Supporting Information

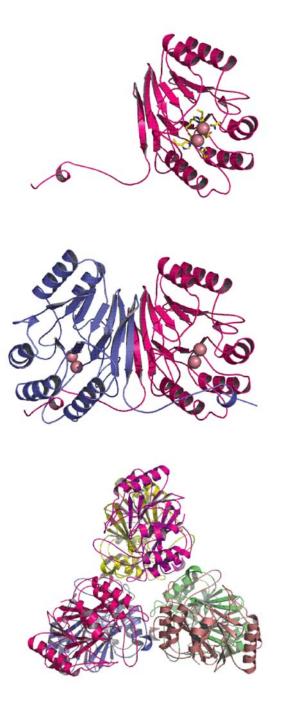
Substrate Induced Formation of a Catalytically Competent Binuclear Center and Regulation of Reactivity in a Glycerophosphodiesterase from *Enterobacter aerogenes*

Kieran S. Hadler,^a Eric A. Tanifum,^b Sylvia Hsu-Chen Yip,^c Nataša Mitić,^a Luke W. Guddat,^a Colin J. Jackson,^c Lawrence R. Gahan,^a Kelly Nguyen,^c Paul Carr,^c David L. Ollis,^c Alvan C. Hengge,^b James A. Larrabee,^d Gerhard Schenk ^{a*}

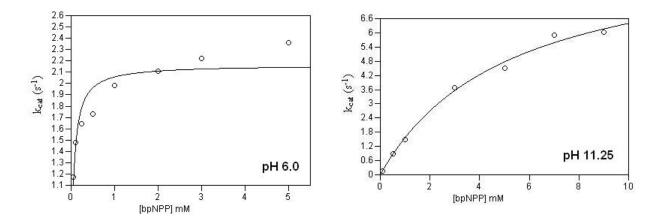
^aSchool of Molecular and Microbial Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia; ^bDepartment of Chemistry and Biochemistry, Utah State University, Logan, UT, 84322, USA; ^cResearch School of Chemistry, Australian National University, Canberra, ACT, 0200, Australia; ^dDepartment of Chemistry and Biochemistry, Middlebury College, Middlebury, VT, 05753, USA

Address for correspondence:

School of Molecular and Microbial Sciences


University of Queensland

St Lucia, Queensland, 4072, Australia


Email: <u>schenk@uq.edu.au</u>

Phone: +61 7 3345 4144

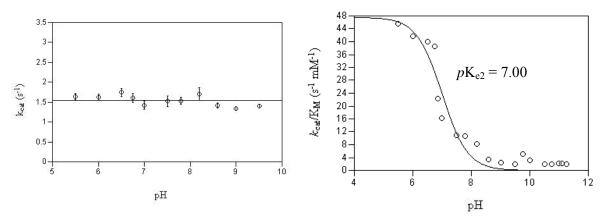
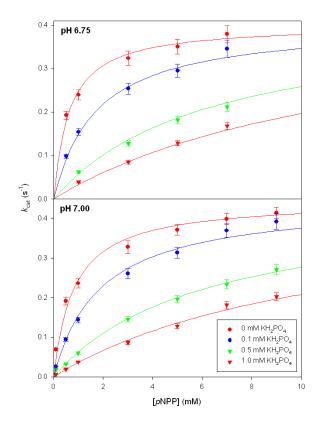
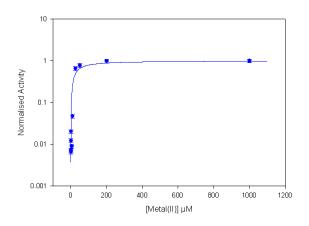

Fax: +61 7 3345 4299

Figure S1. Overall structure and oligomeric organization of GpdQ. *Upper Panel*. Monomer with active site metal ions shown as spheres and ligating residues as sticks. *Middle Panel*. Dimer with active site metal ions shown as spheres. *Lower Panel*. Trimer of dimers present in the asymmetric unit.


Figure S2. Examples of the effect of the substrate concentration (bpNPP) on the enzymatic activity of GpdQ. Rates were measured at pH 6.00 and pH 11.25.


Figure S3. pH profile of k_{cat} and k_{cat}/K_M for the hydrolysis of *bp*NPP by GpdQ. The data in the lower panel were fit using a modified form of Equation 5, where $K_{el} >> [H^+]$:

$$\frac{k_{cat}}{K_M} = \frac{k_{cat}}{K_s \left(1 + \frac{K_{e2}}{[H^+]}\right)}$$

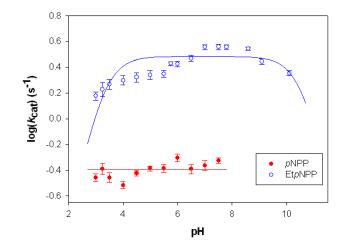

Equation S1

Figure S4. Effect of inhibition of 0 mM, 0.1 mM, 0.5 mM and 1.0 mM KH₂PO₄ towards the hydrolysis of *p*NPP. Data were measured at pH 7.0 and pH 6.75 under identical conditions and data were analyzed using Equation 6. The mode of inhibition is competitive with $K_i = 78(6)$ and $57(4) \mu$ M, respectively.

Figure S5. Determination of metal binding to GpdQ by measuring activity as a function of added Co^{II}.

Figure S6. pH dependence of k_{cat} for the hydrolysis of EtpNPP and pNPP where the former has been fit to an equation derived for a model with two protonation equilibria:

$$k_{cat} = \frac{k_{cat,\max}}{1 + \frac{[H^+]}{K_{es1}} + \frac{K_{es2}}{[H^+]}}$$

Equation S2

The effect of a viscogen (30% sucrose) on the value of k_{cat}/K_M for the hydrolysis of EtpNPP was also measured at several pHs. At pH 5.5: $k_{cat}/K_M = 10.7 \pm 1.6 \text{ s}^{-1} \text{ mM}^{-1}$ (no sucrose), $9.7 \pm 1.3 \text{ s}^{-1} \text{ mM}^{-1}$ (with 30% sucrose); at pH 7.0: $k_{cat}/K_M = 5.9 \pm 0.9 \text{ s}^{-1} \text{ mM}^{-1}$ (no sucrose), $4.9 \pm 0.7 \text{ s}^{-1} \text{ mM}^{-1}$ (with 30% sucrose); at pH 8.6: $k_{cat}/K_M = 0.42 \pm 0.06 \text{ s}^{-1} \text{ mM}^{-1}$ (no sucrose), $0.33 \pm 0.05 \text{ s}^{-1} \text{ mM}^{-1}$ (with 30% sucrose).

Full list of authors for references 61 and 89:

(61) Kissinger, C. R.; Parge, H. E.; Knighton, D. R.; Lewis, C. T.; Pelletier, L. A.; Tempczyk, A.; Kalish, V. J.; Tucker, K. D.; Showalter, R. E.; Moomaw, E. W.; Gastinel, L. N.; Habuka, N.; Chen, X.; Maldonado, F.; Barker, J. E.; Bacquet, R.; Villafranca, J. E. *Nature* **1995**, *178*, 641-644.

(89) Evdokimov, A.G.; Pokross, M.; Walter, R.L.; Mekel, M.; Barnett, B.L.; Amburgey, J.; Seibel, W.L.; Soper, S.J.; Djung, J.F.; Fairweather, N.; Diven, C.; Rastogi, V.; Grinius, L.; Klanke, C.; Siehnel, R.; Twinem, T.; Andrews, R.; Curnow, A. *Proteins: Struct., Funct., Bioinf.* **2007**, *66*, 538-546.