

Figure S1. Ectopic overexpression of *hsf-1* **in the nervous system extends lifespan of** *C. elegans*, **Related to Figure 1. (A-B)** Characterization of neural specific promoters in which worms express transgenic copies of the fluorescent proteins, Tomato or Q40-YFP, under control of the *rab-3* (AGD440) and *gref-1* (AM101) promoter elements, respectively. L4 and day 1 adult animals were cultured at 20°C. **(C)** Quantitative RT-PCR of *hsf-1* mRNA from wild type (N2) and *rab-3p::hsf-1* transgenic worms (AGD1053 and AGD1054). **(D)** Lifespan survival curves of animals used in (C) were performed at 20°C. **(E)** Lifespan survival curves of wild type and *rgef-1p::hsf-1* (AGD1441). Lifespan statistics are found in Table 1.

Figure S2. Neural overexpression of *hsf-1* **increases the induction of the heat shock network, Related to Figure 2. (A)** Flow cytometry shows the distribution of heat inducible GFP flourescence from the *hsp-16.2p::GFP* reporter in a worm population of wild type (CL2070) and *rab-3p::hsf-1* transgenic worms (AGD1448). **(B-C)** Quantitative RT-PCR of *hsp-70a(C12C8.1)* and *hsp-70b(F44E5.4)* mRNAs in wild type (N2) and *rab-3p::hsf-1* transgenic worms (AGD1289). **(D)** Quantification of all annotated heat shock transcripts (hsp) under heat stress (34°C) and at permissive temperatures (20°C) in wild type (N2) and neural *hsf-1* overexpressing worms (AGD1289). Transcript abundance was normalized by read per kilobase of transcript per million sequencing reads (RPKM) for each condition or genotype.

Figure S3. Lifespan extension by neural *hsf-1* **overexpression is not dependent on** *hsp-16* **or several regulatory transcription factors, Related to Figure 3. (A-E)** Lifespan survival curves of wild type (N2) and *rab-3p::hsf-1* transgenic worms (AGD1289) cultured at 20°C on HT115 *E. coli* harboring interferring RNAs for (A) *hsp-16*, (B) *pha-4*, (C) *xbp-1*, (D) *skn-1* and (E) *ubl-5*. Lifespan statistics are found in Table 1.

Figure S4. Dynamics for the activation of the DAF-16 transcriptional target, sod-3, Related to Figure 4. (A) DAF-16 dependent induction of sod-3 by neural hsf-1 overexpression. Flow cytometry shows the distribution of GFP fluorescence in individual sod-3p::GFP reporting animals (CF1553). The daf-16(mu86) allele was used to assess dependence of the *daf-16* on neural *hsf-1* induced *sod-3* expression in day 1 adult nematodes. Fluorescent expression of the sod-3 reporter in the presnce of rab-3p::hsf-1 (AGD1198) was compared to the same worms in the daf-16(mu86) null background (AGD1457). (B-D) Influence of heat shock (34°C) on sod-3 activation. (B) Flow cytometry shows the distribution of GFP flouorescence in individual sod-3p::GFP reporting animals with (AGD1189) and without (CF1553) rab-3p::hsf-1 under heat stress (34°C) and at permissive temperatures (20°C). (C) Quantification of GFP fluorescence from flow cytometry in (B). (D) Through RNAsequencing analysis, transcript abundance of sod-3 was normalized by reads per kilobase of transcript per million sequencing reads (RPKM) in wild type and rab-3p::hsf-1 transgenic worms (AGD1289). (E) Neural *hsf-1* overexpression requires *daf-16* in the intestine to activate *sod-3*. Flow cytometry was used to quantify the distribution of GFP fluorescence in individual sod-3p::GFP reporting worms. Cultured at 20°C on OP50 E. coli, all worms were in a daf-16(mu86) null background and extopic expression of daf-16 was rescued in indivdual tissues including the nervous system (AGD1313), intestine (AGD1315) and body-wall muscle (AGD1316). Shown is a normalized ratio of quantified GFP fluorescence (GFP signal from neural hsf-1 overexpression/GFP signal from the respective control strain). (F) Abolishing dense-core vesicle and smallclear vesicle release from neurons induces expression of sod-3. Flow cytometry was used to quantify the distribution of GFP fluorescence in individual sod-3p::GFP reporting animals in unc-13 (AGD1475) and unc-31 (AGD1576) mutant backgrounds. Show in the quantification of GFP fluorescence.

Table S1

Element	Sequence	Times Present	e-value
DAE	CTTATCA	60	1.20E-03
HSE	TTCTAGAA	25	N.D.

seq	CTTATCA	TTCTAGAA
B0336.2.1	2	0
C04F12.1	1	0
C04F6.1.3	1	0
NP_495640.1	1	0
C06G8.1	2	0
C27H6.4b	0	0
C31B8.4	0	0
C32F10.8b.1	0	1
C34F11.3b	0	1
ADF1_CAEEL	0	1
C49G7.5	0	0
EEED8.4	0	0
F01F1.6.1	0	1
F08H9.4	0	1
F09E5.8	0	0
F11A6.1b	0	3
F11D11.3	1	0
F11G11.2	1	0
F15B9.1	1	0
F19B6.2b	0	0
F22A3.6a	1	1
F22B7.9	0	0
F28D1.5	1	0
NP_491282.1	0	0
F35C11.3	0	1
F35C8.6	0	1
NP_505928.1	1	0
F41C3.5.1	1	0
F45E1.4	1	1
F45F2.12	0	0
F46E10.10c.2	1	0
F47H4.2	1	0
F52E1.7a	1	0
F54C1.7.4	0	0
F55H2.2.1	0	0
F56B6.4c	1	0
F57B10.3b.2	0	0
F57F4.3	0	0
F58B3.1	0	0

H15N14.1f	0	0
ASP3_CAEEL	0	1
H23L24.5	0	0
K07E3.4b	1	0
K08E3.5a.1	2	1
K08F4.9	0	2
K10G4.3	0	0
K12C11.1.1	1	0
K12C11.4	0	1
M03F4.7b	1	0
M05D6.4	1	0
R05F9.10	1	0
R05F9.6	3	0
R05H10.5	0	0
R07E3.3	0	0
R107.7.2	0	1
R11H6.1.2	0	0
R12E2.11	0	0
T04H1.9	0	0
T05H4.6.3	0	0
T07C4.9b.2	1	0
T12A2.2.2	0	0
T14F9.1.2	0	1
T14G11.3	0	0
T19D12.4b	2	1
T20G5.1	1	0
T21B4.9	3	1
T25C8.2.1	4	1
W01F3.2	2	1
W03D2.6	2	0
W03G1.7b	2	0
Y105C5B.15	1	0
Y105E8B.1e.2	0	1
Y113G7B.2	0	0
Y47G7B.2	0	0
Y49A3A.2.2	1	0
Y50D7A.7.1	3	0
Y54E2A.11b.2	0	0
Y55B1AR.1.1	4	0
Y69H2.3d.2	0	0
Y87G2A.5	0	0
ZK1037.5	3	1
ZK666.6	2	0
total	60	25

Table S1. The *daf-16* associated element (DAE) was detected de novo as an overrepresented sequence on promoters of genes that are upregulated by *hsf-1* overexpression and correlate with heat protection, Related to Figure 3. The canonical *C. elegans* heat shock element (HSE) was not detected (N.D.) as an overrepresented sequence on promoters of genes upregulated by elevated *hsf-1*. The CTTATCA and TTCTAGAA nucleotide sequences correspond to the DAE and HSE respectively.