
Appendix

miRISC and the CCR4-NOT complex silence mRNA targets independently of 43S ribosomal scanning

Duygu Kuzuoğlu-Öztürk, Dipankar Bhandari, Eric Huntzinger, Maria Fauser, Sigrun Helms and Elisa Izaurralde

Table of contents Appendix Figure S1 Appendix Figure S2 Appendix Table S1 Appendix Table S2 Appendix Table S3 Appendix Table S4 Appendix Methods Appendix References

в		α15	β24	β25	ß26	
<i>Hs</i> Ag	02	<u>وووو</u>	>		>	
Hs AG Hs AG Hs AG Dm AG Dm AG Nc QD Sp AG Hs PI Hs PI Hs PI Hs PI	01 572 03 575 04 566 01 698 02 943 02 642 01 558 WI1 615 WI2 728 WI3 637	580 590 X VNNILLPQGRPPVFQQF INNILVPHQRSAVFQQF INNILVPHQRPSVFQQF INNVLVPHQRPSVFQQF INNSILVPSIRPKVFNEF INNKIKDPRL-PMMKN TNHNIK.TPIPLLAKGF INCSLIPKS.NPLGNVF ELWRVDIPLK ALWKVEIPLKS	VIFLGAN VTHPPAGDO VIFLGAN VTHPPAGDO VIFLGAN VTHPPAGDO VIFLGAN VTHPPAGDO VIFLGAN VTHPPAGDO TMVVGYN VTHPPAGDO TMVVGYN VTHPTNLAN TLLGG VYHPGVGAN VMIVGIN CYHDMAGS JMVIGM VYHDPSRGI TMFVGIN CFHDIVNRS SLMVVGIN VCKDALSK	SKKPSITAVVGS SKKPSIAAVVGS SKKPSIAAVVGS NKKPSIAAVVGS REIPSVVGVAAS AGQSPASAPSIVGLVST FGVSIASIVAS RRSIAGFVAS MRSVVGFVAS QKSIAGFVAS	MDAHPNRYCATVRVQ MDAHPSRYCATVRVQ MDAHPSRYCATVRVQ MDGHPSRYCATVRVQ HDPYGASYNMQYRLQ IDQHLGQWPAMVWNN VDLNGCKYTAVSRSQ INEGMTRWFSRCIFQ INLTLTKWYSRVVFQ TNAELTKWYSQCVIQ VNPRITRWFSRCIFQ	635 630 633 624 756 1000 704 614 665 778 687 656
<i>Hs</i> Ag	02	640	α16 <u>000000000000000000000000000000000000</u>	<u>β27</u> 660 * 670	 α1/ 0000000 680 	
Hs AG Hs AG Hs AG Hs AG Dm AG Dm AG Dm QD Sp AG Hs PI Hs PI Hs PI Hs PI	ю1 631 ю3 634 ю4 625 ю1 757 ю2 1001 E2 705 ю1 615 WI1 666 WI2 779 WI3 688	QHRQE II RPRQE II TSRQE II TSRQE II TSRQE II GALEEI PHQESMT PRHQEVI DRGQELV MPHQ IV KTGEELV	EDLSYMVRELLIOFY QDLTMWRELLIOFY QDLTMWRELLIOFY EDLFSMVRELLIMFY EDMFSITLEHLRVYK EGRFDKFKTRELWR EGMKDIVVYLLOGFR DGLKVCLQAALRAWN DSLKLLVGS	KST.RFKPTRIIFYR KST.RFKPTRIIFYR KST.RFKPTRIILYR KST.GGYKPHRIILYR SYR.NAYPDHIILYR SNPANNRSIPENILIFR AMT.KQQPQRIIYFR SCN.EYMPSRIIVYR KNE.SSMPHSVIVYR	DGVPEGQLFQILHYE GVSEGQFRQVLYYE GGVSEGQFPHVLQHE DGVSEGQFPHVLQHE DGVSEGQFPHVLQHE DGVSEGQFPWIKDE DGVSEGQFQWIKDE DGTSEGQFLSVINDE GVSDGQLKTLVNYE GVSDGQLKTVANYE	686 681 684 685 808 1051 759 665 716 829 738 707
Hs AG	02	α17 <u>0000000000</u>	>	β29 α18 → <u>202</u>	β30	
Hs AG Hs AG Hs AG Dm AG Dm AG NC QD Sp AG Hs PI Hs PI Hs PI Hs PI	01 682 03 685 04 686 01 809 02 1052 E2 760 01 666 WI1 717 WI2 830 WI3 739	690 * 700 LLAIREACIKLEKDYQ. LLAIREACISLEKDYQ. LLAIREACISLEKDYQ. LTAIREACISLEEDYR. LTAIREACIKLEPEYR. LRCIKQACDKVGCK. LPLVRAACKLVYPAGKI LSQIKEACHSISPKYN. VPQFLDCLKSIGRGYN. IPQLQK.CFEAFENYQ. AKKMST.YLKTISPNN.	PGITYIVVÖKRHHTR PGITYIVVÖKRHHTR PGITYIVVÖKRHHTR PGITFIVVÖKRHHTR PKICCVIVVKRHHTR PKILVIVVKRHTR PKILVCTTOKRHHAR PKILVCTTOKRHHAR PKNVVVVKKRVNTR PKLAFIVVKKRINTR	LFCADKNERIGKSGNIP LFCADKTERVGRSGNIP LFCADKTERVGKSGNVP LFCAEKKEQSGKSGNIP FFPSGDVTTSNKFNNVD FFPTDPKHIFFKSKSPK FFIKNKSD.GDRNGNPL FFLASEGRLQNPL LYLAAPQNFVTPT FFLKHGSNFQNPP	AGTTVDTNITHPFEF AGTTVDTDITHPSEF AGTTVDVGITHPSEF BGTVVDRTIVHPTEF EGTVVDRTIVHPNEM EGTVVDRGVTNVRYW PGTIIEKHVTHPYQY PGTVIDVEVTRPEWY PGTVIDVELTRNEWY	749 744 747 748 871 1112 823 727 775 887 796 766
Hs AG Hs AG Hs AG Hs AG Dm AG Dm AG Nc QD Sp AG Hs PI Hs PI Hs PI	02 750 01 745 03 748 04 749 01 872 02 1113 E2 824 01 728 WI1 776 WI2 888 WI3 797	β31 750 760 DFYLCSHAGIQGTSRPS DFYLCSHAGIQGTSRPS DFYLCSHAGIQGTSRPS DFYLCSHAGIQGTSRPS QFFMVSHQAIQGTARPS DFFLQAHASLQGTARPS DFYLSHAGIQGTSRPS DFYLCSHQIQGTSRPS DFYLCSHQIQGTSRPS DFYLCSHAGIQGTSRPS DFFLQAHASLQGTARPS DFYLSQAVRSGSVSPT DFYLSQAVRSGSVSPT DFFIVSQSVQDGTVTPT DFYLSQVACRGTVSPT	SHYYVLWDDN SHYHVLWDDN SHYHVLWDDN SHYHVLWDDN RYNVIENT	RFTADELQLLTYQLCHT CFTADELQLLTYQLCHT FTADELQLLTYQLCHT HFDSDELQCLTYQLCHT NLDIDLLQQLTYNLCHM NKAADTLEQLTHDMCYL QMPPDQFQTLCYNLCYV SLKPDHIQRLTYKLCHM SLSPDHMQRLTFKLCHM	YVRCTRSVSIPAPAY YVRCTRSVSIPAPAY YVRCTRSVSIPAPAY FPRCNRSVSIPAPAY FGRATKAVSICPPAY YARATSAVSLVPPVY YYNWPGVIRVPAPCQ YWNWPGTIRVPAPCK	807 802 805 806 929 1170 887 785 833 945 854 824
Hs AG	02	α20	830 8	α21 α22	e	
Hs AG Hs AG Hs AG Dm AG Dm AG Sp AG Hs PI Hs PI Hs PI Hs PI	x01 803 x03 806 x04 807 x01 930 x02 1171 x22 888 x01 786 x01 834 x012 946 x013 855	810 820 YAH LVAFRARYHLVDKF YAR LVAFRARYHLVDKF YAR LVAFRARYHLVDKF YAR LVAFRARYHLVDKF LAH LVAFRARYHLVEKF LAH LVAARGRVYLTGTN YAD LVCDRARIHQ.KEI YAH LVSNLARYQDVTAI YAH KLAFLVGQSIHREF YAH KLAFLVGQSIHQEF YAH KLAFLVGQSIHKEF	CHDSAEGSHTSGQSNG CHDSGEGSHISGQSNG HDSAEGSHVSGQSNG HDSAEGSHVSGQSNG CHDSGEGSHQSGCSED RFLDLKKE FDALDENDSVKTDD DTFVETSEAS	RDPQALAKAVQVHQDTL RDPQALAKAVQIHQDTL RDPQALAKAVQIHHDTQ RTPGAMARAITVHADTK YAKRTIVPEFMKK FARWGNSGAVHPNLR .MDQEVKPLLALSSKLK NLSLS NRSLS	RTMYFA RTMYFA KVMYFA NPMYFV NSMYYI TKMWYM NRLYYL ENLFFL TRLFYL	862 857 860 984 1214 938 834 861 973 882 852

Figure S1. The W-binding pockets are conserved in the AGO proteins that interact with GW182/TNRC6 proteins.

- A Ribbon representation of *Hs* AGO2 (PDB ID: 40LB) showing the position of the tryptophan-binding pockets. Residues lining the pockets are shown as green sticks or as red sticks when the residues were mutated. The tryptophan residues are shown as blue sticks.
- В Structure-based sequence alignment of the PIWI domain of human AGO1, AGO2, AGO3 and AGO4, Drosophila melanogaster (Dm) AGO1 and AGO2, Neurospora crassa (Nc) QDE2, Schizosaccharomyces pombe (Sp) AGO1 and the human PIWI-like clade. Residues lining the tryptophan-binding pockets 1 and 2 are shaded in green and orange, respectively. Residues forming the catalytic tetrad are highlighted in red. Residues mutated in this study are marked with a red asterisk. Residues lining the W-binding pockets are conserved in Hs AGO1, AGO3 and AGO4 as well as in Dm AGO1, which is the AGO protein dedicated to the miRNA pathway in Dm (Okamura et al, 2004; Schirle & MacRae, 2012). By contrast, these residues are less conserved in the PIWI clade of Argonaute proteins and in Dm AGO2, which do not interact with GW182 (Behm-Ansmant et al, 2006; Miyoshi et al, 2009). To abolish the interaction of Hs AGO2 and Dm AGO1 with GW182 proteins, we substituted a proline residue in pocket 1 with glycine to prevent hydrophobic stacking interactions with tryptophan residues and an alanine with a bulky phenylalanine to block tryptophan binding (mutant P1). In pocket P2, we substituted a leucine residue with a bulky tyrosine to block the pocket and a lysine residue with alanine to prevent hydrophobic stacking interactions (mutant P2).

Appendix Figure S2

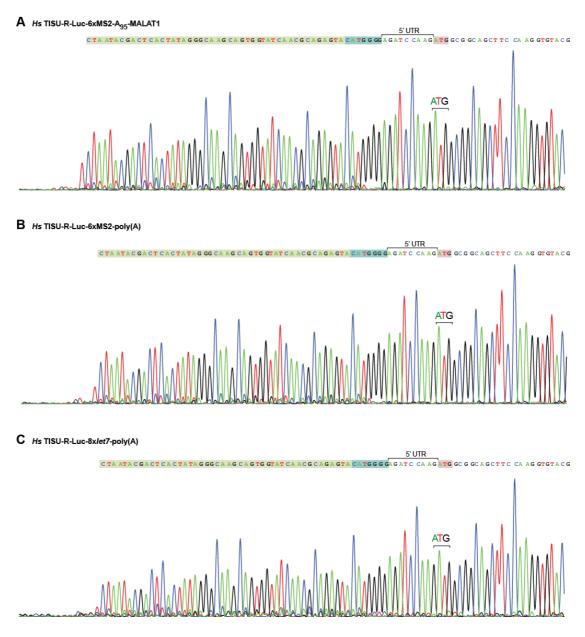


Figure S2. Partial sequencing chromatograms of 5'-RACE amplified cDNA fragments for the indicated reporters.

Appendix Figure S3

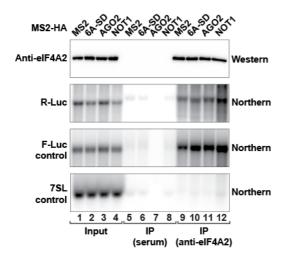


Figure S3. eIF4A2 binding to mRNAs is not influenced by silencing.

Lysates from HEK293T cells expressing R-Luc-MS2-A₉₅-MALAT1 reporter and the indicated MS2-HA tagged proteins were immunoprecipitated using anti-eIF4A2 antibody as described in Fig 4F–H. The RNAs coimmunoprecipitating with eIF4A2 were analyzed by northern blot. The panel shows a representative western and northern blots of input and IP fractions. For the western blot, 2% of the input and 6% of the IP fraction were analyzed. For the northern blots 2% of the input and 40% of the IP were analyzed.

Protein	Name of the	Mutations
	construct	
Dm AGO1	P1	P714G + A744F
NM_166020.1	P2	L819Y
	P1+2	P714G + A744F + L819Y
Hs AGO2	P1	P593A + A623F
	P2	L697Y + K663A
	P1+2	P593A + A623F + L697Y + K663A
Dm DCP1	DCP1* (GSSG)	R70G + L71S + N72S + T73G
NM_137998.2		
Hs DCP2	DCP2*	E148Q
AY135173.1		
Hs NOT1	NOT1 Mut	F1101S + N1105A + K1114A +
EF553522.1		R1138A + N1144A + F1145A +
		K1276A + F1281A + E1284A
Hs DDX6	DDX6 E236Q	E236Q
NM_004397.3		
	DDX6 Mut1	R94E + F101D + Q322A + N324A
		+ R375A
	DDX6 Mut2	Q209A + H312A + T316A +
		R320A + R335A + K341A +
		K342A
Hs TNRC6A	TNRC6A-SD	Residues 1272 – 1709
AY035864.1		

Appendix Table S1. Mutants used in this study.

Organism	Name of the Reporter	Vector
	F-Luc-5BoxB-poly(A)	pAc5.1C
	F-Luc-5BoxB-A ₉₅ -C ₇ -HhR	pAc5.1C
	F-Luc-A ₉₅ -C ₇ -HhR	pAc5.1C
	F-Luc-V5-5BoxB-A ₉₅ -C ₇ -HhR	pAc5.1C
	8nt-F-Luc-5BoxB-A ₉₅ - C ₇ -HhR	pAc5.1C
	8nt-F-Luc-V5-5BoxB-A95- C7-HhR	pAc5.1C
	8nt-F-Luc-5BoxB-poly(A)	pAc5.1C
	F-Luc-poly(A)	pAc5.1C
Dm	F-Luc-par6-poly(A)	pAc5.1C
Dm	8nt-F-Luc-par6-poly(A)	pAc5.1C
	R-Luc- A ₉₅ -HhR	pAc5.1C
	F-Luc-Nerfin-1-poly(A)	pAc5.1C
	8nt-F-Luc-Nerfin-1-poly(A)	pAc5.1C
	F-Luc-cg5281-poly(A)	pAc5.1C
	HA-GST	pAc5.1C
	8nt-HA-GST	pAc5.1C
	F-Luc-Met ₃₁ -5BoxB-poly(A)	pAc5.1C
	F-Luc(Leu)-V5-5BoxB-A ₉₅ -C ₇ -HhR*	pAc5.1C
	8nt-F-Luc(Leu)-V5-5BoxB-A ₉₅ -C ₇ -HhR*	pAc5.1C
	R-Luc-5BoxB-poly(A)	pCI-neo
	R-Luc-5BoxB-A ₉₅ -MALAT1	pCI-neo
	R-Luc-poly(A)	pCI-neo
	R-Luc-6xMS2	pCI-neo
	R-Luc-6xMS2-A ₉₅ -MALAT1	pCI-neo
	R-Luc-A ₉₅ -MALAT1	pCI-neo
	TISU-R-Luc-6xMS2- A95-MALAT1	pCI-neo
	TISU-HA-R-Luc-6xMS2-MALAT1	pCI-neo
	TISU-R-Luc-6xMS2-poly(A)	pCI-neo
	CAA-R-Luc-6xMS2-A ₉₅ - MALAT1	pCI-neo
	CGG-R-Luc-6xMS2bs-A ₉₅ - MALAT1	pCI-neo
Hs	β-Globin-GAPDH (Control)	pcDNA3.1
	β-Globin-6xMS2-poly(A)	pcDNA3.1
	F-Luc	pEGFP-N3
	EGFP-HCV-F-Luc	pT7
	R-Luc-8x <i>let7</i> -poly(A)	pCI-neo
	R-Luc-Mut (<i>let7</i> -binding sites mutated)	pCI-neo
	TISU-R-Luc-8x <i>let7</i> -poly(A)	pCI-neo
	TISU-R-Luc-Mut (<i>let7</i> -binding sites	pCI-neo
	mutated)	1
	R-Luc-8xlet7-A ₉₅ -MALAT1	pCI-neo
	R-Luc-Mut-A95-MALAT1 (let7-binding	pCI-neo
	sites mutated)	

Appendix Table S2. Reporters used in this study.

* F-Luc(Leu)-V5 contains substitutions of all in-frame Met with Leu.

Organism	Reporter	Sequence
	109nt-F-Luc	auaucacuaccguuugaguucuugugcugugggauacuccucccgacacaa
Dm		agccgcuccaucagccagcagucgucuaauccagagaccccggaucggggua ccaacAUGGCC
	8nt-F-Luc	auaucacu <u>AUG</u> GCC*
	216nt-R-Luc	agaucacuagaagcuuuauugcgguaguuuaucacaguuaaauugcuaacgc
		agucagugcuucugacacaacagucucgaacuuaagcugcagugacucucuu
		aagguagccuugcagaaguuggucgugaggcacugggcagguguccacucc
		caguucaauuacagcucuuaaggcuagaguacuuaauacgacucacuauagg
Hs		cuagccaccAUGGCU
	TISU-R-Luc	agauccaagAUGgcggcaGCU*
	CAA-R-Luc	agauccaacaacaacaacaacaacaacaacaacaacaacaac
		acaagccacc <u>AUG</u> GCU
	CGG-R-Luc	agauccuagguugaaaguacuuugacggcggcggcggucaaucuuacggcg
		gcggcggacauagauacggcggcggcgguagaaacuacggcggcggcggau
		uagaauaguaaagccacc <u>AUG</u> GCU

Appendix Table S3. Sequence of 5'-UTRs used in this study.

The first AUG is indicated in bold and underlined. *These 5'-UTRs were confirmed

by 5'-RACE (Clontech), see Figs EV2A, EV3A and Appendix Fig S2.

Appendix Table S4. Antibodies used in this study.

Antibody	Source	Catalog Number	Dilution	Monoclonal/ Polyclonal
Anti-HA-HRP	Roche	12013 819 001	1:5,000	Monoclonal
(For western blots)				
Anti-HA (for	Covance	MMS-101P		Mouse
immunoprecipitations an				Monoclonal
immunofluorescence)				
Anti-GFP (for Western	Roche	11 814 460	1:2,000	Mouse
blotting)		001		Monoclonal
Anti-GFP (for	In house			Rabbit
immunoprecipitations)				polyclonal
Anti-tubulin	Sigma Aldrich	T6199	1:10,000	Monoclonal
Anti-mouse IgG-HRP	GE Healthcare	NA931V	1:10,000	Sheep
				Polyclonal
Anti-rabbit IgG-HRP	GE Healthcare	NA934V	1:10,000	Donkey
				Polyclonal
Anti-Hs DDX6	Bethyl	A300-461A	1:3,000	Rabbit
	Laboratories			polyclonal
Anti-Hs PABP	Abcam	ab21060	1:5,000	Rabbit
				polyclonal
Anti-Dm GW182	In house		1:2,000	Rabbit
				polyclonal
Anti-Dm NOT1	Kind gift from		1:1,000	Rabbit
	E. Wahle			polyclonal
Anti-Dm AGO1	Abcam	Ab5070	1:1,000	Rabbit
				polyclonal
Anti-Dm Me31B	In house		1:3,000	Rabbit
				polyclonal
Anti-Hs TNRC6A	Bethyl	A302-329A	1:1000	Rabbit
	Laboratories			polyclonal
Anti-Hs eIF4A2 (for	Abcam	Ab31218		Rabbit
immunoprecipitations)				polyclonal
Anti-Hs eIF4A2 (for	In house		1:1,000	Rabbit
Western blotting)				polyclonal
Anti-Hs NOT2	Bethyl	A302-562A	1:2,000	Rabbit
				polyclonal
Anti-Hs NOT3	Abcam	Ab55681	1:2,000	Rabbit
			1	monoclonal
Anti-V5	AbD Serotec	MCA1360GA	1:5,000	Mouse
	D (1 1	1000 7051	1 1 000	Monoclonal
Anti-4E-T	Bethyl	A300-706A	1:1,000	Rabbit
	T	A 11005	1 1 000	polyclonal
Alexa Fluor 594-	Invitrogen	A-11005	1:1,000	Polyclonal
labelled goat anti-				
mouse				

Appendix Methods

DNA constructs

The plasmids for expression of the β -globin-6xMS2 and the control β -globin-GAP mRNAs in human cells were kindly provided by Dr J. Lykke-Andersen and were described previously (Lykke-Andersen *et al*, 2000). The plasmid for expression of the R-Luc-5BoxB-poly(A) reporter in human cells was kindly provided by Dr W. Filipowicz and was described previously (Pillai *et al*, 2004). The reporter containing the MALAT1 3'-end was generated as described in Bhandari *et al*, 2014. All constructs were fully sequenced to confirm the presence of the mutations and the absence of additional mutations. Protein mutants used in this study are listed in Appendix Table S1.

Coimmunoprecipitation assays in S2 cells

The interaction of AGO1 (wild-type or mutants) with endogenous miRNAs and GW182 was tested as described previously (Rehwinkel et al, 2005; Eulalio *et al*, 2008). Briefly, 2.5×10^6 cells were seeded per well in 6-well plates and transfected with 1.5 µg HA-tagged proteins (MBP and AGO1 wild-type or mutants). Three days after transfection, the cells from 8 wells were pooled and resuspended in 2 ml of NET buffer (50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM EDTA, 0.1% Triton X-100 and 10% glycerol) supplemented with protease inhibitors (Roche-EDTA free protease-inhibitor cocktail tablet). The cells were lysed by sonication (3 times 30 sec followed by 30 sec on ice) and incubated for 15 min on ice. Cell debris were removed by 15 min centrifugation at 16,000 g at 4°C. Aliquots for western (2.5%) and northern (5%) blot analysis were taken and the remaining cell lysate was incubated with anti-HA antibody (8 µg, Covance) for 1 hour at 4°C. Next, protein G-Sepharose beads

(GammaBind G-Sepharose, GE Healthcare) were added to the lysate (100 µl of a 50% slurry) and incubated for an additional hour. Beads were washed three times with NET buffer. An aliquot of beads (20%) was directly resuspended in SDS-PAGE sample buffer for western blot analysis. The remaining beads were resuspended in 200 µl of buffer containing 50 mM Tris-HCl (pH 8.0), 300 mM NaCl, 5 mM EDTA pH 8.0 and 0.5% SDS and treated with proteinase K (1.5 mg/ml) for 2.5 hours at 50°C. RNA isolation and analysis was performed as described by Rehwinkel et al, 2005. miR-2a and tRNA^{Ala} were detected using radioactively labeled antisense oligonucleotide probes (miR-2a: GCTCATCAAAGCTGGCTGTGATA, tRNA^{Ala}: CTCACATGCTAAGCGAGCGCTCTAC).

Coimmunoprecipitation assays in HEK293T cells

To test the interaction of AGO2 (wild-type or mutants) with endogenous miRNAs and GFP-tagged or endogenous TNRC6s, HEK293T cells ($4 \times 10^{6}/10$ -cm dish) were seeded one day before transfection using Turbofect (Thermo Scientific). The transfection mixtures contained plasmids expressing λ N-HA tagged MBP (4 µg) or AGO2 [either wild-type (9 µg) or mutant (12 µg)] and 8 µg of plasmid expressing GFP-tagged TNRC6s. Cells were harvested 48 hours after transfection. Cells corresponding to 4 dishes were pooled, washed with PBS and lysed on ice for 15 min in 1 ml of NET buffer. Immunoprecipitations were performed as described for S2 cells. The oligonucleotide probes used for detection of miR-16 and tRNA^{Ala} were as follows: CGCCAATATTTACGTGCTGCTA (miR-16) and CTCTACCGCTTGAGCTAATTCCCC (tRNA^{Ala}).

RNA immunoprecipitation in HEK293T cells

HEK293T cells (4 \times 10⁶/10-cm dish) were seeded 24 hours before transfection with Lipofectamine 2000. The transfection mixtures contained 5 µg of pEGFP-N3-F-Luc transfection control reporter and any one of the following reporters: pCIneo-R-Luc-6xMS2-A₉₅-MALAT1 (10 μg), pCIneo-TISU-R-Luc-6xMS2-MALAT1 (8 μg), pCIneo-CAA-R-Luc-6xMS2-A95-MALAT1 (15 µg) or pCIneo-CGG-R-Luc-6xMS2-A₉₅-MALAT1 (8 µg). Cells were washed with ice-cold PBS and lysed in 500 µl of NET buffer for 15 min on ice. The cell debris were removed by a 15 min centrifugation at 16,000 g at 4°C. Aliquots (5%) were taken for western and northern blot analysis. The remaining lysate was incubated with 3 µg of anti-eIF4A2 antibody (Abcam, ab31218) for 2 hours at 4°C. Next, protein G-Sepharose beads were added to the lysate (100 µl of a 50% slurry) and incubated for additional 2 hours. After 2 hours incubation, beads were washed 3 times with NET buffer and resuspended in 1 ml NET buffer without detergent. An aliquot (20%) of the bead suspension was directly resuspended in SDS-PAGE sample buffer for western blot analysis. The remaining beads were used for RNA isolation using TriFast (Peqlab Biotechnologies). At this stage, samples were spiked with 4 µg of double stranded RNA. RNA samples were treated with DNase I (Turbo DNA-free kit, Ambion, AM1907). Input and precipitated fractions were analyzed by western and northern blotting. Note that the protein G-Sepharose beads used for RNA immunoprecipitation were preincubated with yeast RNA (250 µg of yeast RNA /100 µl of 50% slurry) and washed with PBS before use.

Tethering assays and knockdowns

For tethering assays in S2 cells, the transfection mixtures contained 0.1 μ g of Firefly luciferase reporter plasmid (or 0.3 μ g for the reporter containing a 8-nt 5'-UTR), 0.4

µg of *Renilla* luciferase transfection control and 4 ng of plasmids expressing the λN-HA tagged proteins. In the experiment described in Fig 2M, the transfection mixtures contained in addition 0.95 µg of plasmids expressing GFP or GFP-DCP1 GSSG mutant (Chang et al, 2014). For tethering assays in human cells, HEK293T cells (0.8 × 10^{6} /well in six-well plates) were transfected using Lipofectamine 2000 (Life technologies). The transfection mixtures containing the MALAT 3' end), 0.25 µg of the pEGFP-N3-F-Luc transfection control and 0.1–1 µg of plasmids expressing λ N-HA or HA-MS2 tagged proteins [0.3 µg for TNRC6A-SD and AGO2; 0.1 µg for DDX6 (wild-type or mutant) and 1 µg for NOT1].

In the experiment described in Fig 2N and Fig 5E–G, the transfection mixtures contained 0.5 μ g of the control plasmid (β -globin-GAP), 0.5 μ g of the plasmid encoding the β -globin-6xMS2, plasmids expressing the MS2-HA tagged proteins (0.2 μ g for TNRC6A-SD, 0.1 μ g for AGO2 and 2 μ g for CNOT1). In Fig 2N, the transfection mixtures contained in addition plasmids expressing HA-tagged DCP2 (either wild-type or catalytically inactive DCP2* mutant; 1 μ g). Me31B knockdowns in S2 cells and DDX6 depletion in HeLa cells were performed as described previously (Eulalio *et al*, 2007; Chen *et al*, 2014).

Polysome profiling in HEK293T cells

HEK293T cells (9 \times 10⁶/15-cm dish) were seeded one day before transfection with Lipofectamine 2000 (Life Technologies). The transfection mixtures contained 20 µg of the R-Luc-6xMS2-(A)₉₆-MALAT1 reporter, 4 µg of the pEGFP-N3-F-Luc transfection control and 6 µg of a plasmids expressing MS2-HA or MS2-HA-DDX6. Cells were treated with cycloheximide 48 hrs after transfection at a final concentration of 50 µg/ml for 30 min. Cells were washed once with ice-cold PBS (containing 50 µg/ml cycloheximide), and lysed in 300 µl of ice-cold buffer containing 10 mM Tris-HCl (pH 7.4), 10 mM NaCl, 1.5 mM MgCl₂, 0.5% Triton X-100, 2 mM DTT, 1 U/µl RiboLock RNase inhibitor, 0.5% Na-deoxycholate and 50 µg/ml cyclohexamide for 10 min on ice. The cell debris were removed by a 10 min centrifugation at 10,000 g at 4°C. The supernatants were layered on top of a linear 10–50% (w/v) sucrose gradient (prepared using Gradient Master 107ip Biocomp) in 10 mM Tris-HCl (pH 7.4), 75 mM KCl, 1.5 mM MgCl₂, and 50g/ml cycloheximide. Centrifugation was carried out in a Beckmann, SV55Ti rotor at 41,000 r.p.m. for 2 hours at 4°C.

Fractions were collected using a density-gradient fractionation system (Teledyne Isco), and polysome profiles were monitored by absorbance of light at 254 nm. Fractions were spiked with 10 µg of double-stranded RNA and treated with proteinase K (0.1 mg/ml, in 10 mM Tris-HCl (pH 8.0), 5 mM EDTA, 0.5% SDS) for 30 min at 42°C. Total RNA was isolated by two rounds of phenol:chloroform extraction followed by one chloroform extraction. RNA samples were treated with DNase I and analyzed by northern blotting.

Immunofluorescence in HeLa cells

Immunostainings of HeLa cells performed as described by Lazzaretti et al, (2009).

Knock-down in HeLa cells

HeLa cells were seeded in 6-well plates and transfected using Lipofectamine 2000 (Life technologies) for luciferase assays. DDX6 knockdowns and complementation assays were performed as described in Chen et al., 2014. Briefly, HeLa cells were

transfected with 4 μ g of plasmids expressing control or DDX6 shRNA. One day after transfection, cells were selected in medium containing 1.5 μ g/ml puromycin. After twenty-four hours of selection, cells were seeded in 6-well plates in medium without puromycin. Twenty-four hours after reseeding, cells were re-transfected with the transfection mixtures contained 0.8 μ g of plasmids expressing the relevant shRNA, 0.5 μ g of the R-Luc and 0.2 μ g of the F-Luc control reporter together with λ N-HAtagged proteins as indicated in the figure. 72 hours after the second transfection, cells were harvested and luciferase activities were measured.

5' RACE

RNA samples were harvested from HEK293T or S2 cells expressing the indicated reporters. 5' RACE was performed according to manufacturer's protocol (Clontech, SMARTerTM RACE cDNA Amplification Kit) using the universal primer and R-Luc (ggaaggttcagcagctcgaaccaagcggtgaggtac) or F-Luc (gataaataacgcgcccaacaccggttaaaagaattgaagaagatttc) reverse primers. The 5' RACE products were run on an a 1% agarose gel, visualized by ethidium bromide staining and purified using the QIAquick Gel Extraction kit (Qiagen). A fraction of the purified cDNA was sent directly for sequencing, whereas another fraction was cloned in the TOPO cloning vector using the TOPO-TA cloning kit (Thermo Fischer Scientific). After transformation of *E. coli*, DNA plasmids were isolated from single colonies and send for sequencing.

Appendix References

- Bhandari D, Raisch T, Weichenrieder O, Jonas S, Izaurralde E (2014) Structural basis for the Nanos-mediated recruitment of the CCR4-NOT complex and translational repression. *Genes Dev* 28: 888 901
- Cope CL, Gilley R, Balmanno K, Sale MJ, Howarth KD, Hampson M, Smith PD, Guichard SM, Cook SJ (2014) Adaptation to mTOR kinase inhibitors by amplification of eIF4E to maintain cap-dependent translation. *J Cell Sci* 127: 788 – 800
- Lykke-Andersen J, Shu MD, Steitz JA (2000) Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon. *Cell* 103: 1121 1131
- Miyoshi K, Okada TN, Siomi H, Siomi MC (2009) Characterization of the miRNA-RISC loading complex and miRNA-RISC formed in the Drosophila miRNA pathway. *RNA* 15: 1282 1291
- Okamura K, Ishizuka A, Siomi H, Siomi MC (2004) Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. *Genes Dev* 18: 1655 1666