ATAC-seq on biobanked specimens defines a unique chromatin accessibility structure in naïve SLE B cells

Christopher D. Scharer^{1,+}, Emily L. Blalock^{2,+}, Benjamin G. Barwick¹, Robert R. Haines¹, Chungwen Wei², Ignacio Sanz², and Jeremy M. Boss^{1,*}

¹Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA ²Department of Rheumatology, Emory University School of Medicine, Atlanta, GA *jmboss@emory.edu ⁺These authors contributed equally to this work

Supplementary Table S1. ATAC-seq peaks identified in fresh and biobanked samples.

Supplementary Table S2. ATAC-seq peaks significantly differentially accessible between HC and SLE subjects.

Supplementary Figure 1. Flow cytometry data of B cell populations. (A) Dot plots displaying the percentage of CD19+ B cell populations that are Switched Memory (SM), Unswitched Memory (USM), and Double Negative (DN) cells. Data is from 10 fresh and 10 biobanked samples. Statistical significance was tested by Student's *t*-test. (B) Dot plot representing the percentage of resting naïve (rN) B cells in 10 fresh and 10 biobanked samples. Statistical significance

was tested by Student's *t*-test. **(C)** Flow cytometry plots showing the gating strategies to isolate resting naïve B cells (rN) from HC and SLE subjects. The percentage of each population is indicated. A representative fresh HC (HC3) and biobanked SLE (SLE1*) are shown along with the fresh SLE sample (SLE4).