SUPPLEMENTAL FIGURE LEGENDS

Figure S1: Loss of *SET1* Does Not Create Cell Cycle Abnormalities, Related to Figure 1.

(A) Serial five fold dilution assay of wild-type (WT) and mutants with the indicated genotype grown on either control plates (YPD) or plates containing the indicated amounts of benomyl. Cells were incubated at 30^oC for 2 days. (B) Whole cell extracts were prepared from strains with the indicated genotype. The amount of H3K4 dimethylation $(\alpha H3K4me2)$ and H3K4 trimethylation $(\alpha H3K4me3)$ was assessed using immunoblot analysis. Total H3 (α H3) protein levels were used as a loading control. (C) Cell cycle analysis was assessed in both wild-type (blue) and set 1Δ (red) asynchronous cultures. Cells were subjected to DNA labeling, flow cytometry analysis, and corresponding histograms were generated. Peaks associated with cells in G1 and G2 are labeled accordingly. (D) The budding index of wild-type (WT) and set 1Δ cells were assessed by dividing fixed cells into three categories; cells with no bud, cells with a small bud, and cells with a large bud. These categories correspond to G1, S, and G2/M, respectively. (E) Overnight cultures were diluted into fresh media and cell growth was assessed by Optic Density (O.D) over time in both wild-type (WT) and set1 cells. (F) Equal amounts of wild-type (WT) and set 1Δ cell cultures were taken from growth assays at the indicated time points and assessed for cell viability by counting colony forming units on normal YPD plates. (G) Yeast strains were fixed and Differential Interface Contrast (DIC) images were taken to assess overall cell shape, size, and morphology.

Figure S2: H3K4 Mutants Do Not Alter Set1 Protein Levels or Incorporation Into the COMPASS Complex, Related to Figure 3.

(A and B) Serial five fold dilution assay of wild-type (WT) and mutant yeast with the indicated genotypes. Cells were placed onto YPD plates (YPD) with or without 30μ g/mL of benomyl (BENOMYL) and incubated at 30^{0} C for 2 days. (C) Whole cell extracts were isolated from strains with the indicated genotype. The amount of total Set1 protein was assessed using western blot analysis with an antibody against Set1. Pgk1 protein levels were used as a loading control. (D) Set1 proteins in wild-type (WT), *set1G951S*, and *H3K4R* strains similarly associate with the COMPASS component Bre2.

Immunoprecipitation (IP) assays were used to pull down Bre2 and the associated levels of Set1 were assessed. Bre2-TAP (α -Protein A) and Pgk1 (α -Pgk1) were used as loading controls. (E) Immunofluorescence images of wild-type (WT) and mutant yeast with the indicated genotype. Images of mitotic cells were taken on a confocal microscope. Tubulin (green) and DAPI (blue) were used to identify cells undergoing mitosis from an asynchronous culture. Mitotic cells are outlined in white. (F) RT-PCR was performed with isolated RNA from the indicated strains with primers specific to the gene indicated. RNA levels were compared to the *ACT1* gene transcript, which was used as a control. (G) Heat maps of H3K4me2 and H3K4me3 enrichment at the centromeric and pericentromeric regions of the indicated chromosomes.

Figure S3: Two Histone H3 regions result in benomyl resistance when mutated, Related to Figure 5.

(A) Serial five fold dilution assay of histone H3 mutant yeast with the indicated genotypes. Benomyl resistance is observed both for mutants that disrupt methylation at

K4 (*H3R2A* (Kirmizis et al. 2007) and *H3K4A*) and mutations that disrupt a consensus Mad2 binding motif (amino acids 23-30; marked with a black bar). (B) C-terminal epitope tags in Mad2 suppress the benomyl resistance of *set1* mutants, indicating disruption of the Mad2 C-terminus affects *in vivo* function of Mad2. Cells were grown onto YPD plates (YPD) with or without 30μ g/mL of benomyl (BENOMYL) and incubated at 30^{0} C for 2 days.

Figure S4: GST-Mad2 localizes to the nucleus, cytoplasm, and the bud neck.

(A) Expression of GST-Mad2 was induced in wild-type, *set1G951S*, and *H3K4R* cells by addition of galactose 30 minutes prior to harvest and Mad2 localization was analyzed with immunofluorescence . DAPI staining (blue) was used to visualize DNA and an α -GST antibody was used to monitor expression of the GST-Mad2 fusion protein. (B) Mad2 localization was assessed in wild-type, *set1G951S*, and *H3K4R* mutants by counting the percentage of GST-Mad2 positive cells with staining localized to the bud neck.

Kirmizis A, Santos-Rosa H, Penkett CJ, Singer MA, Vermeulen M, Mann M, Bahler J, Green RD, Kouzarides T. 2007. Arginine methylation at histone H3R2 controls deposition of H3K4 trimethylation. *Nature* **449**: 928-932.

Schibler_S1

Schibler_S2

Α	YPD BE	
H3A1S		
H3R2A	•••	🔵 🌒 🏶 🍈 💮
НЗТЗА	● ● ● ● ●	(1)
H3K4A	🔴 🕘 💮 🏟 🎄	• • • • *
H3Q5A	🔿 🔿 🔿 🏟 🖄	
H3T6A	🌢 🌒 🌒 🏘 🥀	¢ .
H3Q19A		0
H3L20A)
H3A21S		
H3S22A		0
H3K23A		🕘 🛞 🔅 👘
H3A24S	ÓÓO 🖗 🌣	
H3A25S		٠
H3R26A		۲
H3K27A		
H3S28A	· · · · · · · · · · · · · · · · · · ·	0
H3A29S		() is
НЗРЗОА		0

		Schibler_S3	
В	YPD BENOMYL		
WT	2 8 9 9 9		
set1∆	🔍 🗭 🌒 🌒 👰	 Image: Image: Ima	
mad2∆	• • • • •		
MAD2-GFP	÷; * * • • •	0	
MAD2-GFP/set1∆	 • •		
WT		¢ 18.000	
set1∆	• • • * * 4	🌔 🎯 📾 🐵 🔶	
mad2∆	• • • • •		
MAD2-TAP	🜒 🌒 🏶 🖗		
MAD2-TAP/set1∆	• • • # t:		

Schibler_S4

Wild-type

set1G951S

H3K4R

A

% cells

Table S1: `	Table S1: Yeast Strains Used in this Study					
Strain	Genotype	Source				
yAS1	MATa his $3\Lambda 1$ leu $2\Lambda 0$ met $15\Lambda 0$ ura $3\Lambda 0$	EUROSCARF				
yAS14	MATa his $3\Delta 1$ leu $2\Delta 0$ met $15\Delta 0$ ura $3\Delta 0$ set 1Δ ::KANMX	This Study				
yAS15	MATa his $3\Delta 1$ leu $2\Delta 0$ met $15\Delta 0$ ura $3\Delta 0$ set 2Δ ::kan ^r	This Study				
yAS21	MATa his $3\Delta 1$ leu $2\Delta 0$ met $15\Delta 0$ ura $3\Delta 0$ set 3Δ ::kan ^r	This Study				
yAS17	MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 set4Δ::kan ^r	This Study				
yAS25	MATa his $3\Delta 1$ leu $2\Delta 0$ met $15\Delta 0$ ura $3\Delta 0$ set 5Δ ::kan ^r	This Study				
yAS26	MATa his $3\Delta 1$ leu $2\Delta 0$ met $15\Delta 0$ ura $3\Delta 0$ set 6Δ ::kan ^r	This Study				
yAS19	MATa his $3\Delta 1$ leu $2\Delta 0$ met $15\Delta 0$ ura $3\Delta 0$ set 7Δ ::kan ^r	This Study				
yAS203	MATa his $3\Delta 1$ leu $2\Delta 0$ met $15\Delta 0$ ura $3\Delta 0$ bre 1Δ ::kan ^r	This Study				
yAS28	MATa his $3\Delta 1$ leu $2\Delta 0$ met $15\Delta 0$ ura $3\Delta 0$ set $1G951S$	This Study				
yAS225	MATa his $3\Delta 1$ leu $2\Delta 0$ met $15\Delta 0$ ura $3\Delta 0$ bre2-TAP::HIS	This Study				
yAS226	MATa his3A1 leu2A0 met15A0 ura3A0 bre2-TAP::HIS set1A::KANMX	This Study				
yAS227	MATa his $3\Delta 1$ leu $2\Delta 0$ met $15\Delta 0$ ura $3\Delta 0$ bre2-TAP::HIS set $1G951S$	This Study				
yAS93	MATa his $3\Delta 1$ leu $2\Delta 0$ met $15\Delta 0$ ura $3\Delta 0$ swd 1Δ ::kan ^r	This Study				
yAS75	MATa his $3\Delta 1$ leu $2\Delta 0$ met $15\Delta 0$ ura $3\Delta 0$ swd 3Δ ::kan ^r	This Study				
yAS90	MATa his $3\Delta 1$ leu $2\Delta 0$ met $15\Delta 0$ ura $3\Delta 0$ sdc 1Δ ::kan ^r	This Study				
yAS10	MATa his $3\Delta 1$ leu $2\Delta 0$ met $15\Delta 0$ ura $3\Delta 0$ bre 2Δ ::kan ^r	This Study				
yAS12	MATa his $3\Lambda 1$ leu $2\Lambda 0$ met $15\Lambda 0$ ura $3\Lambda 0$ spp 1Λ ::kan ^r	This Study				
vAS92	MATa his $3\Lambda 1$ leu $2\Lambda 0$ met $15\Lambda 0$ ura $3\Lambda 0$ shq 1Λ ::kan ^r	This Study				
vAS42	MATa his $3\Lambda 1$ leu $2\Lambda 0$ met $15\Lambda 0$ ura $3\Lambda 0$ bub 1Λ ::kan ^r	, This Study				
vAS44	MATa his $3\Delta 1$ leu $2\Delta 0$ met $15\Delta 0$ ura $3\Delta 0$ bub 3Δ ::kan ^r	, This Study				
, vAS30	MATa his $3\Lambda 1$ leu $2\Lambda 0$ met $15\Lambda 0$ ura $3\Lambda 0$ set $1G951S$ bub 1Λ ::kan ^r	This Study				
vAS32	MATa his $3\Lambda 1$ leu $2\Lambda 0$ met $15\Lambda 0$ ura $3\Lambda 0$ set $1G951S$ bub 3Λ ::kan ^r	This Study				
vAS45	MATa his $3\Lambda 1 \text{ leu}{2}\Lambda 0 \text{ met}{15}\Lambda 0 \text{ ura}{3}\Lambda 0 \text{ mad}{1}\Lambda$::kan ^r	This Study				
vAS46	MATa his $3\Lambda 1$ leu $2\Lambda 0$ met $15\Lambda 0$ ura $3\Lambda 0$ mad 2Λ ::kan ^r	This Study				
vAS47	MATa his $3\Lambda 1 \text{ leu}_{\Lambda 0}$ met $15\Lambda 0 \text{ ura}_{\Lambda 0}$ mad 3Λ ::kan ^r	This Study				
vAS33	MATa his $3\Lambda 1 \text{ leu} 2\Lambda 0 \text{ meta5} \Lambda 0 \text{ ura} 3\Lambda 0 \text{ set} 1G951S \text{ mad} 1\Lambda^{\text{cr}} \text{kan}^r$	This Study				
vAS34	MATa his $3\Lambda 1 \text{ leu} 2\Lambda 0 \text{ met15}\Lambda 0 \text{ ura} 3\Lambda 0 \text{ set1G951S mad} 2\Lambda^{\circ} \text{kan}^r$	This Study				
VAS35	MATa his $3\Lambda 1$ leu $2\Lambda 0$ met 15 $\Lambda 0$ ura $3\Lambda 0$ set 1G9515 mad 3Λ ·· kan ^r	This Study				
vAS129	$MATa his3\Delta 1 leu2\Delta 0 met15\Delta 0 ura3\Delta 0 dam1K233R$	This Study				
vAS153	MATa his $3\Delta 1$ leu $2\Delta 0$ met $15\Delta 0$ ura $3\Delta 0$ hht $1K4R$ hht $2K4R$	This Study				
vAS36	MATa his3ʌ1 leu2ʌ0 met15ʌ0 ura3ʌ0 hht1K4R hht2K4R bub1ʌ::kan ^r	This Study				
vAS38	MATa his $3\Lambda 1$ leu $2\Lambda 0$ met $15\Lambda 0$ ura $3\Lambda 0$ hht $1K4R$ hht $2K4R$ bub 3Λ ::kan ^r	This Study				
vAS39	MATa his3 <i>x</i> 1 leu2 <i>x</i> 0 met15 <i>x</i> 0 ura3 <i>x</i> 0 hht1K4R hht2K4R mad1 <i>x</i> ::kan ^r	This Study				
vAS40	MATa his 3Λ 1 leu 2Λ 0 met 15Λ 0 ura 3Λ 0 hht $1K4R$ hht $2K4R$ mad 2Λ ::kan ^r	This Study				
vAS41	MATa his 3Λ 1 leu 2Λ 0 met 15Λ 0 ura 3Λ 0 hht1K4R hht2K4R mad 3Λ ::kan ^r	This Study				
vAS229	MATa his 3Λ 1 leu 2Λ 0 met 15Λ 0 ura 3Λ 0 bre2-TAP::HIS hht1K4R hht2K4R	This Study				
yAS228	MATa his $3\Delta 1$ leu $2\Delta 0$ met $15\Delta 0$ ura $3\Delta 0$ bre 2 -TAP::HIS hht1K4R hht2K4R set 1Δ ::KANMX	This Study				
, yAS232	MATa his $3\Delta 1$ leu $2\Delta 0$ met $15\Delta 0$ ura $3\Delta 0$ cdc 20 -127	This Study				
yAS233	MATa his $3\Lambda 1$ leu $2\Lambda 0$ met $15\Lambda 0$ ura $3\Lambda 0$ cdc 20 -127 set $1G951S$	This Study				
yAS237	MATa his3 Δ 1 leu2 Δ 0 met15 Δ 0 ura3 Δ 0 cdc20-127 hht1K4R hht2K4R	This Study				
yAS234	MATa his3 Δ 1 leu2 Δ 0 met15 Δ 0 ura3 Δ 0 PDS1-18MYC	This Study				
yAS235	MATa his3 Δ 1 leu2 Δ 0 met15 Δ 0 ura3 Δ 0 PDS1-18MYC set1G951S	This Study				
yAS147	MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 MAD2-GFP::HIS set1Δ::KANMX	This Study				
yAS162	MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 MAD2-GFP::HIS	This Study				
yAS187	MATa his $3\Lambda 1$ leu $2\Lambda 0$ met $15\Lambda 0$ ura $3\Lambda 0$ pGAL-GST-MAD2::URA3	, This Study				
yAS188	MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 pGAL-GST-MAD2::URA3 set1G951S	, This Study				
yAS189	MATa his311 leu210 met1510 ura310 pGAL-GST-MAD2::URA3 hht1K4R hht2K4R	This Study				
yAS230	MATa his3 Δ 1 leu2 Δ 0 met15 Δ 0 ura3 Δ 0 MAD2-TAP::HIS	This Study				
yAS231	MATa his3 Δ 1 leu2 Δ 0 met15 Δ 0 ura3 Δ 0 MAD2-TAP::HIS set1 Δ ::KANMX	This Study				

Table S2: Plasmids Used in this Study					
Construct	Content	Content (Amino Acids) Mutations	Source:		
pGEX4T1	GST	GST	GE Healthcare		
pAS48	GST-yMad2-full length	GST-yMad2 (1-197)	This study		
pAS119	GST-yMad2-Open	GST-yMad2 (1-191)	This study		
pAS120	GST-yMad2-RQEA	GST-yMad2 (1-197) R126E/Q127A	This study		
pAS43	GST-hMad2	GST-hMad2 (1-206)	Dr. Toshiyuki Habu		
pAS133	GST-hMad2-RQEA	GST-hMad2 (1-206) R133E/Q134A	This study		
pAS134	GST-hMad2-Open	GST-hMad2 (1-196)	This study		
pAS56	H3.1-6xHIS	H3.1-6xHIS	This study		
pAS146	H3.1(K23A)-6xHIS	H3.1(K23A)-6xHIS	This study		
pAS148	H3.1(R26A/K27A)-6xHIS	H3.1(R26A/K27A)-6xHIS	This study		