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SUPPORTING INFORMATION FILES

The following additional data are available with the online version of this paper. Supporting
Information has all the supplementary figures Figure S1 to Figure S18 included in the analysis,
and a supporting note to provide further discussion on context-specific functionalities of

common biological processes mediated by key genes in respect to breast cancers, dyslipidemia,

and Alzheimer’s disease (AD).

SUPPLEMENTARY FIGURE LEGENDS

Figure S1. The information flow profiles of ER-negative breast cancer edge-specific
subnetwork. The subnetwork was derived from identified edges as shown in Figure 2B. Edge
thickness represents the amount of edge flow. Additionally, edges are colored according to the
directionality of Pearson correlation coefficient (PCC) (red for positive correlation and blue for
negative correlation). Source genes are indicated as diamonds, intermediary proteins as circles,
and target genes (sinks) as squares and are colored according to node flow difference (see
gradient bar on the right). The size of gene nodes is proportional to the total node flow.

Figure S2. ER-positive breast cancer-specific edge-centered subnetwork. (A) Heatmap of
differentially expressed genes (DEGs) across control and ER-positive breast cancer. (B) Total
edge flow profiles in control and ER-positive breast cancer for edges with higher flows in disease
than in control subnetworks. (C) Jaccard index to evaluate the similarity between edge-centered
control and disease subnetworks and Venn diagrams showing the overlap across genes, edges,
and paths. Pathway enrichment analysis for: 1) gene signatures (DEGs), ii) key edge-centered
subnetworks in control, and iii) disease. Pathway enrichment analysis for genes that compose
disease-specific edge-centered subnetworks captures signaling pathways that are relevant to
disease etiology. No significant enrichment was detected for the gene signature. (D) Heatmap

showing node flow differences across control and ER-positive breast cancer for top 20 network



routers and key target genes showing high node flow difference (red) and low node flow
difference (blue).

Figure S3. Dyslipidemia heterozygote-specific edge-centered subnetwork. (A) Heatmap of
differentially expressed genes (DEGs) across control and dyslipidemia heterozygote. (B) Total
edge flow profiles in control and dyslipidemia heterozygote for edges with higher flows in
disease than in control subnetworks. (C) Jaccard index to evaluate the similarity between edge-
centered control and disease subnetworks and Venn diagrams showing the overlap across genes,
edges, and paths. Pathway enrichment analysis for: 1) gene signatures (DEGs) (red), i1) key edge-
centered subnetworks in control (blue) and iii) disease (green). Pathway enrichment analysis for
genes that compose disease-specific, edge-centered subnetworks captures signaling pathways
that are relevant to disease etiology. No significant enrichment was detected for the gene
signature. (D) Heatmap showing node flow differences across control and dyslipidemia
heterozygote for top 20 network routers and key target genes showing high node flow difference
(red) and low node flow difference (blue).

Figure S4. Dyslipidemia homozygote-specific edge-centered subnetwork. (A) Heatmap of
differentially expressed genes (DEGs) across control and dyslipidemia homozygote. (B) Total
edge flow profiles in control and dyslipidemia homozygote for edges with higher flows in
disease than in control subnetworks. (C) Jaccard index to evaluate the similarity between edge-
centered control and disease subnetworks and Venn diagrams showing the overlap across genes,
edges, and paths. Pathway enrichment analysis for: 1) gene signatures (DEGs) (red), i1) key edge-
centered subnetworks in control (blue) and iii) disease (green). Pathway enrichment analysis for
genes that compose disease-specific, edge-centered subnetworks captures signaling pathways

that are relevant to disease etiology. No significant enrichment was detected for the gene



signature. (D) Heatmap showing node flow differences across control and dyslipidemia
homozygote for top 20 network routers and key target genes showing high node flow difference
(red) and low node flow difference (blue).

Figure S5. AD incipient-specific edge-centered subnetwork. (A) Heatmap of differentially
expressed genes (DEGs) across control and AD incipient stage. (B) Total edge flow profiles in
control and dyslipidemia homozygote for edges with higher flows in disease than in control
subnetworks. (C) Jaccard index to evaluate the similarity between edge-centered control and
disease subnetworks and Venn diagrams showing the overlap across genes, edges, and paths.
Pathway enrichment analysis for: 1) gene signatures (DEGs) (red), ii) key edge-centered
subnetworks in control (blue) and iii) disease (green). Pathway enrichment analysis for genes
that compose disease-specific, edge-centered subnetworks captures signaling pathways that are
relevant to disease etiology. No significant enrichment was detected for the gene signature. (D)
Heatmap showing node flow differences across control and AD incipient for top 20 network
routers and key target genes showing high node flow difference (red) and low node flow
difference (blue).

Figure S6. AD moderate-specific edge-centered subnetwork. (A) Heatmap of differentially
expressed genes (DEGs) across control and AD moderate stage. (B) Total edge flow profiles in
control and dyslipidemia homozygote for edges with higher flows in disease than in control
subnetworks. (C) Jaccard index to evaluate the similarity between edge-centered control and
disease subnetworks and Venn diagrams showing the overlap across genes, edges, and paths.
Pathway enrichment analysis for: i) gene signatures (DEGs) (red), ii) key edge-centered
subnetworks in control (blue) and iii) disease (green). Pathway enrichment analysis for genes

that compose disease-specific, edge-centered subnetworks captures signaling pathways that are



relevant to disease etiology. No significant enrichment was detected for the gene signature. (D)
Heatmap showing node flow differences across control and AD moderate for top 20 network
routers and key target genes showing high node flow difference (red) and low node flow
difference (blue).

Figure S7. AD severe-specific edge-specific subnetwork. (A) Heatmap of differentially
expressed genes (DEGs) across control and AD severe stage. (B) Total edge flow profiles in
control and dyslipidemia homozygote for edges with higher flows in disease than in control
subnetworks. (C) Jaccard index to evaluate the similarity between edge-centered control and
disease subnetworks and Venn diagrams showing the overlap across genes, edges, and paths.
Pathway enrichment analysis for: i) gene signatures (DEGs) (red), ii) key edge-centered
subnetworks in control (blue) and iii) disease (green). Pathway enrichment analysis for genes
that compose disease-specific, edge-centered subnetworks captures signaling pathways that are
relevant to disease etiology. No significant enrichment was detected for the gene signature. (D)
Heatmap showing node flow differences across control and AD severe for top 20 network routers
and key target genes showing high node flow difference (red) and low node flow difference
(blue).

Figure S8. The MAPK1 motif. (A) MAPKI1 as high impact gene in ER-negative breast cancer;
(B) high impact gene in dyslipidemia homozygote; and (C) key target in AD severe.

Figure S9. The CSNK2A1 motif. (A) CSNK2A1 as high impact gene in ER-negative breast
cancer; (B) key target in dyslipidemia homozygote; and (C) key target in AD incipient.

Figure S10. The RARA motif. (A) RARA as high impact gene in ER-negative breast cancer; (B)

high impact gene in dyslipidemia homozygote; and (C) key target in dyslipidemia heterozygote.



Figure S11. The HDACI1 motif. (A) HDACI as high impact gene in ER-negative breast cancer;
(B) key target in dyslipidemia heterozygote; and (C) high impact gene in AD severe.

Figure S12. The TERF2IP motif. (A) TERF2IP in AD incipient control. (B) TERF2IP as key
target in AD moderate; (C) as key target in AD severe.

Figure S13. The CALR motif. (A) CALR as key target in dyslipidemia homozygote; (B) key
target in AD moderate; and (C) key target in AD severe.

Figure S14. The EEF1A1 motif. (A) EEF1AL1 as high impact gene in ER-negative breast cancer;
(B) high impact gene in dyslipidemia homozygote; and (C) high impact gene in AD severe.
Figure S15. The CTNNBI1 motif. (A) CTNNBI as key target in AD incipient; (B) key target in
AD moderate; and (C) high impact gene in AD severe.

Figure S16. Analyses of NetDecoder Robustness. Venn diagrams showing overlap of paths (A)
and impact genes (B) identified by NetDecoder using size of the functional neighborhood,
SFN=0.91, 0.93, 0.97 and 0.99 when compared to results obtained with SFN=0.95 (default). The
number of predicted paths detected under a certain SEN is shown in the table at the bottom. (C-
D) Heatmaps showing node flow differences across control and ER-negative breast cancer for
top 20 key target genes (C) and network routers (D) for SFN=0.91, 0.93, 0.95 (default) 0.97 and
0.99. High node flow difference indicates in red and low node flow difference in blue. (E) Total
edge flow profiles in control and ER-negative breast cancer for edges with higher flows in
disease than in control-specific subnetworks using SFN=0.91, 0.93, 0.95 (default) 0.97 and 0.99
in control and ER-negative breast cancer.

Figure S17. Assigning flow paths based on shared biological processes. To decide which paths
leads to maximum flow at the lowest cost, the process-guided flow algorithm takes into account

the overlap between the functional neighborhoods of protein 1 and protein 2, and such overlap



becomes part of the protein 1 functional neighborhood (GO1, GO2 and GO7). Note that the
functional neighborhood of a given protein also includes GO terms of the protein itself. If the
functional neighborhood of protein 1 shares any biological process with the functional
neighborhood of protein 2 (GO1, GO3, GO4 and GO7), protein 2 is included in the selected flow
path. On the contrary, when protein 4 is considered as a candidate protein in a new path, there is
no biological process being shared with the functional neighborhood of protein 1. Consequently,
the flow is not directed through protein 4.

Figure S18. Context-dependence of key genes associated with FOXM1. (A) FOXM1 as a key gene
(high impact gene and key target) in the ER-negative breast cancer context. (B) FOXMI1 is not a key gene
in the ER-positive breast cancer context. The identities of key genes cannot be directly located in a PPI

network, but properties dictated by the way information flows are conveyed along the context-specific

PPI network can be.

Supplementary Discussion

This Supplementary Discussion provides further discussion on context-specific functionalities of
common biological processes mediated by key genes in respect to breast cancer, dyslipidemia,
and Alzheimer’s disease (AD). Many of these common biological processes are frequently
enriched in transcriptome analyses but their context-dependent functionalities are seldom
discussed. Understanding context-dependent activities of common biological processes can
illuminate how the same enriched biological processes can show marked different properties in
different biological contexts and what are the key genes that modulate information flows in

resulting context-dependent behaviors.

Disease-specific canonical cellular processes



MAPK cascade is one of the major canonical signaling components that cross-talks with many
other signaling pathways and its altered activities have been implicated in a number of human
diseases. MAPK1, which is the key executor of the MAPK cascade, is a high impact gene in both
ER-negative breast cancer and dyslipidemia homozygote (Figure 3) but a key target in AD
severe (Figure S6D). Both EGFR and receptor tyrosine kinase (RYK) show uncoordinated
function (negative co-expression coefficient) with MAPKI1 (Figure S8A) probably due to
reduced levels of internalized receptors that attenuate receptor kinase signaling in cancer cells.
This is consistent with activation of the MAPK cascade in cancers with general functional
coordination of BRAF and RAF1 with MAPK1 in ER-negative breast cancer (Figure S8A). In
contrast, BRAF, GRB1 and SOS1 show coordinated function (positive co-expression coefficient)
in the control case and RAF1 shows uncoordinated function with MAPKI1 in dyslipidemia
homozygote (Figure S8B), which suggests deregulated MAPK1 cascade activity in dyslipidemia
homozygote. AD severe also shows altered MAPK cascade activity distinct from that observed
in cancer and dyslipidemia. For instance, Polo-like kinase 3 (PLK3), which regulates cell cycle,
shows uncoordinated function with MAPKI1 in AD severe case (Figure S8C) where their

pathological roles in AD remain to be elucidated.

Regulation of cell cycle

Cell cycle is a key process in cell growth, differentiation, and tissue repair in response to stress.
Deregulated cell cycle processes can lead to uncontrolled cell proliferation in cancers or cell
death via apoptosis. Casein kinase 2 (CSNK2AT1), which regulates cell proliferation, is a high
impact genes in ER negative breast cancer (Figure 3A), and a key target in dyslipidemia (Figure

3B) and incipient AD (Figure 3C). This gene shows positive correlation with positive regulators



of cell cycle such as Aurora kinase A (AURKA), CDC25B, CDKI1, G2 checkpoint kinase
WEE2, chromatin remodeler chromobox homolog 4 (CBX4) and topoisomerase 2A (TOP2A) in
ER-negative breast cancer (Figure S9A). This in general suggests enhanced cell proliferative
activity. However, in the control case the function of CSNK2A1 is coordinated with centrosomal
protein CEP57 that is not captured in ER-negative breast cancer (Figure S9A), implicating
deregulation of the chromosomal segregation process in cancer. In dyslipidemia homozygote,
CSNK2A1 in general shows positive functional correlations with elongation factors in protein
synthesis such as EIF2S2, EIF3J, EIF5B and heat shock protein HSP90OB1 (Figure S9B). In
incipient AD, CSNK2A1 shows functional coordination with heat shock protein HSP9OAB1 and
complement component CIR (Figure S9C). Our results suggest CSNK2AT1 acts as cell cycle
regulator in breast cancer, but its function is redirected to the modulation of protein fidelity in
dyslipidemia and AD. However, the pathological roles of the functional coordination in the

pathogenesis of dyslipidemia homozygote and AD remain unclear.

Regulation of transcriptional activities

Regulation of gene expression via transcriptional processes in response to environmental cues
and cellular stress constantly takes place in all cell types. Altered interactions in transcription
factors, co-activators, repressors, mediators, and RNA polymerase subunits are key events that
lead to differential gene expression in cells of different biological contexts. Among transcription
regulators, nuclear receptors are capable of regulating myriad cellular processes such as sensing
cellular cues (in the form of steroid hormones), modulating homeostasis, and controlling
metabolism. Retinoic acid receptor alpha (RARA) is a nuclear receptor that is a high impact gene

in ER-negative breast cancer and dyslipidemia homozygote (Figure 3) and is a key target in



dyslipidemia heterozygote (Figure S3D). As shown in Figure S10 (bar charts), we found an
increase in the overall edge flow of RARA in ER-negative breast cancer but reduced overall
edge flows in both types of dyslipidemia. It is interesting to note that the transcription factor
RUNXI1, whose gene expression had been reported to correlate with poor prognosis in triple-
negative breast cancer (1), shows functional coordination with RARA (Figure S10A). Methyl-
CpG-binding protein 1 (MBD1) and Methyl-CpG-binding protein 3 (MBD?3) also show positive
correlation with RARA. How these protein interactions affect the reading of methyl code on
CpG islands in cancer cells remains to be elucidated. In dyslipidemia homozygote, it seems there
is increased functional coordination of transcriptional mediator MED25 with RARA due to low
flow difference value of MED25 but positive correlative flow with RARA (Figure S10B).
Interestingly, the autophagy receptor sequestosome 1 (SQSTM1), which regulates activity of the
NFkB pathway shows marked coordinated function with RARA (Figure S10B), implying there is
altered NFkB pathway activity in dyslipidemia homozygote patients. It is also interesting to note
that there is a negative correlation between RXRA and RARA in dyslipidemia homozygote
(Figure S10C). This suggests there is a reduced level of the RXRA-RARA heterodimer that
associates with a multiprotein complex containing transcription corepressors that induce histone
acetylation, chromatin condensation and transcriptional suppression. Decreased RXRA-RARA
heterodimers in dyslipidemia homozygote patients might be involved in promoting expression of
genes that promote dyslipidemia progression. In the dyslipidemia heterozygote case, the
transcriptional mediator MED25 shows marked functional coordination with RARA than that of
the homozygote case (Figure S10C). Unlike the homozygote case, in dyslipidemia heterozygote
the methyl-CpG-binding protein 3 (MBD3) shows positive correlation with RARA that its role in

disease etiology remained to be studied.
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Chromatin remodeling, epigenetic and genome integrity

Epigenetic regulation can be mediated via methylating chromosomal DNA on the CpG islands or
acetylating and methylating histones that wrap the chromatin. Epigenetic modifications can alter
the structure of chromatin organization and change epigenetic states by remodeling chromatin
structures leading to altered gene expression regulation. Key players in epigenetic regulation are
DNA methyltransferases (DNMTs), histone acetyltransferases (HATs), and histone deacetylases
(HDACS). Also, instability of a genome is the hallmark of many human common diseases. For
instance, DNA damage and repair have been reported in atherosclerosis and metabolic
syndromes (2, 3).

HDACI is a high impact gene in ER-negative breast cancer (Figure 3A). DNMT3A and
DNMT3B, which are responsible for unmethylated CpG island methylation, and SMARCA4 and
SMARCA1, which regulate chromatin remodeling, show negative correlations with HDACI in
ER-negative breast cancer (Figure S11A). Given recent reports that inhibiting HDAC can
sensitize cancer cells to radiotherapy (4), the fact that DNA topoisomerase Il alpha (TOP2A)
shows uncoordinated function with HDACI1 in ER-negative breast cancer (Figure S11A), might
shed light on the mechanism behind this recent finding. For dyslipidemia heterozygote, RAP1A,
a Ras oncogene family protein that regulates blood vessel formation, is found to show
preferential functional coordination with HDACI (Figure S11B).

Histone acetylation catalyzed by histone acetyltransferases (HATs) on chromatin in the
hippocampus corresponds with contextual learning (5) and reduced acetylation levels correspond
with impaired memory (6). HDACs reverse the process of histone acetylation on chromatin and

inhibiting their activities increases histone acetylation and enhances hippocampal-dependent
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memory formation (7). Our finding that HDACI is a high impact gene in AD severe (Figure 3C)
is consistent with the above observations. KDMS5A, an enzyme that specifically demethylates
lysine-4 of histone H3, shows positive correlation with HDAC1 in AD severe (Figure S11C). In
contrast, BRCA1, a regulator of genome integrity, negatively correlates with HDACI1, which
may lead to reduced DNA repair in AD severe patients. Interestingly, IKZF1, which regulates
hematopoietic cell differentiation, shows uncoordinated function with HDAC1 (Figure S11C)
that we suspect might cause deregulated blood supply in the brain of AD severe patients (8).
Telomeric repeat binding factor 2 (TERF2IP), which is involved in telomere length
regulation, is a key target for AD moderate and severe states (Figure S6D, S7D). This highlights
the importance of telomere maintenance in the pathogenesis of AD. On the other hand, our result
suggests TERF2IP does not play a significant role in the development of incipient AD (Figure
S12A) but begins to show its contribution as key targets in the moderate and severe stages of
AD. General reduced overall edge flow and negative correlations of DNA damage response
genes RADS50 and PML with TERF2IP in AD moderate and severe, respectively, (Figure S12B,

S12C) suggest enhanced telomere damage in AD patients.

Unfolded protein responses

Correctly folded protein is essential for cellular function and accumulation of misfolded proteins
inside a cell can cause cellular toxicity. In response to protein misfolding, a cell evokes unfolded
protein responses (UPRs) to refold or degrade misfolded proteins. Molecular chaperones such as
heat shock proteins and components of ubiquitin-proteasome system are keys to regulating the

fidelity of the protein homeostasis inside a cell.
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Calreticulin (CALR), a calcium-binding chaperone that promotes folding, is a key target
for dyslipidemia homozygote (Figure S4D), AD moderate (Figure S6D), and AD severe (Figure
S7D). This protein shows negative functional correlation with CUL7, a key protein that is
required to regulate microtubule dynamics and genome integrity in dyslipidemia homozygote
(Figure S13A), suggesting “disconnected” repairing processes mediated by CALR on
microtubule and damaged DNA in the pathogenesis of dyslipidemia. HSP90B1 and GANAB,
which regulate glycogen storage, show positive correlations with CALR in the dyslipidemia
homozygote control case (Figure S13A) indicating folding and proper functioning of these
proteins is important to rescue dyslipidemia. In the AD moderate and severe control cases, there
are positive functional correlations between HSPB1 and ANP32B, which is an anti-apoptotic
protein with CALR (Figure S13B, C), suggesting the involvement of apoptosis in AD
pathogenesis. Interestingly, tumor necrosis factor receptor-associated factor-6 (TRAF6), which is
an E3 ubiquitin ligase, is the top high impact gene for AD severe (Figure 3). TRAF6 had been
shown to be essential for polyubiquitination of TrkA (a NGF receptor) when the complex
TRAF6-p75 (NTR) is bound with TrkA-p62 complex upon NGF stimulation, leading to cell
survival and neuronal differentiation. However, in AD the ubiquitination of TrkA is attenuated
leading to apoptosis (9). In our study, we found uncoordinated function between TRAF6 with
CALR in AD severe case (Figure S13C) suggesting increased misfolded states of TRAF6 in AD

patients.

Regulation of protein synthesis
The rate of protein synthesis varies greatly among different tissues (10). Differences in the rate

of protein synthesis are in fact intricate homeostatic regulations corresponding to diverse
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functional states of a cell (11). Modulation of the assembly of ribosomal subunits contributes to
differences in protein synthesis (12). Tightly regulated protein synthesis promotes tissue
homeostasis by preventing uncontrolled cell proliferation. This is evidenced by the fact that
cancer cells synthesize proteins more rapidly than normal cells (13) and suppressed protein
synthesis could halt tumorigenesis (14).

The protein synthesis elongation factor EEF1A1 is a high impact gene in ER-negative
breast cancer, dyslipidemia homozygote, and AD severe (Figure 3). There is preferential
functional coordination between heat shock proteins (HSP9OAA1) and ribosomal subunits in
EEF1A1 in the control case of ER-negative breast cancer (Figure S14A), and this is also the
general cases for dyslipidemia homozygote controls (Figure S14B) and AD severe control
(Figure S14C) cases implying a more regulated protein synthesis, folding, and degradation in
normal cases than in disease states. GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and
ENO3 (enolase 3), which are key metabolic regulators show positive and negative functional
correlation with EEF1A1, respectively in dyslipidemia homozygote (Figure S14B). How these
key metabolic regulators affect protein synthesis in driving pathogenesis of dyslipidemia remain
to be studied. On the other hand, IMMT, which is an inner mitochondria membrane protein
shows high values of flow difference in AD severe, suggesting malfunction of mitochondrial-
mediated processes in AD pathogenesis. Interestingly, high values of node flow difference but
negative functional correlation between IMMT and EEF1AT1 shows their dissociated function in
the AD severe case (Figure S14C). This observation might provide clues on how mitochondrial-

driven bioenergetics processes can affect the progression of AD.

Cell-cell adhesion, integrity of cytoskeletal organization, and intracellular trafficking
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Cell-cell adhesion provides the necessary avenue to support the cellular microenvironment.

Deregulation of cytoskeletal organization is known to play a key role in many human diseases

such as AD with the brain of patients marked by extensive extracellular f-amyloid (AP) plaques

and intracellular neurofibrillary tangles (15, 16). We found amyloid-f precursor protein (APP)

and heat shock proteins (HSP90OAB1, HSP1A1, HSPAS) generally show functional coordination

with catenin (CTNNBI1) in AD control cases (Figure S15A). This suggests these functions are

deregulated in AD. Interestingly, transcriptional regulator TCF4 plays an important role in

nervous system development and also shows functional coordination with CTNNBI1 in AD

control cases (Figure S15C), indicating that there is a loss of neuronal function in AD patients’

brains.
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