Cell Reports, Volume 9 Supplemental Information

### A Pathway Switch Directs BAFF Signaling

### to Distinct NF<sub>K</sub>B Transcription Factors

### in Maturing and Proliferating B Cells

Jonathan V. Almaden, Rachel Tsui, Yi C. Liu, Harry Birnbaum, Maxim N. Shokhirev, Kim A. Ngo, Jeremy C. Davis-Turak, Dennis Otero, Soumen Basak, Robert C. Rickert, and Alexander Hoffmann





Replicate analysis of wild type B cell expansion stimulated with anti-IgM and BAFF

(A) In vitro proliferation of CFSE labeled wild type B cells and stimulated for three days with 10µg/ml anti-IgM alone (black) or 10µg/ml anti-IgM + 50ng/ml BAFF ligand (red) and analyzed by FACS. Live cell numbers gated by exclusion of 7AADHi population. Gates represent B cells that have undergone at least on cell division. Lower left: Maximum likelihood cell parameters that underlie the population dynamics produced by anti-IgM (black) or anti-IgM + BAFF (red), as derived with FlowMax software tool: the fraction of responding cells at each generation, histograms of the time to division or cell death of the first generation. Lower right: the fraction of generation zero B cells undergoing division (pF0), the average time to division of generation zero (Tdiv0), and average time to death of generation zero (Tdiv0), except using 5µg/ml of anti-IgM (black) or 5µg/ml anti-IgM + 50ng/ml BAFF

(B) Same as (A), except using 5µg/ml of anti-IgM (black) or 5µg/ml anti-IgM + 50ng/ml BAFF (red).



#### Figure S2. (relates to Figure 3)

**Strategy for isolating a homogenous population of follicular mature B cells from spleen.** Representative FACS plot of whole spleen B cells before separation (top, left panel) followed by B cell isolation using antibody cocktail consisting of biotin-conjugated monoclonal anti-mouse antibodies against CD43, CD4, CD93, and Ter119 (top, right panel). Resulting B cells are further separated using CD23 MicroBeads. Total splenic B cell populations (bottom, left panel), isolated immature (T1/T2) and marginal zone (MZ) CD23<sup>-</sup> population (bottom, middle panel) and purified mature follicular (FO) B cells are shown (bottom, right panel).



#### Figure S3. (relates to Figure 2 and 4)

## Quantitative experimental data of $IKK-NF\kappa B$ signaling in B-cells used to constrain the parameterization of the mathematical model

(A) Expression profiles of NF $\kappa$ B family proteins in B cells.

Quantification of immunoblots for ReIA, ReIB, and cReI protein levels in anti-IgM alone, BAFF alone, or anti-IgM + BAFF stimulated *wild type* B cells (N=4) S.D.

(B) Expression profiles of NF $\kappa$ B family mRNAs in B cells. qPCR analysis of ReIA, ReIB, and cReI mRNA levels in anti-IgM alone, BAFF alone, or anti-IgM + BAFF stimulated *wild type* B cells (N=3) S.D.

(C) BAFF co-stimulation has little effect on BCR-induced canonical NF $\kappa$ B pathway activity. Canonical I $\kappa$ Bs protein levels of I $\kappa$ B $\alpha$ , I $\kappa$ B $\beta$ , and I $\kappa$ B $\epsilon$  in stimulated *wild type* B cells were measured by immunoblot upon stimulation with anti-IgM alone, BAFF alone, or anti-IgM and BAFF co-stimulation as indicated.

(D) NEMO-associated kinase activity was determined in *wild type* B cells in an *in vitro* IP-kinase assay upon stimulation with anti-IgM alone, BAFF alone, or anti-IgM and BAFF co-stimulation as indicated.



#### Figure S4. (relates to Figure 4)

## Wiring diagram of the NF $\kappa$ B signaling system depicting biochemical reactions described in the mathematical model

(A) A schematic of the I $\kappa$ B network that includes both the canonical pathway through NEMO/IKK2 activity and the non-canonical pathway through NIK/IKK1. Four I $\kappa$ Bs interact with a general NF $\kappa$ B dimer (grey) that is then further described in (b). p100 is a substrate for both dimerization to I $\kappa$ B $\delta$  and NIK/IKK1-dependent processing to p52.

(B) A schematic of the NF $\kappa$ B network: monomers and dimers as well as  $I\kappa$ B-NF $\kappa$ B complexes whose synthesis and degradation is accounted for by the mathematical model.



### Figure S5. (relates to Figure 4, Table S3)

#### Determining NF $\kappa$ B and I $\kappa$ B protein levels in MEFs and B-cells

(A-E) Immunoblots of indicated numbers of wild type fibroblast extracts (growing or serum starved) compared with recombinant protein standards diluted in whole cell extracts prepared from mutant fibroblasts deficient in the respective protein. Signal intensities were quantitated by a phosphoimager and a best fit linear standard curve was graphed. Amounts of NF $\kappa$ B protein in MEFS were calculated based on this standard curve.

(F) Immunoblot of wild type B cells and wild type fibroblasts for the basal levels of ReIA, ReIB, cReI, p100, p52,  $I\kappa B\alpha$ ,  $I\kappa B\beta$ , and  $I\kappa B\epsilon$ . This was used in determining the basal levels of protein abundances in B cells compared to MEFs for the initial parameterization of the B-cell model. Gel images in are representative of three experiments. The quantitated concentrations and c molecule numbers are summarized in Table S3.



#### Figure S6. (relates to Figure 4)

Single cell simulation of anti-IgM, BAFF, and co-stimulation of the B cell NF<sub>K</sub>B model Timecourses depicting IKK activity (model simulation input) in the top row and calculated timecourses in subsequent rows, specifically nuclear DNA binding activities of ReIB and cReI, and abundances of  $I_KB\alpha$ ,  $I_KB\epsilon$ , and  $I_KB\delta$ . Each graph shows the results of simulations of 1000 B cells for each condition (anti-IgM, BAFF, and co-stimulation). Cells vary in whether they activate IKK or not, and when the IKK activity is activated. Individual simulations tracks are shown, as well as the average (dashed line).



#### Figure S7. (relates to Figure 5 and 6)

#### Normal B cell development in *Nfkb2<sup>+/-</sup>* and *Nfkb1<sup>-/-</sup>* mice

(A) B cell development is defective in *Nfkb2<sup>-/-</sup>* mice, but unaffected in *Nfkb2<sup>+/-</sup>* mice. Splenocytes were stained with anti-B220, anti-CD21, and anti-CD23. B cells populations are gated as B220<sup>+</sup> (top row). For cells gated on B220<sup>+</sup>, marginal zone B cells (CD21<sup>hi</sup>CD23<sup>lo</sup>), follicular B cells (CD21<sup>lo</sup>CD23<sup>hi</sup>) and transitional 1 and transitional 2 B cells (CD21<sup>lo</sup>CD23<sup>lo</sup>) are shown (bottom row). Representative data of 4 mice shown.

(B) The numbers of total and FO B cells obtained from (A) are displayed graphically.
(C) Normal B cell development in *Nfkb1<sup>-/-</sup>* mice. Splenocytes were stained with anti-B220, anti-CD21, and anti-CD23. B cells populations are gated as B220<sup>+</sup> (not shown). For cells gated on B220<sup>+</sup>, marginal zone B cells (CD21<sup>hi</sup>CD23<sup>lo</sup>), follicular B cells (CD21<sup>lo</sup>CD23<sup>hi</sup>) and transitional 1 and transitional 2 B cells (CD21<sup>lo</sup>CD23<sup>lo</sup>) are shown. Representative data of 3 mice shown.
(D) *Nfkb2* gene expression was monitored by qPCR in *wild type* and *nfkb1<sup>-/-</sup>* B cells stimulated with anti-IgM (n=3).

# Table S1. (relates to Figure 4)Reactions and Parameters

Model parameters and biochemical rate constants. Parameter identifiers (column 4 and supplementary Figure 4) are related to reaction descriptions and reaction rate constants.

| Reaction                                                                  | Location   | Parame ter No. | Parameter<br>Value                           | Category    | Source                                                                                                                                                                                                        |  |  |
|---------------------------------------------------------------------------|------------|----------------|----------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Reaction rates determined by transcriptional programs and cytokine levels |            |                |                                              |             |                                                                                                                                                                                                               |  |  |
| =>tlκBα (basal)                                                           | Nucleus    | 1              | 4.8e-3<br>nM/min                             | lκB Synth.  | Parameter value chosen to fit mRNA<br>and protein Expression profiles as<br>measure by RNase Protection (RPA)<br>and Western blot assays, reformulated<br>from Werner et al. (2008) to fit a Hill<br>function |  |  |
| =>tlκBβ (basal)                                                           | Nucleus    | 2              | 1.2e-3<br>nM/min                             | IĸB Synth.  | Refer to #1                                                                                                                                                                                                   |  |  |
| =>tlκBε (basal)                                                           | Nucleus    | 3              | 1.2e-4<br>nM/min                             | IĸB Synth.  | Refer to #1                                                                                                                                                                                                   |  |  |
| =>tRelA (basal)                                                           | Nucleus    | 4              | 3.6e-5<br>nM/min                             | NFκB Synth. | Refer to #1                                                                                                                                                                                                   |  |  |
| =>tp50 (basal)                                                            | Nucleus    | 5              | 2.9e-5<br>nM/min                             | NFκB Synth. | Refer to #1                                                                                                                                                                                                   |  |  |
| =>tRelB (basal)                                                           | Nucleus    | 6              | 4.2e-5<br>nM/min                             | NFkB Synth. | Refer to #1/Fitted                                                                                                                                                                                            |  |  |
| =>tp100 (basal)                                                           | Nucleus    | 7              | 8e-7 nM/min                                  | NFκB Synth. | Refer to #1                                                                                                                                                                                                   |  |  |
| =>cRel (basal)                                                            | Nucleus    | 8              | 3.6e-6<br>nM/min                             | NFκB Synth. | Refer to #1/Fitted                                                                                                                                                                                            |  |  |
| => NIK                                                                    | Cytoplasm  | 9              | 4.2e-2<br>nM/min                             | NIK Synth.  | Set to yield measured abundance in<br>conjunction with #10                                                                                                                                                    |  |  |
| NIK =>                                                                    | Cytoplasm  | 10             | 4.6e-2                                       | NIK Deg.    | Based on estimated 15-minute half-life/<br>Fitted                                                                                                                                                             |  |  |
| IkB Reactions                                                             |            |                | •                                            | •           |                                                                                                                                                                                                               |  |  |
| mRNA => mRNA<br>+ protein                                                 | Nuc - >Cyt | 11             | 12 proteins/<br>mRNA/min                     | Translation | Derived from the elongation rate of the ribosome and corrected for the nucleotide spacing between adjacent ribosomes on the same transcript $1800 \text{ nt min}^{-1}/150 \text{ nt} = 12 \text{ min}^{-1}$   |  |  |
| =>tlκBα<br>(A50/A52-<br>induced)                                          | Nucleus    | 12             | 200 Fold over consitutive                    | IkB Synth.  | Refer to #1                                                                                                                                                                                                   |  |  |
| Hill K <sub>d</sub> (A50/A52-<br>induced)                                 | Nucleus    | 13             | 150 nM                                       | lκB Synth.  | Refer to #1                                                                                                                                                                                                   |  |  |
| =>tlkBε<br>(A50/A52-<br>induced, 37 min.<br>delay)                        | Nucleus    | 14             | 25 Fold over consitutive                     | ΙκΒ Synth.  | Refer to #1                                                                                                                                                                                                   |  |  |
| Hill K <sub>d</sub> (A50/A52-<br>induced)                                 | Nucleus    | 15             | 150 nM                                       | IĸB Synth.  | Refer to #1                                                                                                                                                                                                   |  |  |
| =>tlκBε<br>(C50/C52-<br>induced, 37 min.<br>delay)                        | Nucleus    | 16             | 250 Fold over consitutive                    | IкВ Synth.  | Refer to #1                                                                                                                                                                                                   |  |  |
| Hill K <sub>d</sub> (C50/C52-<br>induced)                                 | Nucleus    | 17             | 150 nM                                       | IĸB Synth.  | Refer to #1                                                                                                                                                                                                   |  |  |
| p100 + p100<br>=>ΙκΒδ                                                     | Cyt, Nuc   | 18             | 1.2e-2 nM <sup>-1</sup><br>min <sup>-1</sup> | IkB Synth.  | Estimated a K₀of 10nM                                                                                                                                                                                         |  |  |
| lκBδ => p100 +<br>p100                                                    | Cyt, Nuc   | 19             | 1.2e-2 min <sup>-1</sup>                     | IkB Synth.  | Refer to #19                                                                                                                                                                                                  |  |  |
| lκBα(c)<br>=>lκBα(n)                                                      | Cyt ->Nuc  | 20             | 6.0e-2 min <sup>-1</sup>                     | Transport   | Adapted from (Shih et al., 2009)                                                                                                                                                                              |  |  |

| ΙκΒβ(c)<br>=>ΙκΒβ(n)                                   | Cyt ->Nuc  | 21 | 9.0-3 min <sup>-1</sup>                      | Transport   | (Shih et al., 2009)                                                                              |  |  |
|--------------------------------------------------------|------------|----|----------------------------------------------|-------------|--------------------------------------------------------------------------------------------------|--|--|
| IκBε(c)<br>=>IκBε(n)                                   | Cyt ->Nuc  | 22 | 4.5e-2 min <sup>-1</sup>                     | Transport   | (Shih et al., 2009)                                                                              |  |  |
| ΙκΒδ(c)<br>=>ΙκΒδ(n)                                   | Cyt ->Nuc  | 23 | 4.5e-2 min <sup>-1</sup>                     | Transport   | (Shih et al., 2009)                                                                              |  |  |
| ΙκΒ[α/β/ε/δ](n)<br>=>ΙκΒ[α/β/ε/δ](c)                   | Nuc - >Cyt | 24 | 1.2e-2 min <sup>-1</sup>                     | Transport   | (Shih et al., 2009)                                                                              |  |  |
| tlκBα =>                                               | Nucleus    | 25 | 2.9e-2 min <sup>-1</sup>                     | lκB Deg.    | mRNA half-life measurements using actinomycin-D treatment of cells and RPA (unpublished results) |  |  |
| tlκBβ =>                                               | Nucleus    | 26 | 2.9e-3 min <sup>-1</sup>                     | IkB Deg.    | Refer to #25                                                                                     |  |  |
| tlκBε =>                                               | Nucleus    | 27 | 3.8e-3 min <sup>-1</sup>                     | IkB Deg.    | Refer to #25                                                                                     |  |  |
| ΙκΒα =>                                                | Cyt, Nuc   | 28 | 0.12 min <sup>-1</sup>                       | IkB Deg.    | (Shih et al., 2009)                                                                              |  |  |
| ΙκΒβ =>                                                | Cyt, Nuc   | 29 | 0.12 min <sup>-1</sup>                       | IkB Deg.    | (Shih et al., 2009)                                                                              |  |  |
| ΙκΒε =>                                                | Cyt, Nuc   | 30 | 1.2e-2 min <sup>-1</sup>                     | IkB Deg.    | Based on estimated 1 hour half-life                                                              |  |  |
| lκBδ =>                                                | Cvt. Nuc   | 31 | 3e-3 min <sup>-1</sup>                       | IKB Deg.    | Based on estimated 4 hour half-life                                                              |  |  |
| ΙκΒ[α/β/ε/δ]-ΝFκΒ<br>=>NFκΒ                            | Cyt, Nuc   | 32 | 2.4e-4 min <sup>-1</sup>                     | IкB Deg.    | Based on estimated 48 hour half-life                                                             |  |  |
| IκBα =><br>(NEMO-<br>mediated)                         | Cytoplasm  | 33 | 1.4e-3 nM⁻¹<br>min⁻¹                         | lκB Deg.    | Based on measured IkB degradation                                                                |  |  |
| IκBαNFκB<br>=>NFκB<br>(NEMO-<br>mediated)              | Cytoplasm  | 33 | 1.4e-3 nM <sup>-1</sup><br>min <sup>-1</sup> | lκB Deg.    | timecourses given numerical input<br>curves                                                      |  |  |
| IκBβ =><br>(NEMO-<br>mediated)                         | Cytoplasm  | 34 | 4.5e-4 nM <sup>-1</sup><br>min <sup>-1</sup> | lκB Deg.    | Refer to # 33                                                                                    |  |  |
| IκBβNFκB<br>=>NFκB<br>(NEMO-<br>mediated)              | Cytoplasm  | 34 | 4.5e-4 nM <sup>-1</sup><br>min <sup>-1</sup> | lκB Deg.    | Refer to # 33                                                                                    |  |  |
| IκBε =><br>(NEMO-<br>mediated)                         | Cytoplasm  | 35 | 3.4e-4 nM <sup>-1</sup><br>min <sup>-1</sup> | lκB Deg.    | Refer to # 33                                                                                    |  |  |
| IκΒεΝFκΒ<br>=>NFκΒ<br>(NEMO-<br>mediated)              | Cytoplasm  | 35 | 3.4e-4 nM <sup>-1</sup><br>min <sup>-1</sup> | lκB Deg.    | Refer to # 33                                                                                    |  |  |
| IκBδ =><br>(NIK-mediated)                              | Cytoplasm  | 36 | 0.6 nM <sup>-1</sup> min <sup>-1</sup>       | IкB Deg.    | $V_{max}$ and $K_m$ of NIK-mediated reactions                                                    |  |  |
| ΙκΒδΝFκΒ<br>=>NFκB<br>(NIK-mediated)                   | Cytoplasm  | 36 | 0.6 nM <sup>-1</sup> min <sup>-1</sup>       | lκB Deg.    | based on protein degradation and<br>estimated NIK abundances.                                    |  |  |
| IκBδ =><br>(NIK-mediated,<br>K <sub>m</sub> )          | Cytoplasm  | 37 | 100 nM                                       | lκB Deg.    | Refer to #36                                                                                     |  |  |
| NF-κB reactions                                        |            |    |                                              |             |                                                                                                  |  |  |
| p100 => p52<br>(NIK-mediated)                          | Cytoplasm  | 38 | 5.0e-2 nM <sup>-1</sup><br>min <sup>-1</sup> | NFκB Synth. | Refer to #36                                                                                     |  |  |
| p100 => p52<br>(NIK-mediated,<br>p100 K <sub>m</sub> ) | Cytoplasm  | 39 | 10 nM                                        | NFkB Synth. | Refer to #36                                                                                     |  |  |
| =>cRel<br>(A50/A52/C50/C5<br>2-induced, 1 hr<br>delay) | Nucleus    | 40 | 200 Fold over consitutive                    | NFκB Synth. | Refer to #1/Fitted                                                                               |  |  |

| Hill K <sub>d</sub><br>(A50/A52/C50/C5<br>2-induced) | Nucleus  | 41       | 150 nM                                       | NFκB Synth. | Refer to #1/Fitted                                     |  |
|------------------------------------------------------|----------|----------|----------------------------------------------|-------------|--------------------------------------------------------|--|
| =>tp100<br>(A50/A52-<br>induced, 4 hr<br>delay)      | Nucleus  | 42       | 1000 Fold<br>over<br>consitutive             | NFκB Synth. | Refer to #1/Fitted                                     |  |
| Hill K <sub>d</sub> (A50/A52-<br>induced)            | Nucleus  | 43       | 50 nM                                        | NFκB Synth. | Refer to #1/Fitted                                     |  |
| =>tp100<br>(C50/C52-<br>induced, 4 hr<br>delay)      | Nucleus  | 44       | 1500 Fold<br>over<br>consitutive             | NFkB Synth. | Refer to #1/Fitted                                     |  |
| Hill K <sub>d</sub> (C50/C52-<br>induced)            | Nucleus  | 45       | 50 nM                                        | NFκB Synth. | Refer to #1/Fitted                                     |  |
| tRelA =>                                             | Nucleus  | 46       | 2.9e-3 min <sup>-1</sup>                     | NFkB Deg.   | Refer to #25                                           |  |
| tp50 =>                                              | Nucleus  | 47       | 2.9e-3 min <sup>-1</sup>                     | NFKB Deg.   | Refer to #25                                           |  |
| tRelB =>                                             | Nucleus  | 48       | 2 9e-3 min <sup>-1</sup>                     | NFkB Deg    | Refer to #25                                           |  |
| tr 100 ->                                            | Nuclous  | 10       | $2.000 \text{ min}^{-1}$                     | NERB Dog    | Potor to #25                                           |  |
| to Pol                                               | Nucleus  | 49<br>50 | $9.0e^{-4}$ min <sup>-1</sup>                | NEKP Dog    | Refer to #25                                           |  |
|                                                      |          | 50       | 9.6e-4 min                                   | NEKE Deg.   |                                                        |  |
| ReiA =>                                              | Cyt, Nuc | 51       | 2.3e-2 min                                   | NFKB Deg.   |                                                        |  |
| p50 =>                                               | Cyt, Nuc | 51       | 2.3e-2 min                                   | NFĸB Deg.   |                                                        |  |
| RelB =>                                              | Cyt, Nuc | 51       | 2.3e-2 min <sup>-</sup>                      | NFkB Deg.   | Based on estimated 0.5 hour half-life of               |  |
| p100 =>                                              | Cyt, Nuc | 51       | 2.3e-2 min <sup>-1</sup>                     | NFkB Deg.   | NF-ĸB monomers                                         |  |
| cRel =>                                              | Cyt, Nuc | 51       | 2.3e-2 min <sup>-1</sup>                     | NFkB Deg.   |                                                        |  |
| p52 =>                                               | Cyt, Nuc | 51       | 2.3e-2 min <sup>-1</sup>                     | NFkB Deg.   |                                                        |  |
| RelA + p50 =><br>RelAp50                             | Cyt, Nuc | 52       | 1.9e-3 nM <sup>-1</sup><br>min <sup>-1</sup> | NFκB Synth. |                                                        |  |
| RelA + p52 =><br>RelAp52                             | Cyt, Nuc | 52       | 1.9e-3 nM <sup>-1</sup><br>min <sup>-1</sup> | NFκB Synth. |                                                        |  |
| RelB + p52 =><br>RelBp52                             | Cyt, Nuc | 53       | 9.6e-4 nM⁻¹<br>min⁻¹                         | NFκB Synth. |                                                        |  |
| RelB + p50 =><br>RelBp50                             | Cyt, Nuc | 53       | 3e-4 nM <sup>-1</sup> min <sup>-</sup>       | NFκB Synth. | Based on dimerization studies<br>(unpublished results) |  |
| cRel + p50 =><br>cRelp50                             | Cyt, Nuc | 54       | 9.6e-4 nM⁻¹<br>min⁻¹                         | NFκB Synth. |                                                        |  |
| cRel + p52 =><br>cRelp52                             | Cyt, Nuc | 55       | 1.9e-3 nM <sup>-1</sup><br>min <sup>-1</sup> | NFκB Synth. |                                                        |  |
| p50 + p50 =><br>p50p50                               | Cyt, Nuc | 56       | 1.8e-3 nM <sup>-1</sup><br>min <sup>-1</sup> | NFκB Synth. |                                                        |  |
| p52+ p52 =><br>p52p52                                | Cyt, Nuc | 57       | 1.8e-3 nM <sup>-1</sup><br>min <sup>-1</sup> | NFκB Synth. |                                                        |  |
| RelAp50 => RelA<br>+ p50                             | Cyt      | 58       | 1.9e-2 min <sup>-1</sup>                     | NFκB Synth. |                                                        |  |
| RelAp52 => RelA<br>+ p52                             | Cyt      | 59       | 3.8e-2min <sup>-1</sup>                      | NFκB Synth. |                                                        |  |
| RelBp52 => RelB<br>+ p52                             | Cyt      | 60       | 1.4e-2 min <sup>-1</sup>                     | NFκB Synth. | Based on dimerization studies<br>(unpublished results) |  |
| RelBp50 => RelB<br>+ p50                             | Cyt      | 61       | 4.6e-3 min <sup>-1</sup>                     | NFκB Synth. |                                                        |  |
| cRelp50 =>cRel<br>+ p50                              | Cyt      | 62       | 1.4e-3 min <sup>-1</sup>                     | NFκB Synth. |                                                        |  |
| cRelp52 =>cRel<br>+ p52                              | Cyt      | 63       | 1.4e-3min <sup>-1</sup>                      | NFκB Synth. |                                                        |  |
| RelAp50 => RelA<br>+ p50                             | Nuc      | 64       | 1.9e-3 min <sup>-1</sup>                     | NFκB Synth. | Estimated 10 fold higher affinity due to DNA binding   |  |
| RelAp52 => RelA<br>+ p52                             | Nuc      | 65       | 3.8e-3min <sup>-1</sup>                      | NFκB Synth. | Refer to #64                                           |  |

|                                     |           |    | -                                            |                         |                                                        |
|-------------------------------------|-----------|----|----------------------------------------------|-------------------------|--------------------------------------------------------|
| RelBp52 => RelB<br>+ p52            | Nuc       | 66 | 1.4e-3 min <sup>-1</sup>                     | NFκB Synth.             | Refer to #64                                           |
| RelBp50 => RelB<br>+ p50            | Nuc       | 67 | 4.6e-3 min <sup>-1</sup>                     | NFκB Synth.             | Refer to #64                                           |
| cRelp50 =>cRel<br>+ p50             | Nuc       | 68 | 1.4e-4 min <sup>-1</sup>                     | NFκB Synth.             | Refer to #64                                           |
| cRelp52 =>cRel<br>+ p52             | Nuc       | 69 | 1.4e-4min <sup>-1</sup>                      | NFκB Synth.             | Refer to #64                                           |
| p50p50 => p50 +<br>p50              | Cyt, Nuc  | 70 | 5.4e-2min <sup>-1</sup>                      | NFκB Synth.             | Based on dimerization studies<br>(unpublished results) |
| p52p52 => p52+<br>p52               | Cyt, Nuc  | 71 | 5.4e-2min <sup>-1</sup>                      | NFκB Synth.             | Based on dimerization studies<br>(unpublished results) |
| RelAp50(c)<br>=>RelAp50(n)          | Cyt ->Nuc | 72 | 5.4 min <sup>-1</sup>                        | Transport               | (Shih et al., 2009)                                    |
| RelAp52(c)<br>=>RelAp52(n)          | Cyt ->Nuc | 72 | 5.4 min <sup>-1</sup>                        | Transport               | (Shih et al., 2009)                                    |
| RelBp52(c)<br>=>RelBp52(n)          | Cyt ->Nuc | 72 | 5.4 min <sup>-1</sup>                        | Transport               | (Shih et al., 2009)                                    |
| RelBp50(c)<br>=>RelBp50(n)          | Cyt ->Nuc | 72 | 5.4 min <sup>-1</sup>                        | Transport               | (Shih et al., 2009)                                    |
| cRelp50(c) =><br>cRelp50(n)         | Cyt ->Nuc | 72 | 5.4 min <sup>-1</sup>                        | Transport               | (Shih et al., 2009)                                    |
| cRelp52(c) =><br>cRelp52(n)         | Cyt ->Nuc | 72 | 5.4 min <sup>-1</sup>                        | Transport               | (Shih et al., 2009)                                    |
| p50p50(c) =><br>p50p50(n)           | Cyt ->Nuc | 72 | 5.4 min <sup>-1</sup>                        | Transport               | (Shih et al., 2009)                                    |
| p52p52(c) =><br>p52p52(n)           | Cyt ->Nuc | 72 | 5.4 min <sup>-1</sup>                        | Transport               | (Shih et al., 2009)                                    |
| NFκB(n)<br>=>NFκB(c)                | Nuc ->Cyt | 73 | 4.8e-3 min <sup>-1</sup>                     | Transport               | (Shih et al., 2009)                                    |
| RelAp50 =>                          | Cyt, Nuc  | 74 | 2.4e-4 min <sup>-1</sup>                     | NFkB Deg.               |                                                        |
| RelAp52 =>                          | Cyt, Nuc  | 74 | 2.4e-4 min <sup>-1</sup>                     | NFkB Deg.               |                                                        |
| RelBp50 =>                          | Cyt, Nuc  | 74 | 2.4e-4 min <sup>-1</sup>                     | NFkB Deg.               |                                                        |
| RelBp52 =>                          | Cyt, Nuc  | 74 | 2.4e-4 min <sup>-1</sup>                     | NFkB Deg.               | Based on estimated 48 hour half-life                   |
| cRelp50 =>                          | Cyt, Nuc  | 74 | 2.4e-4 min <sup>-1</sup>                     | NFkB Deg.               |                                                        |
| cRelp52 =>                          | Cyt, Nuc  | 74 | 2.4e-4 min <sup>-1</sup>                     | NFkB Deg.               |                                                        |
| p50p50 =>                           | Cyt, Nuc  | 74 | 2.4e-4 min <sup>-1</sup>                     | NFkB Deg.               |                                                        |
| p52p52 =>                           | Cyt, Nuc  | 74 | 2.4e-4 min <sup>-1</sup>                     | NFkB Deg.               |                                                        |
| ΙκΒ[α/β/ε/δ]-ΝFκΒ<br>=>ΙκΒ[α/β/ε/δ] | Cyt, Nuc  | 75 | 2.4e-4 min <sup>-1</sup>                     | NFκB Deg.               | Refer to #74                                           |
| ΙκΒ:NF-κB intera                    | ctions    | 1  |                                              |                         |                                                        |
| IκBα + RelA:p50<br>=>IκBα:RelA:p50  | Cyt, Nuc  | 76 | 3e-3 nM <sup>-1</sup> min <sup>-</sup>       | IkB-NFkB<br>interaction | Adapted from Alves et. al 2013                         |
| IκBβ + RelA:p50<br>=>IκBβ:RelA:p50  | Cyt, Nuc  | 77 | 2e-4 nM <sup>-1</sup> min <sup>-</sup>       | IkB-NFkB<br>interaction | Adapted from Alves et. al 2013                         |
| IκBε + RelA:p50<br>=> IκBε:RelA:p50 | Cyt, Nuc  | 78 | 1.3e-3 nM <sup>-1</sup><br>min <sup>-1</sup> | IκB-NFκB<br>interaction | Adapted from Alves et. al 2013                         |
| ІкВδ + RelA:p50<br>=> IкВδ:RelA:p50 | Cyt, Nuc  | 79 | 6e-4 nM <sup>-1</sup> min <sup>-</sup>       | IκB-NFκB<br>interaction | Adapted from Alves et. al 2013                         |
| IκBα + RelA:p52<br>=>IκBα:RelA:p52  | Cyt, Nuc  | 76 | 3e-3 nM <sup>-1</sup> min <sup>-</sup>       | IkB-NFkB<br>interaction | Adapted from Alves et. al 2013                         |
| IκBβ + RelA:p52<br>=>IκBβ:RelA:p52  | Cyt, Nuc  | 77 | 2e-4 nM <sup>-1</sup> min <sup>-</sup>       | IκB-NFκB<br>interaction | Adapted from Alves et. al 2013                         |
| IκBε + RelA:p52<br>=> IκBε:RelA:p52 | Cyt, Nuc  | 78 | 1.3e-3 nM <sup>-1</sup><br>min <sup>-1</sup> | IκB-NFκB<br>interaction | Adapted from Alves et. al 2013                         |
| IκBδ + RelA:p52<br>=> IκBδ:RelA:p52 | Cyt, Nuc  | 79 | 6e-4 nM <sup>-1</sup> min <sup>-</sup>       | IκB-NFκB<br>interaction | Adapted from Alves et. al 2013                         |

| lκBα + RelB:p50<br>=>lκBα:RelB:p50    | Cyt, Nuc | 80 | 1.3e-3 nM <sup>-1</sup><br>min <sup>-1</sup> | IkB-NFkB<br>interaction | Adapted from Alves et. al 2013 |
|---------------------------------------|----------|----|----------------------------------------------|-------------------------|--------------------------------|
| IκBε + RelB:p50<br>=> IκBε:RelB:p50   | Cyt, Nuc | 81 | 1.3e-3 nM <sup>-1</sup><br>min <sup>-1</sup> | IkB-NFkB<br>interaction | Adapted from Alves et. al 2013 |
| ІкВδ + RelB:p50<br>=> IкВδ:RelB:p50   | Cyt, Nuc | 82 | 6e-4 nM <sup>-1</sup> min <sup>-</sup>       | IkB-NFkB<br>interaction | Adapted from Alves et. al 2013 |
| lκBα + cRel:p50<br>=>lκBα:cRel:p50    | Cyt, Nuc | 83 | 3e-3 nM <sup>-1</sup> min <sup>-</sup>       | IkB-NFkB<br>interaction | Adapted from Alves et. al 2013 |
| lκBβ +cRel:p50<br>=>lκBβ:cRel:p50     | Cyt, Nuc | 84 | 2.1e-4 nM <sup>-1</sup><br>min <sup>-1</sup> | IκB-NFκB<br>interaction | Adapted from Alves et. al 2013 |
| IκBε + cRel:p50<br>=> ΙκΒε:cRel:p50   | Cyt, Nuc | 85 | 1.3e-3 nM <sup>-1</sup><br>min <sup>-1</sup> | IκB-NFκB<br>interaction | Adapted from Alves et. al 2013 |
| lκBδ + cRel:p50<br>=> lκBδ:cRel:p50   | Cyt, Nuc | 86 | 1.98e-2 nM⁻¹<br>min⁻¹                        | IκB-NFκB<br>interaction | Adapted from Alves et. al 2013 |
| lκBα + cRel:p52<br>=>lκBα:RelA:p52    | Cyt, Nuc | 83 | 3e-3 nM <sup>-1</sup> min <sup>-</sup>       | IκB-NFκB<br>interaction | Adapted from Alves et. al 2013 |
| lκBβ + cRel:p52<br>=>lκBβ:cRel:p52    | Cyt, Nuc | 84 | 2.1e-4 nM <sup>-1</sup><br>min <sup>-1</sup> | IκB-NFκB<br>interaction | Adapted from Alves et. al 2013 |
| IκBε + cRelp52<br>=> IκBε:cRel:p52    | Cyt, Nuc | 85 | 1.3e-3 nM <sup>-1</sup><br>min <sup>-1</sup> | IκB-NFκB<br>interaction | Adapted from Alves et. al 2013 |
| ІкВδ + cRel:p52<br>=> IкВδ:cRel:p52   | Cyt, Nuc | 86 | 1.98e-2 nM⁻¹<br>min⁻¹                        | IκB-NFκB<br>interaction | Adapted from Alves et. al 2013 |
| lκBα:RelA:p50<br>=>lκBα +<br>RelA:p50 | Cyt, Nuc | 87 | 6e-4 min <sup>-1</sup>                       | IκB-NFκB<br>interaction |                                |
| ΙκΒβ:RelA:p50<br>=>ΙκΒβ +<br>RelA:p50 | Cyt, Nuc | 88 | 1.7e-2 min <sup>-1</sup>                     | IκB-NFκB<br>interaction | Fitted (dependent on 76-79)    |
| lκBε:RelA:p50<br>=>lκBε +<br>RelA:p50 | Cyt, Nuc | 89 | 6e-3 min <sup>-1</sup>                       | IκB-NFκB<br>interaction |                                |
| ΙκΒδ:RelA:p50<br>=>ΙκΒδ +<br>RelA:p50 | Cyt, Nuc | 90 | 8.4e-4 min <sup>-1</sup>                     | IκB-NFκB<br>interaction |                                |
| IκBα:RelA:p52<br>=>IκBα +<br>RelA:p52 | Cyt, Nuc | 91 | 6e-4 min <sup>-1</sup>                       | IκB-NFκB<br>interaction |                                |
| IκBβ:RelA:p52<br>=>IκBβ +<br>RelA:p52 | Cyt, Nuc | 92 | 1.7e-2 min <sup>-1</sup>                     | IκB-NFκB<br>interaction | Fitted (dependent on 76-79)    |
| IκΒε:RelA:p52<br>=>IκΒε +<br>RelA:p52 | Cyt, Nuc | 93 | 6e-3 min <sup>-1</sup>                       | IκB-NFκB<br>interaction |                                |
| ΙκΒδ:RelA:p52<br>=>ΙκΒδ +<br>RelA:p52 | Cyt, Nuc | 94 | 8.4e-4 min <sup>-1</sup>                     | IκB-NFκB<br>interaction |                                |
| IκBα:RelB:p50<br>=>IκBα +<br>RelB:p50 | Cyt, Nuc | 95 | 3e-2 min <sup>-1</sup>                       | IκB-NFκB<br>interaction |                                |
| IκBε:RelB:p50<br>=>IκBε +<br>RelB:p50 | Cyt, Nuc | 96 | 3e-2 min <sup>-1</sup>                       | IκB-NFκB<br>interaction | Fitted (dependent on 80 -82)   |
| lκBδ:RelB:p50<br>=>lκBδ +<br>RelB:p50 | Cyt, Nuc | 97 | 8.4e-4 min <sup>-1</sup>                     | IκB-NFκB<br>interaction |                                |
| IκBα:cRel:p50<br>=>IκBα +<br>cRel:p50 | Cyt, Nuc | 98 | 4.8e-3 min <sup>-1</sup>                     | IκB-NFκB<br>interaction | Fitted (dependent on 83-86)    |

| lκBβ:cRel:p50<br>=>lκBβ<br>+cRel:p50  | Cyt, Nuc  | 99  | 1.7e-2 min <sup>-1</sup> | IκB-NFκB<br>interaction |                                             |
|---------------------------------------|-----------|-----|--------------------------|-------------------------|---------------------------------------------|
| lκBε:cRel:p50<br>=>lκBε +<br>cRel:p50 | Cyt, Nuc  | 100 | 2.7e-5 min <sup>-1</sup> | IκB-NFκB<br>interaction |                                             |
| lκΒδ:cRel:p50<br>=>lκΒδ +<br>cRel:p50 | Cyt, Nuc  | 101 | 8.4e-4 min <sup>-1</sup> | IκB-NFκB<br>interaction |                                             |
| lκBα:cRel:p52<br>=>lκBα +<br>cRel:p52 | Cyt, Nuc  | 98  | 4.8e-3 min <sup>-1</sup> | IκB-NFκB<br>interaction |                                             |
| lκBβ:cRel:p52<br>=>lκBβ +<br>cRel:p52 | Cyt, Nuc  | 99  | 1.7e-2 min <sup>-1</sup> | IκB-NFκB<br>interaction | Fitted (dependent on 82.86)                 |
| lκBε:cRel:p52<br>=>lκBε +<br>cRelp52  | Cyt, Nuc  | 100 | 2.7e-5 min <sup>-1</sup> | IκB-NFκB<br>interaction | Fitted (dependent on 83-86)                 |
| lκBδ:cRel:p52<br>=>lκBδ +<br>cRel:p52 | Cyt, Nuc  | 101 | 8.4e-4 min <sup>-1</sup> | IκB-NFκB<br>interaction |                                             |
| IκBα:NFκB(c)<br>=>IκBα:NFκB(n)        | Cyt ->Nuc | 102 | 0.28 min <sup>-1</sup>   | Transport               | (Shih et al., 2009)                         |
| ΙκΒβ:NFκB(c)<br>=>ΙκΒβ:NFκB(n)        | Cyt ->Nuc | 103 | 0.028 min <sup>-1</sup>  | Transport               | (Shih et al., 2009)                         |
| lκBδ:NFκB(c)<br>=>lκBδ:NFκB(n)        | Cyt ->Nuc | 104 | 0.028 min <sup>-1</sup>  | Transport               | Based on slower import rate of<br>ΙκΒβ:ΝFκΒ |
| IκΒε:NFκB(c)<br>=>IκΒε:NFκB(n)        | Cyt ->Nuc | 105 | 0.14 min <sup>-1</sup>   | Transport               | (Shih et al., 2009)                         |
| IκBα:NFκB(n)<br>=>IκBα:NFκB(c)        | Nuc ->Cyt | 106 | 0.84 min <sup>-1</sup>   | Transport               | (Shih et al., 2009)                         |
| IκBβ:NFκB(n)<br>=>IκBβ:NFκB(c)        | Nuc ->Cyt | 107 | 0.42 min <sup>-1</sup>   | Transport               | (Shih et al., 2009)                         |
| IκΒε:NFκB(n)<br>=>IκΒε:NFκB(c)        | Nuc ->Cyt | 108 | 0.42 min <sup>-1</sup>   | Transport               | (Shih et al., 2009)                         |
| IκΒδ:NFκB(n)<br>=>IκΒδ:NFκB(c)        | Nuc ->Cyt | 109 | 0.42 min <sup>-1</sup>   | Transport               | (Shih et al., 2009)                         |

## Table S2. (relates to Figure 4)Species Table

Species described in mathematical model (supplementary figure 4). Location Species Nucleus tlκBα 1 2 tlκBβ Nucleus 3 Nucleus tlκBε 4 tRelA Nucleus 5 Nucleus tp50 6 tp100 Nucleus tcRel **Nucleus** 7 8,9 Nucleus, Cytoplasm ΙκΒα Nucleus, Cytoplasm 10,11 ΙκΒβ 12,13 ΙκΒε Nucleus, Cytoplasm 14,15 ΙκΒδ Nucleus, Cytoplasm 16,17 Nucleus, Cytoplasm RelA Nucleus, Cytoplasm 18,19 RelB 20,21 cRel Nucleus, Cytoplasm Nucleus, Cytoplasm 22,23 p50 24,25 p100 Nucleus, Cytoplasm 26,27 p52 Nucleus, Cytoplasm 28,29 RelAp50 Nucleus, Cytoplasm 30,31 RelAp52 Nucleus, Cytoplasm 32,33 RelBp50 Nucleus, Cytoplasm 34,35 RelBp52 Nucleus, Cytoplasm 36,37 Nucleus, Cytoplasm cRelp50 38,39 cRelp52 Nucleus, Cytoplasm 40.41 Nucleus, Cytoplasm p50p50 42,43 p52p52 Nucleus, Cytoplasm 44,45 | ΙκΒα:RelAp50 Nucleus, Cytoplasm 46,47 ΙκΒβ:RelAp50 Nucleus, Cytoplasm Nucleus, Cytoplasm 48,49 ΙκΒε:RelAp50 50,51 lκBδ:RelAp50 Nucleus, Cytoplasm 52,53 ΙκΒα:RelAp52 Nucleus, Cytoplasm 54,55 Nucleus, Cytoplasm IκBβ:RelAp52 56,57 ΙκΒε:RelAp52 Nucleus, Cytoplasm Nucleus, Cytoplasm 58,59 ΙκΒδ:RelAp52 Nucleus, Cytoplasm 60.61 lκBα:RelBp50 Nucleus, Cytoplasm 62,63 ΙκΒε:RelBp50 64,65 lκBδ:RelBp50 Nucleus, Cytoplasm 66,67 IκBα:cRelp50 Nucleus, Cytoplasm 68,69 IκBβ:cRelp50 Nucleus, Cytoplasm Nucleus, Cytoplasm 70,71 IκBε:cRelp50 72,73 Nucleus, Cytoplasm IκBδ:cRelp50 Nucleus, Cytoplasm 74,75 ΙκΒα:cRelp52 76,77 IκBβ:cRelp52 Nucleus, Cytoplasm 78,79 Nucleus, Cytoplasm IκBε:cRelp52 Nucleus, Cytoplasm 80,81 IκBδ:cRelp52 82 NEMO Cytoplasm NIK 83 Cytoplasm

#### Table S3. (relates to Figure S5 and Figure 4)

#### Abundances of NF $\kappa$ B / I $\kappa$ B proteins in B cells and MEFs

Table indicating the NF $\kappa$ B monomer and I $\kappa$ B protein abundances in B cells and MEFs; second column displays the molecule numbers determined by quantitative immunoblot analyses with recombinant protein standards (Figure S5); third column indicates the cellular concentration based on a 2pl volume; fourth column indicates the concentration in B-cells based on the comparative immunoblotting shown in Figure S5F.

| Species | Molecule numbers<br>per Cell in MEFs | Concentration in MEFs (nM) | Concentration in B-cells (nM) |
|---------|--------------------------------------|----------------------------|-------------------------------|
| RelA    | ~480,000                             | ~340                       | ~220                          |
| p50     | ~450,000                             | ~374                       | ~380                          |
| ΙκΒα    | ~400,000                             | ~220                       | ~150                          |
| ΙκΒβ    | ~100,000                             | ~70                        | ~80                           |
| ΙκΒε    | ~25,000                              | ~21                        | ~45                           |