Supporting Information

Strong Inhibition of O-Atom Transfer Reactivity for $Mn^{IV}(O)(\pi$ -radical-cation)(Lewis acid) Versus $Mn^{V}(O)$ Porphyrinoid Complexes

Jan Paulo T. Zaragoza, Regina A. Baglia, Maxime A. Siegler, and David P. Goldberg*

Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA

*E-mail: dpg@jhu.edu

Figure S1. a) Stopped-flow UV-vis spectral changes (0 - 4 s) for the reaction of $Mn^{V}(O)(TBP_{8}Cz)$ (13 µM) (blue line) and PPh₃(0.09 mM) forming $Mn^{III}(TBP_{8}Cz)$ (red line) in $CH_{2}Cl_{2}$ at 25°C. b) Changes in absorbance at 635 nm over time following the decay of $Mn^{V}(O)(TBP_{8}Cz)$. c) Changes in absorbance at 685 nm over time following the growth of $Mn^{III}(TBP_{8}Cz)$. Changes in absorbance at 635 nm over time following the decay of $Mn^{V}(O)(TBP_{8}Cz)$. c) Changes in absorbance at 685 nm over time following the growth of $Mn^{III}(TBP_{8}Cz)$. Changes in absorbance at 635 nm over time following the decay of $Mn^{V}(O)(TBP_{8}Cz)$ after addition of varying amounts of PPh₃: d) 0.12 mM, e) 0.16 mM, f) 0.19 mM, and g) 0.23 mM. h) Plot of k_{obs} versus [PPh₃].

Figure S2. Plots of k_{obs} versus $[P(X-Ph)_3]$ for the reaction of $Mn^V(O)(TBP_8Cz)$ (13 µM) in CH₂Cl₂ at 25°C with substituted triarylphosphines: X = p-CH₃ (0.07 – 0.24 mM), p-Cl (0.07 – 0.24 mM), p-CF₃ (0.13 – 0.56 mM), m-CH₃ (0.11 – 0.24 mM), o-CH₃ (0.18 – 0.60 mM).

Figure S3. Displacement ellipsoid plot (50% probability level) of $Mn^{III}(OP(o-tolyl)_3)(TBP_8Cz)$ (2a) at 110(2) K. The disorder, H atoms and solvent molecules are omitted for clarity.

Figure S4. ESI-MS spectra and experimental isotope pattern for the $[M+H]^+$ peak (inset: calculated isotope pattern for the $[M+H]^+$ peak) for $Mn^{III}(OPPh_3)(TBP_8Cz)$ (top) and $Mn^{III}(OP(o-tolyl)_3)(TBP_8Cz)$ (middle). UV-vis spectra of $Mn^{III}(OPPh_3)(TBP_8Cz)$ crystals in CH_2Cl_2 (bottom).

Figure S5. X-band EPR spectra for a) $Mn^{III}(TBP_8Cz)$ (2 mM) + $Zn(OTf)_2$ (2 equiv) in $CH_2Cl_2:CH_3CN$ (5:1 v/v), b) $Mn^{III}(TBP_8Cz)$ (2 mM) in CH_2Cl_2 , c) $Mn^{IV}(O)(TBP_8Cz^{*+}):Zn^{II}$ (2 mM) + 10 PPh₃ in $CH_2Cl_2:CH_3CN$ (25:1 v/v). EPR parameters: T = 13 K, freq. = 9.448 GHz, power = 20.0 mW, mod. amp. = 10 G, mod. freq. = 100 kHz, receiver gain = 5.00 x 10³. Spectra were an average of 2 scans. The lack of an EPR signal in (a) and (b) is expected for an integer-spin Mn^{III} (S = 2) complex. A similar absence of an intense EPR signal is seen for (c), consistent with the Mn^{III} product formed from the two-electron O-atom transfer reaction between $Mn^{IV}(O)(TBP_8Cz^{*+}):Zn^{II}$ and PPh₃. The residual 6-line signal observed at g = 2 in (c) is assigned to a minor Mn^{II} impurity. This signal was previously observed upon decomposition of $Mn^{III}(TBP_8Cz)$ with a strong acid (HOTf), and has a characteristic hyperfine coupling constant of $A_{iso}(^{55}Mn) = 120$ G.

Figure S6. ³¹P{¹H} NMR spectrum for the reaction mixture of $Mn^{IV}(O)(TBP_8Cz^{++}):Zn^{II} + 10 PPh_3$ after addition of excess $Bu_4N^+F^-$ in $CD_2Cl_2:CD_3CN$ (10:1 v/v). Peaks for PPh₃ ($\delta = -5.2$ ppm) and OPPh₃ ($\delta = 29.4$ ppm) were observed, and chemical shifts were referenced to an external 85% H₃PO₄ standard ($\delta = 0$ ppm). A yield of 74% for OPPh₃ was obtained by comparison of the integrations for PPh₃ and OPPh₃.

Figure S7. a) LDI-MS spectrum (positive ion mode) for $Mn^{V}({}^{18}O)(TBP_8Cz)$ showing the isotope distribution pattern which corresponds to 70% incorporation of ${}^{18}O$. Inset: theoretical simulation. b) LDI-MS spectrum (positive ion mode) for the $Mn^{IV}({}^{18}O)(TBP_8Cz^{+})$ fragment of $Mn^{IV}({}^{18}O)(TBP_8Cz^{+})$:Zn^{II} showing the isotope distribution pattern which corresponds to 40% incorporation of ${}^{18}O$. Inset: theoretical simulation. c) EI-MS spectrum of the isolated ${}^{18}OPPh_3$ extracted (CH₃OH) from the reaction of the sample in (b) + PPh₃ (10 equiv). A total of 88% incorporation of ${}^{18}O$ was observed.

Figure S8. a) Representative UV-vis spectral changes (0-600 s) for the reaction of $Mn^{IV}(O)(TBP_8Cz^{++}):Zn^{II}$ (13 μ M) (blue line) and PPh₃ (0.005 M) forming $Mn^{III}(TBP_8Cz):Zn^{II}$ (red line) in 100:1 v/v CH₂Cl₂/CH₃CN at 25 °C. b) Changes in absorbance at 725 nm over time following the growth of $Mn^{III}(TBP_8Cz):Zn^{II}$. c) Changes in absorbance at 789 nm over time following the decay of $Mn^{IV}(O)(TBP_8Cz^{++}):Zn^{II}$. (d-g) Changes in absorbance at 725 nm over time for the production of $Mn^{III}(TBP_8Cz):Zn^{II}$ after addition of varying amounts of PPh₃: d) 0.010 M, e) 0.016 M, f) 0.034 M, and g) 0.047 M. h)Plot of k_{obs} versus [PPh₃].

Figure S9. Plots of k_{obs} versus $[P(X-Ph)_3]$ for the reaction of $Mn^{IV}(O)(TBP_8Cz^{*+}):Zn^{II}$ (13 µM) in 100:1 v/v CH₂Cl₂/CH₃CN at 25°C with substituted triarylphosphines: $X = p-CH_3(0.001 - 0.006 \text{ M}), p-Cl(0.001 - 0.07 \text{ M}), p-CF_3(0.001 - 0.07 \text{ M}), m-CH_3(0.001 - 0.006 \text{ M}), p-CH_3(0.001 - 0.006 \text{ M}).$

Figure S10. a) Representative UV-vis spectral changes (0-600 s) for the reaction of $Mn^{IV}(O)(TBP_8Cz^{*+}):B(C_6F_5)_3$ (13 μ M) (blue line) and PPh₃(0.004 M) forming $Mn^{III}(TBP_8Cz):B(C_6F_5)_3$ (red line) in CH₂Cl₂ at 25 °C. b) Changes in absorbance at 725 nm over time following the growth of $Mn^{III}(TBP_8Cz):B(C_6F_5)_3$. c) Changes in absorbance at 789 nm over time following the decay of $Mn^{IV}(O)(TBP_8Cz^{*+}):B(C_6F_5)_3$. Changes in absorbance at 725 nm over time for the production of $Mn^{III}(TBP_8Cz):B(C_6F_5)_3$ after addition of varying amounts of PPh₃: d) 0.007 M, e) 0.01 M, f) 0.014 M, and g) 0.0185 M. h)Plot of k_{obs} versus [PPh₃].

Figure S11. Plots of k_{obs} versus $[P(X-Ph)_3]$ for the reaction of $Mn^{IV}(O)(TBP_8Cz^{+}):B(C_6F_5)_3$ (13 µM) in CH_2Cl_2 at 25°C with substituted triarylphosphines: $X = p-CH_3(0.0017 - 0.007 \text{ M}), p-Cl(0.005 - 0.02 \text{ M}), p-CF_3(0.015 - 0.043 \text{ M}), m-CH_3(0.001 - 0.006 \text{ M}), o-CH_3(0.001 - 0.006 \text{ M}).$

Figure S12. UV-vis spectra of $Mn^{V}O(TBP_{8}Cz)$ (20 μ M) before (green line) and after (red line) the addition of HBF₄•Et₂O (1 equiv) in CH₂Cl₂ at 25°C. The red spectrum is assigned as $Mn^{IV}O(TBP_{8}Cz^{*+})$:H⁺.

Figure S13. UV-vis spectra of recovery of $Mn^{V}O(TBP_{8}Cz)$ by addition of 2,6-lutidine in $CH_{2}Cl_{2}$ at 25 °C. $Mn^{IV}O(TBP_{8}Cz^{*+})$:H⁺ (20 μ M) (red line), after addition of 2,6-lutidine (1 equiv), leads to a partially (~75 %) recovered $Mn^{V}O(TBP_{8}Cz)$ (dotted blue line). Addition of excess 2,6-lutidine (1000 equiv) leads to formation of a $Mn^{II}(TBP_{8}Cz)$ product (dotted pink line).

Figure S14. Evans method ¹H NMR spectrum of $Mn^{IV}O(TBP_8Cz^{*+})$:H⁺ (2.0 mM) with 0.5% TMS in CD_2Cl_2 at 297 K. $\Delta\nu(TMS) = 22$ Hz.

Figure S15. Evans method ¹H NMR spectrum of $Mn^{V}O(TBP_{8}Cz)$ (2.0 mM) with 0.5% TMS in $CD_{2}Cl_{2}$ at 297 K. No shift in the TMS peak was observed.

Figure S16. a) Representative UV-vis spectral changes (1700 s) for the reaction of $Mn^{IV}(O)(TBP_8Cz^{\star+})$:H⁺ (13 μ M) (blue line) and PPh₃ (0.0012 M) forming $Mn^{III}(TBP_8Cz)$:H⁺ (red line) in CH₂Cl₂ at 25 °C. b) Changes in absorbance at 725 nm over time following the growth of $Mn^{III}(TBP_8Cz)$:H⁺. c) Changes in absorbance at 789 nm over time following the decay of $Mn^{IV}(O)(TBP_8Cz^{\star+})$:H⁺. Changes in absorbance at 725 nm over time for the production of $Mn^{III}(TBP_8Cz)$:H⁺ after addition of varying amounts of PPh₃: d) 0.0024 M, e) 0.0036 M, and f) 0.0082 M. g)Plot of k_{obs} versus [PPh₃].

Figure S17. Plots of k_{obs} versus $[P(X-Ph)_3]$ for the reaction of $Mn^{IV}(O)(TBP_8Cz^{+})$:H⁺ (13 µM) in CH₂Cl₂ at 25 °C with substituted triarylphosphines: X = p-CH₃(0.0017 – 0.007 M), p-Cl(0.005 – 0.02 M), p-CF₃(0.015 – 0.043 M), m-CH₃(0.001 – 0.006 M), o-CH₃ (0.001 – 0.006 M).

Figure S18. a) UV-vis spectral changes upon addition of acetylferrocene (0 - 2.25 equiv) to a solution of $Mn^{IV}(O)(TBP_8Cz^{*+}):Zn^{II}$ (15 μM) (red line) in 100:1 CH₂Cl₂/CH₃CN, forming $Mn^{IV}(O)(TBP_8Cz)(Zn^{II})$ (blue line) at 25°C. b) Plot of changes in absorbance A-A₀ at 725 nm upon addition of small amounts of acetylferrocene.

The plot from Figure S18b was fitted by using equation S3, which was derived as follows:

$$Mn^{IV}(O)(Cz^{*+})(Zn^{II}) + AcFc \approx Mn^{IV}(O)(Cz)(Zn^{II}) + AcFc^{+}$$

$$K_{ET} = \frac{[Mn^{IV}(O)(Cz)(Zn^{II})] [AcFc^{+}]}{[Mn^{IV}(O)(Cz^{*+})(Zn^{II})] [AcFc]}$$
(S1)

$$[Mn^{IV}(O)(Cz)(Zn^{II})] = \frac{A - A_0}{\epsilon(Mn^{IV}(O)(Cz)(Zn^{II})) - \epsilon(Mn^{IV}(O)(Cz^{\bullet +})(Zn^{II}))}$$
(S2)

Equation S3 is derived from equations S1 and S2, where $[Mn^{IV}(O)(Cz)(Zn^{II})] = [AcFc^+]$, $[Mn^{IV}(O)(Cz^{*+})(Zn^{II})]_0 = [Mn^{IV}(O)(Cz^{*+})(Zn^{II})] + [Mn^{IV}(O)(Cz)(Zn^{II})]$, and $[AcFc]_0 = [AcFc] + [AcFc^+]$.

$$(A - A_0) = \frac{X(Y + [AcFc]_0) - \sqrt{[X(Y + [AcFc]_0)]^2 - (4XY(X - 1)[AcFc]_0)}}{2(X - 1)/Z}$$
(S3)

where A = absorbance throughout the titration; A_0 = initial absorbance; $X = K_{ET}$ = equilibrium constant of electron transfer; $Y = [Mn^{IV}(O)(Cz^{*+})(Zn^{II})]_0$ = initial concentration of $Mn^{IV}(O)(TBP_8Cz^{*+})(Zn^{II})$; $Z = \Delta \epsilon$ =

difference in molar absorptivities between $Mn^{IV}(O)(TBP_8Cz)(Zn^{II})$ and $Mn^{IV}(O)(TBP_8Cz^{+})(Zn^{II})$ at 725 nm; [AcFc]₀ = initial concentration of AcFc. The plot of A-A₀ versus [AcFc]₀ was fit to eq S3 using the software Kaleidagraph 4.1.3 through a non-linear least-squares fitting routine in which X, Y, and Z were fitted variables.