Supplementary Information

Supplemental Figure S1.

Tumor cell model for integrin $\alpha v\beta 3$ activation

Flow cytometry analysis of tumor cell variants expressing defined levels and affinity states of integrin $\alpha v\beta 3$. The cell variants were derived from MDA-MB 435 human breast cancer cells. Left panels: Overall integrin $\alpha v\beta 3$ heterodimer expression (Mab VNR1, does not distinguish between high and low affinity $\alpha\nu\beta\beta$). Right panels: integrin $\alpha\nu\beta\beta$ activation state measured by binding of soluble RGD-ligand mimetic scFv antibody Bc-15 which behaves like a natural ligand and is specific for $\alpha v\beta 3$. Lack of scFv binding in the absence of divalent cations (blue lines = no cations) indicates cation dependence. Intrinsic activation of $\alpha\nu\beta3$ (high affinity) allows scFv binding in the presence of calcium (1mM) (red line = Ca²⁺), while low or no binding in calcium indicates low affinity $\alpha v\beta 3$ in cells that express the receptor. ScFv binding in the presence manganese (50 μ M) (green line = Mn²⁺) is maximized, regardless of the intrinsic $\alpha\nu\beta\beta$ activation state, as long as the cells are $\alpha\nu\beta\beta$ positive. Bold red +/- signs on the right indicate the $\alpha v\beta 3$ activation state.

Figure S1