean +/- SEM of triplicate reactions of a representative experiment.

(D) Effect of light on hypocotyl elongation. Shown are the lengths of hypocotyls (mm) of mutants and *FC OX* lines after 4 days in continuous dark, red (1 μ mol/m²/s), far-red (1 μ mol/m²/s), or white light (wc) (7.5 μ mol/m²/s) at 22°C. Seedlings grown in white light were also treated with 5 μ M NF and failed to green. n \geq 13 seedlings. Data shown are the mean +/-SEM of biological duplicates. *Not determined.

RT-qPCR analysis of NF-treated seedlings.

(A) Steady-state FC1 and FC2 mRNA transcript levels in T-DNA knockdown lines.

(B) Six-day-old *gun5* seedlings were treated with 0.5 mM GAB and 1 mM ALA for 24 hr as indicated. Data shown are the mean +/- SEM of triplicate reactions of a representative experiment.

35S::FC2∆468-512(∆LHC domain)-YFP-HA (Line 54-4)

35S::FC1∆2-35-YFP-HA (Line 70-9)

35S::FC1∆2-47-YFP-HA (Line 68-8)

Figure S4.

Figure S4. Plastid Localization of Overexpressed and Natively Expressed FC1 and FC2 (Related to Figure 4)

(A) Overexpressed FC1- and FC2-CFP colocalizes with YFP fused to the tobacco RBCS N-terminal sorting signal [2].

(B) FC1- and FC2-YFP expressed by their respective native promoters colocalize with CFP fused to the tobacco RBCS N-terminal sorting signal.

(C-E) Overexpressed FC2-YFP-HA lacking the LHC domain (Δ 468-512) (C), overexpressed Z. *mays* FC1A-YFP-HA, FC1B-YFP-HA, FC2-YFP-HA (D), and overexpressed hybrid *Arabidopsis* FC1-YFP-HA and FC2-YFP-HA proteins with swapped N-terminal sorting signals (E) are localized to plastids.

(F) Overexpressed FC1-YFP-HA lacking the N-terminal plastid localization signal peptide ($\Delta 2$ -35/ $\Delta 2$ -47) is not localized to a single compartment. Plastid localization was confirmed by overlay of YFP signal with chlorophyll auto fluorescence using confocal microscopy. The yellow color in the digitally merged images indicates colocalization. Scale bars represent 30 μ m.

Supplemental Experimental Procedures

Growth of Bacterial Strains

For cloning purposes, *E. coli* and *Agrobacterium tumefaciens* strains were grown in liquid Miller nutrient broth or solid medium containing 1.5% agar (w/v). Cells were grown at 37°C (*E. coli*) or 28°C (*A. tumefaciens*) with the appropriate antibiotics. Liquid medium was shaken at 225 rpm.

GUS Staining

Seven-day-old NF-treated seedlings were soaked in cold 90% acetone for 20 min and then vacuum infiltrated with 2 mM 5-bromo-4-chloro-3-indolyl β -D-glucuronide (X-Gluc), 10 mM potassium ferrocyanide, 10 mM potassium ferricyanide, 0.2 % (w/v) Triton X-100, in 500 mM sodium phosphate, pH 7.2. Tissue was incubated at 37°C for 24 hr before images were taken.

gun Activation-Tagging Mutant Screen

Flowering Col-0/107 plants were transformed with the pSKI015 plasmid containing multimerized Cauliflower Mosaic Virus (CaMV) 35 enhancer elements and a Basta herbicide selection marker [39]. Transformation was accomplished by dipping *Arabidopsis* flowers in a stationary culture of *A. tumefaciens* that had been washed in MS medium containing 5% sucrose and 0.03% Silwet L-77 (v:v) (Osi Specialities Inc.). Plants were then kept covered in the dark for 1 day before being returned to greenhouse conditions. Seeds were then harvested and sown on medium containing Basta to select for T1 generation transformants. T1 plants were then grown normally and seeds were collected from individual plants. About 30 T2 generation seeds from 20,000 individual T1 lines were germinated on medium containing 2% sucrose, 5 μ M norflurazon, and 20 μ g/ml of hygromycin-resistant seedlings were transferred to medium without drug for recovery. Once seedlings had greened, they were transferred to soil and seeds were collected for analysis. One candidate, called *gun6-1D* in this study, was isolated by this method and used for further study. 100% of T3 and F1 seedlings (backcrossed to wt) were hygromycin resistant during NF-treatment indicating a dominant gain-of-function mutation.

The *Arabidopsis* genome sequence flanking T-DNA's in the *gun6-1D* mutant were obtained according to [39]. Briefly, genomic DNA from *gun6-1D* mutant seedlings was extracted using the C-TAB method [40]. Total DNA was digested with either HinDIII, EcoRI, or BamHI restriction enzymes, ligated, and transformed into *E. coli*. Kanamycin resistant colonies were isolated and their plasmids were sequenced using T-DNA specific primers described in [39]. The location of T-DNA's was confirmed by PCR and sequencing to be inserted into gene At5g26015 replacing six bases upstream of its start codon and the first 68 bases of its coding region (Figure S1A).

Construction of Overexpression Plasmids

Plasmids and plant lines used in this study are listed in Supplemental Experimental Procedures. DNA fragments were amplified by using Phusion enzyme (Finnzymes Espoo, Finland) using either wt *Arabidopsis* genomic DNA or cDNA or wt *Z. mays* cDNA as template. The Primers used are listed in Supplemental Experimental Procedures. DNA fragments were gel-purified using the QIAquick Gel Extraction Kit (Qiagen) and cloned into the Gateway compatible vector pENTR-D/TOPO (Invitrogen) according to the manufacturer's instructions.

Directed mutagenesis of FC1 and FC2 genes was achieved by designing anti-parallel primers with the desired nucleotide change near the center. Using plasmids pJDW5 (FC1) and pJDW7 (FC2) as templates, mutagenized plasmid was amplified using *pfu* turbo (Stratagene). Reactions were treated with *Dpn*I and plasmid was transformed into *E. coli*. Single colonies were selected and plasmids were sequenced to confirm the mutation was present.

To generate hybrid *FC1* and *FC2* genes, sequence encoding the FC1 N-terminus (amino acids 1-88), FC1 core (amino acids 89-466), FC2 N-terminus (amino acids 1-99), and FC2 core (amino acids 100-512) were amplified separately from cDNA with introduced in-frame BamHI sites at the 3' end of the N-terminal encoding fragments and the 5' end of the core protein encoding fragments. DNA fragments were digested with BamHI and ligated in the desired combinations. Flanking primer pairs were used to amplify the hybrid fragment that was gel-purified and cloned as described above.

The cloned DNA fragments were then transferred to the 35S overexpression vectors (pEARLEYGATE100-2) [41] or promoter-less vectors pGBGWC/Y [42] using LR clonase (Invitrogen) according to manufacturer's instructions. Plasmids were then transformed into the *A. tumefaciens* strain GV301 and these cells were used to transform *Arabidopsis*.

TargetP 1.1 program (www.cbs.dtu.dk/services/TargetP/) was used to predict that amino acid residue 35 is the cleavage site of the FC1 N-terminal plastid sorting signal. The two FC1 N-terminal deletion constructs used in this study begin at residues 36 and 48 in order to exclude the entire plastid sorting signal.

Heme Measurements

Total non-covalently-bound heme (normalized to fresh weight) was extracted from 7-day old seedling shoots by homogenizing liquid N_2 -frozen tissue in acetone with 2% HCL (v:v) and cell debris was removed by centrifugation at 10,000 x g for 20 min at 4°C. Samples were diluted 1:100 in 100 mM Tris-Cl pH 8.4. Heme content was measured by the chemiluminescence-based method described by [38] that measures reconstituted activity from apo-horseradish peroxidase (Biozyme, Blaenovan, Wales). A Promega Glomax 96 microplate luminometer was used to measure luminescence.

Hypocotyl Measurements

After a five day vernalization period at 4°C, seeds were germinated by exposing to 75 μ mol/m²/s white light at 22°C for 2 hr and then placed under the appropriate light conditions. After 4 days, at least 13 seedlings of each sample group was placed on a transparency sheet and scanned to a digital image file. Hypocotyl lengths were calculated using ImageJ 1.42q software (http://rsbweb.nih.gov/ij/).

Ferrochelatase Assay

Total protein extracts and crude plastid fractions were made from 5 day old NF-treated seedlings as described [43] except that plastids were pelleted at 4,000 x g to exclude other organelles. Ferrochelatase activity was monitored using the codeuteroporphyrin IX assay [43] that measures the aerobic synthesis of codeuteroporphyrin IX from cobalt and deuteroporphyrin IX (Frontier Scientific, Logan, UT). 1 mg of total protein was added to each reaction and deuteroporphyrin consumption was monitored over time by stopping the reaction with 30-fold dilution in 80% acetone (v:v) and measuring fluorescence in a Tecan Safire² fluorimeter. Excitation and

fluorescence wavelengths of 400 nm and 620 were used, respectively. Known concentrations of deuteroporphyrin IX dissolved in 80% acetone were used to calibrate the fluorimeter.

Protein Extraction and Western Blot Analysis

Seedlings were frozen in liquid N₂ and homogenized in extraction buffer (50 mM Tris-Cl pH 8.0, 150 mM NaCl, 0.5% Nonidet P-40 (v:v), and protease inhibitors (Roche). Cell debris was removed by centrifugation at 10,000 x g for 20 min at 4°C. Total protein concentration was measured using the Bradford assay (Bio-Rad) and 20 µg of each sample was loaded into a 4-20% SDS-PAGE gel and proteins were fractionated by electrophoresis and then transferred to nitrocellulose membranes (Bio-Rad). Filters were incubated with specific primary and secondary antibodies. Detection was performed using the Super Signal West Pico Chemiluminescent Substrate (Thermo Scientific Rockford, IL). Monoclonal HA and Actin antibodies were purchased from Roche (Basel, Switzerland) and MP Biomedicals (Solon, OH), respectively. Polyclonal plastocyanin (PC), ATPC, and Rubisco large subunit (RBCL) were purchased from Agrisera (Vännäs, Sweden). Polyclonal GFP antibodies were produced in our laboratory.

Plastid-enriched extracts were prepared from 200 mg of 5-day old NF-treated that were frozen in liquid N₂, homogenized, re-suspended in isolation buffer (10 mM Tris-Cl pH 8.0, 10 mM MgCl₂, 400mM Sucrose, 0.1 mM phenylmethylsulfonyl fluoride and protease inhibitors (Roche)), and incubated for 10 min on ice. Cell debris was removed by centrifugation at 500 x g for 5 min at 4 °C and supernatant (total protein) was re-centrifuged (4,000g, 10 min). The resulting pellet, enriched in plastids, was washed with isolation buffer three times and resuspended in lysis buffer (62.5 mM Tris-Cl, pH 8.0, 2 mM MgCl₂) to disrupt the chloroplasts. To ensure the rupture of thylakoids, samples were subjected to freeze-thaw cycles and centrifuged 75,000 x g for 45 min to separate supernatant (soluble fraction) and pellet (envelope and thylakoid membranes). To remove any possible residual soluble proteins from the membranes, the pellet was re-suspended in lysis buffer and an additional spin of 20 min at 75,000 x g was performed. The resulting pellet (plastid membrane fraction), was re-suspended in Lysis buffer containing 0.5% w/v Nonidet P-40. Protein from Total (15ug) and Plastid Membrane (6ug) fractions were separated by 4-12% SDS-PAGE, transferred to Nitrocellulose membrane (Bio-Rad) and immunoblotted with the specified antibodies.

Arabidopsis Mutants Used in This Study

Mutant	Gene / protein	Mutation	notes	Ref
gun2-1	At2g26670 (HY1) /	EMS		[1]
	Heme oxygenase			
gun4-1	At3g59400 / GUN4	EMS,		[1]
		L88F		
gun5-1	At5g13630 (CHLH) /	EMS,		[1, 3]
	Mg-chelatase subunit	A990V		
	Н			
gun6-1D	increases expression of	Activation	dominant	This study
	At5g26030 /	tag T-	<i>gun</i> mutant	
	Ferrochelatase 1	DNA		
lin2	At1g03475 (HEMF1) /	T-DNA,		[4]
	Coproporphyrinogen	5'-UTR		
	III oxidase			
fc1	At5g26030 /	T-DNA,		[5]
(SALK_150001)	Ferrochelatase 1	5'-UTR		
fc1	At5g26030 /	T-DNA,	Unable to	This study
(GabiKat_110D02)	Ferrochelatase 1	exon 3/8	obtain	
null mutant			homozygotes	
fc2	At2g30390 /	T-DNA,		This study
(GabiKat_766H08)	Ferrochelatase 2	5'-UTR		
hemal	At1g58290 /	T-DNA,		This study
(SALK_056220)	Glutamate tRNA	5'-UTR		
	reductase 1			
hemal	At1g58290 /	T-DNA,	homozygous	This study
(SALK_053036)	Glutamate tRNA	exon $3/3$	is seedling	
null mutant	reductase 1		lethal	
hema2	At1g09940 /	T-DNA,		This study
(SALK_052000)	Glutamate tRNA	exon $3/3$		_
/	reductase 2			

Primers Used in This Study

Gene	Primer	Sequence
	orientation/name	-
RT-qPCR primer pairs		
18S rRNA At3g41768	For. / JP190	TATAGGACTCCGCTGGCACC
	Rev. / JP191	CCCGGAACCCAAAAACTTTG
Actin2 At3g18780	For. / JP199	GCACTTGCACCAAGCAGCAT
	Rev. / JP200	CCTTTCAGGTGGTGCAACGAC
LHCB 1.2, CAB3	For. / JP197	GGACTTGCTTTACCCCGGTG
At1g29910		
	Rev. / JP198	TCGGTAGCAAGACCCAATGG
CA1 AT3g01500	For. / JP209	TGTGTCCATCACACGTTCTGG
	Rev. / JP210	GGACCACGAAGGCATCTCCT
RBCS At1g67090	For. / JP205	GCAACGGCGGAAGAGTTAAC
	Rev. / JP206	TCTTTCCAATCGGAGGCCA
Plastocyanin At1g76100	For. / JP203	TGGTGTTCGACGAAGACGAG
	Rev. / JP204	AGATCTTGCTTGCGTCCACA
CP12 At3g62410	For. / JP271	CGGACCCTTTGGAGGAATACTG
	Rev. / JP272	GGCACTCGTTGGTCTCAGGA
Hemal At1g58290	For. / JP254	GCTTCCGCAGTCTTCAAACG
	Rev. / JP255	CCAGCGCCAATTACACACATC
Hema2 At1g04490	For. / JP211	AGCTCCTGCACGGTCCAAT
	Rev. / JP212	TGCTATCGTTCCCATCGCAT
FC1 At5g26030	For. / JP110	ATACCAGAGTCGTGTTGGCCC
	Rev. / JP111	TCATCGGTGTATGGCTTCAGC
FC2 At2g30390	For. / JP239	TGGTGCTATGGCTGTCTCAAAC
	Rev. / JP240	AGCGGAACTAACGACTGTCGA
HY1 At2g26670	For. / JP409	TGCTGGTGGACGAATGATTG
	Rev. / JP410	TTATCGAGTATCCGCTCTGCC
HY2 At3g09150	For. / JP411	AAGCAAAGGCAAAGGAGCTG
	Rev. / JP412	CATCCACCCCATTGAACAGG
Genotyping primers		
SALK T-DNA left border	LB1.3	ATTTTGCCGATTTCGGAAC
GABI-KAT Left border	Gabi-KAT	ATATTGACCATCATACTCATTGC
	08409	
fc1 (SALK_150001)	LP JP138	TTTTGGATTGAGGAACTTTTACAAC
	RP JP139	AAACTCAATCCACGATTCGTG
<i>fc1</i> (GabiKat_110D02)	LP JP281	CACTCTTCCATCTGCTTCTGG
	RP JP282	GCTCGTTCTGTGACTGGAGAC
<i>fc2</i> (GabiKat_766H08)	LP JP283	GAGCAACGCCAAACATAGAAG
	RP JP284	TCAAAGGCAATGAATGTTTCC
hema1 (SALK_056220)	LP JP235	TTCCACAAATCTATCCATCGG
	RP JP236	AAGCAGAGAGCTCACAACGAG
hema1 (SALK_053036)	LP JP237	CTGAATGGCCAAGAGCTATTG
	RP JP240	AACCTCTGGAGAAGCTTGAGG

hema2 (SALK_052000)	LP 142	ATCTCAAATGCTGCATTGGAC
	RP JP143	TGTTTTGGGCATTTCTCATTC
gun5-1	For (Cac8I	ACCAACCGGTAAAAACATGCATG
-	digest)	
	Rev	CTCACACCAATCATCCAAAGAAC
Cloning primers		
FC1 coding region for	For JP115	CACCATCGGTTCTGAAATTTGTAGCTATG
Gateway		
	Rev JP118	TAGGTTCCGGAACGCATGGA
FC1 + native promoter	For JP219	CACCTTCAATTACGATAATTCATGGTGTG
(1700 bp upstream ATG)		
FC1Δ2-35	For JP297	CACCATGTGCGATATAAAAGAGAGAGATCTT
FC1Δ2-47	For JP295	CACCATGACTATCACGAATCGTGGATT
FC2 coding region for	For JP119	CACCTCAAGTTTCAATCTTTTTGCAATG
Gateway		
	Rev JP122	TAATGAAGGCAAGATGCCCCAC
FC2 + native promoter	For JP220	CACCGCTTTCGAAATCATGCAACA
(1061 bp upstream ATG)		
FC2Δ468-512 (ΔLHC)	Rev JP264	CATTGTCACCGGTGCTGGTAAC
HEMA2 coding region for	For JP216	CACCAAACTCAAAATCTATGGCGGTTT
Gateway		
	Rev JP218	CTTTTTTTCCACCTTTGCTCTAA
Z. Mays FC1A cDNA for	For JP321	CACCAAGCAGCCCATGTCTTCGT
Gateway		
	Rev JP322	AAGCATGGTGCTCCGGAAG
Z. Mays FC1B cDNA for	For JP325	CACCCTGCAGGAAGGATCATGGA
Gateway		
	Rev JP326	AAGCATGGTGTTCCGGAAAG
Z. Mays FC2 coding region	For JP323	CACCGGAGGAGAGGGGAGAGGATGT
for Gateway		
	Rev JP324	GCGGAACAGAGGCAGGATTC
FC1 mutagenesis (H284A)	For JP221	CTTCAGTGCTGCTGGTGTTCCGGTC
	Rev JP222	GACCGGAACACCAGCAGCACTGAAG
FC2 mutagenesis (H295A)	For JP245	TTCAGTGCAGCTGGCGTGCCTCTTG
	Rev JP246	CAAGAGGCACGCCAGCTGCACTGAA
FC1 N-term sorting signal	Rev JP260	ATAATAGGATCCATCTTCTGCAACAACATG
(Residues 1-88)		AGAAC
FC1 core (residues 89-466)	For JP261	ATAATAGGATCCGCTAAGATTGGTGTCTTG
	D 102/2	
FU2 N-terminal sorting	Kev JP262	CAGAG
EC2 age (residues 1-99)	Ear ID2(2	
rC2 core (residues 100-512)	FOF JF203	TTAAACCT

Plasmids Used in This Study

Plasmid	Insert	Parent	Arabidopsis	notes	ref
			Lines		
pENTR-				Gateway	Invti
D/TOPO				cloning vector	roge n
PEARLE				35S promoter,	[6]
YGATE				C-term YFP-	
101				The fusion	
PEARLE				35S promoter,	[6]
YGATE				C-term CFP-	
102				The fusion	
pGBGWC				No promoter, C-term CFP	[7]
pGBGWY				No promoter, C-term YFP	[7]
pJDW5	Genomic FC1 coding	pENTR-D/TOPO			
	region w/o stop codon				
pJDW7	Genomic FC2 coding	pENTR-D/TOPO			
	region w/o stop codon				
pJDW10	35S::FC1-YFP-HA	pEARLEYGATE101	250		
		+ pJDW5			
pJDW11	35S::FC1-CFP-HA	pEARLEYGATE102	251		
		+ pJDW5			
pJDW12	35S::FC2-YFP-HA	pEARLEYGATE101	252		
		+ pJDW7			
pJDW13	35S::FC2-CFP-НА	pEARLEYGATE102	253		
		+ pJDW7			
pJDW21	Genomic FC1 coding	pJDW5		FC1 H284A	
	region w/o stop codon			mutation	
pJDW28	Genomic FC2 coding	pJDW7		FC2 H295A	
	region w/o stop codon			mutation	
pJDW33	35S::dFC1-YFP-HA	pEARLEYGATE101	33	FC1 H284A	
		+ pJDW21		mutation	
pJDW39	35S::dFC1-YFP-HA	pEARLEYGATE101	39	FC2 H295A	
		+ pJDW28		mutation	
pJDW25	Genomic HEMA2	pENTR-D/TOPO			
	coding region w/o stop				
	codon				
pJDW37	35S:: <i>НЕМА2-ҮFP-НА</i>	pEARLEYGATE101	37		
		+ pJDW25			
pJDW87	MzaFC1A cDNA w/o	pENTR-D/TOPO			
	stop codon				
pJDW88	MzaFC2 cDNA w/o	pENTR-D/TOPO			
	stop codon				
pJDW89	MzaFC1B cDNA w/o	pENTR-D/TOPO			
	stop codon				

pJDW90	35S::MzaFC1A-YFP-	pEARLEYGATE101	90	
	HA	+ pJDW87		
pJDW91	35S::MzaFC2-YFP-	pEARLEYGATE101	91	
	HA	+ pJDW88		
pJDW92	35S::MzaFC1B-YFP-	pEARLEYGATE101	92	
	HA	+ pJDW89		
pJDW26	Genomic FC1 w/o	pENTR-D/TOPO		
	stop codon + native			
	promoter (1700 bp			
	upstream ATG)			
pJDW27	Genomic FC2 w/o	pENTR-D/TOPO		
	stop codon $+$ native			
	promoter (1061 bp			
	upstream ATG)	DCDCWW	20	
pJDw30	FCI::FCI-IFP	PUBUWY +	30	
nIDW21		pJD w 20	21	
pjDw31	$\Gamma C2\Gamma C2$ -CFF	nIDW27	51	
nIDW32	EC2EC2_VEP	PGRGWV +	32	
p3D W 32	$1^{\circ}C21^{\circ}C2^{-11^{\circ}1}$	nIDW27	52	
nIDW43	Fusion of FC1 N-	pFDW27		
point in	terminal sorting signal			
	and core FC2			
	(FC1/FC2) w/o stop			
	codon			
pJDW45	Fusion of FC2 N-	pENTR-D/TOPO		
-	terminal sorting signal	-		
	and core FC1			
	(FC2/FC1) w/o stop			
	codon			
pJDW46	$FC2$ cDNA ($\Delta 468$ -	pENTR-D/TOPO		
	512)			
pJDW51	<i>35S::FC1</i> (N-term)/	pENTR-D/TOPO	51	
	FC2(core)-YFP-HA			
pJDW53	<i>35S::FC2</i> (N-term)/	pEARLEYGATE101	53	
	FC1(core)-YFP-HA	+ pJDW45		
pJDW54	<i>35S::FC2</i> (∆468-512)-	pEARLEYGATE101	54	
	YFP-HA	+ pJDW46		
PJDW61	$FC1$ cDNA ($\Delta 2-47$)	pENTR-D/TOPO		
PJDW63	$FC1$ cDNA ($\Delta 2-35$)	pENTR-D/TOPO		
pJDW68	<i>35S::FC1</i> (∆2-47)-	pEARLEYGATE101	68	
	YFP-HA	+ pJDW61		
pJDW70	<i>35S::FC1</i> (∆2-35)-	pEARLEYGATE101	70	
	YFP-HA	+ pJDW63		

Line	Construct	plasmid	Parent	
Col-0/107			Col-0	[1]
250	35S::FC1-YFP-HA	pJDW10	Col-0/107	
251	З5S::FC1-CFP-HA	pJDW11	Col-0/107	
252	35S::FC2-YFP-HA	pJDW12	Col-0/107	
253	З5S::FC2-CFP-HA	pJDW13	Col-0/107	
33	35S::dFC1-YFP-HA	pJDW33	Col-0/107	
39	35S::dFC2-YFP-HA	pJDW39	Col-0/107	
37	35S::HEMA2-YFP-HA	pJDW37	Col-0/107	
30	FC1::FC1-YFP	pJDW30	Col-0	
31	FC2::FC2-CFP	pJDW31	Col-0	
32	FC2::FC2-YFP	pJDW32	Col-0	
51	35S::FC1(N-term)/FC2(core)-YFP-HA	pJDW51	Col-0/107	
53	35S::FC2(N-term)/FC1(core)-YFP-HA	pJDW53	Col-0/107	
54	<i>35S::FC2</i> (Δ468-512)- <i>YFP-HA</i>	pJDW54	Col-0/107	
68	<i>35S::FC1</i> (Δ1-47)- <i>YFP-HA</i>	PJDW68	Col-0/107	
70	<i>35S::FC1</i> (Δ1-35)- <i>YFP-HA</i>	pJDW70	Col-0/107	
90 (ZmaFC1A)	35S::ZmaFC1A-YFP-HA	pJDW90	Col-0/107	
91 (ZmaFC2)	35S::ZmaFC2-YFP-HA	pJDW91	Col-0/107	
92 (ZmaFC1B)	35S::ZmaFC1B-YFP-HA	pJDW92	Col-0/107	
Plastid-CFP	35S::TobaccoRBCS(1-79)-CFP	pt-cb	Col-0	[2]
marker		CD3-994		
Plastid-YFP	35S::TobaccoRBCS(1-79)-YFP	pt-yb	Col-0	[2]
marker		CD3-998		

Transgenic Lines Used in This Study

Supplemental References

- 1. Susek, R.E., Ausubel, F.M., and Chory, J. (1993). Signal transduction mutants of Arabidopsis uncouple nuclear CAB and RBCS gene expression from chloroplast development. Cell 74, 787-799.
- 2. Nelson, B.K., Cai, X., and Nebenfuhr, A. (2007). A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. *51*, 1126-1136.
- 3. Mochizuki, N., Brusslan, J.A., Larkin, R., Nagatani, A., and Chory, J. (2001). Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc. Natl. Acad. Sci. U.S.A. *98*, 2053-2058.
- 4. Ishikawa, A., Okamoto, H., Iwasaki, Y., and Asahi, T. (2001). A deficiency of coproporphyrinogen III oxidase causes lesion formation in Arabidopsis. Plant J. 27, 89-99.
- 5. Nagai, S., Koide, M., Takahashi, S., Kikuta, A., Aono, M., Sasaki-Sekimoto, Y., Ohta, H., Takamiya, K., and Masuda, T. (2007). Induction of isoforms of tetrapyrrole biosynthetic enzymes, AtHEMA2 and AtFC1, under stress conditions and their physiological functions in Arabidopsis. Plant Physiol. *144*, 1039-1051.
- 6. Earley, K.W., Haag, J.R., Pontes, O., Opper, K., Juehne, T., Song, K., and Pikaard, C.S. (2006). Gateway-compatible vectors for plant functional genomics and proteomics. Plant J. 45, 616-629.
- 7. Zhong, S., Lin, Z., Fray, R.G., and Grierson, D. (2008). Improved plant transformation vectors for fluorescent protein tagging. Transgenic Res. *17*, 985-989.