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SUPPORTING INFORMATION FILES 

The following additional data are available with the online version of this paper. Supporting 

Information has all the supplementary figures Figure S1 to Figure S18 included in the analysis, 

and a supporting note to provide further discussion on context-specific functionalities of 

common biological processes mediated by key genes in respect to breast cancers, dyslipidemia, 

and Alzheimer’s disease (AD). 

 

SUPPLEMENTARY FIGURE LEGENDS 

Figure S1. The information flow profiles of ER-negative breast cancer edge-specific 

subnetwork. The subnetwork was derived from identified edges as shown in Figure 2B. Edge 

thickness represents the amount of edge flow. Additionally, edges are colored according to the 

directionality of Pearson correlation coefficient (PCC) (red for positive correlation and blue for 

negative correlation). Source genes are indicated as diamonds, intermediary proteins as circles, 

and target genes (sinks) as squares and are colored according to node flow difference (see 

gradient bar on the right). The size of gene nodes is proportional to the total node flow. 

Figure S2. ER-positive breast cancer-specific edge-centered subnetwork. (A) Heatmap of 

differentially expressed genes (DEGs) across control and ER-positive breast cancer. (B) Total 

edge flow profiles in control and ER-positive breast cancer for edges with higher flows in disease 

than in control subnetworks. (C)  Jaccard index to evaluate the similarity between edge-centered 

control and disease subnetworks and Venn diagrams showing the overlap across genes, edges, 

and paths. Pathway enrichment analysis for: i) gene signatures (DEGs), ii) key edge-centered 

subnetworks in control, and iii) disease. Pathway enrichment analysis for genes that compose 

disease-specific edge-centered subnetworks captures signaling pathways that are relevant to 

disease etiology. No significant enrichment was detected for the gene signature. (D) Heatmap 

showing node flow differences across control and ER-positive breast cancer for top 20 network 



3 
 

routers and key target genes showing high node flow difference (red) and low node flow 

difference (blue). 

Figure S3. Dyslipidemia heterozygote-specific edge-centered subnetwork. (A) Heatmap of 

differentially expressed genes (DEGs) across control and dyslipidemia heterozygote. (B) Total 

edge flow profiles in control and dyslipidemia heterozygote for edges with higher flows in 

disease than in control subnetworks. (C)  Jaccard index to evaluate the similarity between edge-

centered control and disease subnetworks and Venn diagrams showing the overlap across genes, 

edges, and paths. Pathway enrichment analysis for: i) gene signatures (DEGs) (red), ii) key edge-

centered subnetworks in control (blue) and iii) disease (green). Pathway enrichment analysis for 

genes that compose disease-specific, edge-centered subnetworks captures signaling pathways 

that are relevant to disease etiology. No significant enrichment was detected for the gene 

signature. (D) Heatmap showing node flow differences across control and dyslipidemia 

heterozygote for top 20 network routers and key target genes showing high node flow difference 

(red) and low node flow difference (blue). 

Figure S4. Dyslipidemia homozygote-specific edge-centered subnetwork. (A) Heatmap of 

differentially expressed genes (DEGs) across control and dyslipidemia homozygote. (B) Total 

edge flow profiles in control and dyslipidemia homozygote for edges with higher flows in 

disease than in control subnetworks. (C)  Jaccard index to evaluate the similarity between edge-

centered control and disease subnetworks and Venn diagrams showing the overlap across genes, 

edges, and paths. Pathway enrichment analysis for: i) gene signatures (DEGs) (red), ii) key edge-

centered subnetworks in control (blue) and iii) disease (green). Pathway enrichment analysis for 

genes that compose disease-specific, edge-centered subnetworks captures signaling pathways 

that are relevant to disease etiology. No significant enrichment was detected for the gene 
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signature. (D) Heatmap showing node flow differences across control and dyslipidemia 

homozygote for top 20 network routers and key target genes showing high node flow difference 

(red) and low node flow difference (blue). 

Figure S5. AD incipient-specific edge-centered subnetwork. (A) Heatmap of differentially 

expressed genes (DEGs) across control and AD incipient stage. (B) Total edge flow profiles in 

control and dyslipidemia homozygote for edges with higher flows in disease than in control 

subnetworks. (C)  Jaccard index to evaluate the similarity between edge-centered control and 

disease subnetworks and Venn diagrams showing the overlap across genes, edges, and paths. 

Pathway enrichment analysis for: i) gene signatures (DEGs) (red), ii) key edge-centered 

subnetworks in control (blue) and iii) disease (green). Pathway enrichment analysis for genes 

that compose disease-specific, edge-centered subnetworks captures signaling pathways that are 

relevant to disease etiology. No significant enrichment was detected for the gene signature. (D) 

Heatmap showing node flow differences across control and AD incipient for top 20 network 

routers and key target genes showing high node flow difference (red) and low node flow 

difference (blue). 

Figure S6. AD moderate-specific edge-centered subnetwork. (A) Heatmap of differentially 

expressed genes (DEGs) across control and AD moderate stage. (B) Total edge flow profiles in 

control and dyslipidemia homozygote for edges with higher flows in disease than in control 

subnetworks. (C)  Jaccard index to evaluate the similarity between edge-centered control and 

disease subnetworks and Venn diagrams showing the overlap across genes, edges, and paths. 

Pathway enrichment analysis for: i) gene signatures (DEGs) (red), ii) key edge-centered 

subnetworks in control (blue) and iii) disease (green). Pathway enrichment analysis for genes 

that compose disease-specific, edge-centered subnetworks captures signaling pathways that are 
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relevant to disease etiology. No significant enrichment was detected for the gene signature. (D) 

Heatmap showing node flow differences across control and AD moderate for top 20 network 

routers and key target genes showing high node flow difference (red) and low node flow 

difference (blue). 

Figure S7. AD severe-specific edge-specific subnetwork. (A) Heatmap of differentially 

expressed genes (DEGs) across control and AD severe stage. (B) Total edge flow profiles in 

control and dyslipidemia homozygote for edges with higher flows in disease than in control 

subnetworks. (C)  Jaccard index to evaluate the similarity between edge-centered control and 

disease subnetworks and Venn diagrams showing the overlap across genes, edges, and paths. 

Pathway enrichment analysis for: i) gene signatures (DEGs) (red), ii) key edge-centered 

subnetworks in control (blue) and iii) disease (green). Pathway enrichment analysis for genes 

that compose disease-specific, edge-centered subnetworks captures signaling pathways that are 

relevant to disease etiology. No significant enrichment was detected for the gene signature. (D) 

Heatmap showing node flow differences across control and AD severe for top 20 network routers 

and key target genes showing high node flow difference (red) and low node flow difference 

(blue). 

Figure S8. The MAPK1 motif. (A) MAPK1 as high impact gene in ER-negative breast cancer; 

(B) high impact gene in dyslipidemia homozygote; and (C) key target in AD severe.  

Figure S9. The CSNK2A1 motif. (A) CSNK2A1 as high impact gene in ER-negative breast 

cancer; (B) key target in dyslipidemia homozygote; and (C) key target in AD incipient. 

Figure S10. The RARA motif. (A) RARA as high impact gene in ER-negative breast cancer; (B) 

high impact gene in dyslipidemia homozygote; and (C) key target in dyslipidemia heterozygote. 
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Figure S11. The HDAC1 motif. (A) HDAC1 as high impact gene in ER-negative breast cancer; 

(B) key target in dyslipidemia heterozygote; and (C) high impact gene in AD severe. 

Figure S12. The TERF2IP motif. (A) TERF2IP in AD incipient control. (B) TERF2IP as key 

target in AD moderate; (C) as key target in AD severe. 

Figure S13. The CALR motif. (A) CALR as key target in dyslipidemia homozygote; (B) key 

target in AD moderate; and (C) key target in AD severe. 

Figure S14. The EEF1A1 motif. (A) EEF1A1 as high impact gene in ER-negative breast cancer; 

(B) high impact gene in dyslipidemia homozygote; and (C) high impact gene in AD severe. 

Figure S15. The CTNNB1 motif. (A) CTNNB1 as key target in AD incipient; (B) key target in 

AD moderate; and (C) high impact gene in AD severe. 

Figure S16. Analyses of NetDecoder Robustness. Venn diagrams showing overlap of paths (A) 

and impact genes (B) identified by NetDecoder using size of the functional neighborhood, 

SFN=0.91, 0.93, 0.97 and 0.99 when compared to results obtained  with SFN=0.95 (default). The 

number of predicted paths detected under a certain SFN is shown in the table at the bottom. (C-

D) Heatmaps showing node flow differences across control and ER-negative breast cancer for 

top 20 key target genes (C) and network routers (D) for SFN=0.91, 0.93, 0.95 (default) 0.97 and 

0.99. High node flow difference indicates in red and low node flow difference in blue. (E) Total 

edge flow profiles in control and ER-negative breast cancer for edges with higher flows in 

disease than in control-specific subnetworks using SFN=0.91, 0.93, 0.95 (default) 0.97 and 0.99 

in control and ER-negative breast cancer.  

Figure S17. Assigning flow paths based on shared biological processes. To decide which paths 

leads to maximum flow at the lowest cost, the process-guided flow algorithm takes into account 

the overlap between the functional neighborhoods of protein 1 and protein 2, and such overlap 
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becomes part of the protein 1 functional neighborhood (GO1, GO2 and GO7). Note that the 

functional neighborhood of a given protein also includes GO terms of the protein itself. If the 

functional neighborhood of protein 1 shares any biological process with the functional 

neighborhood of protein 2 (GO1, GO3, GO4 and GO7), protein 2 is included in the selected flow 

path. On the contrary, when protein 4 is considered as a candidate protein in a new path, there is 

no biological process being shared with the functional neighborhood of protein 1. Consequently, 

the flow is not directed through protein 4.  

Figure S18. Context-dependence of key genes associated with FOXM1. (A) FOXM1 as a key gene 

(high impact gene and key target) in the ER-negative breast cancer context. (B) FOXM1 is not a key gene 

in the ER-positive breast cancer context. The identities of key genes cannot be directly located in a PPI 

network, but properties dictated by the way information flows are conveyed along the context-specific 

PPI network can be. 

 

Supplementary Discussion 

This Supplementary Discussion provides further discussion on context-specific functionalities of 

common biological processes mediated by key genes in respect to breast cancer, dyslipidemia, 

and Alzheimer’s disease (AD). Many of these common biological processes are frequently 

enriched in transcriptome analyses but their context-dependent functionalities are seldom 

discussed. Understanding context-dependent activities of common biological processes can 

illuminate how the same enriched biological processes can show marked different properties in 

different biological contexts and what are the key genes that modulate information flows in 

resulting context-dependent behaviors. 

  

Disease-specific canonical cellular processes 
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MAPK cascade is one of the major canonical signaling components that cross-talks with many 

other signaling pathways and its altered activities have been implicated in a number of human 

diseases. MAPK1, which is the key executor of the MAPK cascade, is a high impact gene in both 

ER-negative breast cancer and dyslipidemia homozygote (Figure 3) but a key target in AD 

severe (Figure S6D). Both EGFR and receptor tyrosine kinase (RYK) show uncoordinated 

function (negative co-expression coefficient) with MAPK1 (Figure S8A) probably due to 

reduced levels of internalized receptors that attenuate receptor kinase signaling in cancer cells. 

This is consistent with activation of the MAPK cascade in cancers with general functional 

coordination of BRAF and RAF1 with MAPK1 in ER-negative breast cancer (Figure S8A). In 

contrast, BRAF, GRB1 and SOS1 show coordinated function (positive co-expression coefficient) 

in the control case and RAF1 shows uncoordinated function with MAPK1 in dyslipidemia 

homozygote (Figure S8B), which suggests deregulated MAPK1 cascade activity in dyslipidemia 

homozygote. AD severe also shows altered MAPK cascade activity distinct from that observed 

in cancer and dyslipidemia. For instance, Polo-like kinase 3 (PLK3), which regulates cell cycle, 

shows uncoordinated function with MAPK1 in AD severe case (Figure S8C) where their 

pathological roles in AD remain to be elucidated. 

 

Regulation of cell cycle 

Cell cycle is a key process in cell growth, differentiation, and tissue repair in response to stress. 

Deregulated cell cycle processes can lead to uncontrolled cell proliferation in cancers or cell 

death via apoptosis. Casein kinase 2 (CSNK2A1), which regulates cell proliferation, is a high 

impact genes in ER negative breast cancer (Figure 3A), and a key target in dyslipidemia (Figure 

3B) and incipient AD (Figure 3C). This gene shows positive correlation with positive regulators 
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of cell cycle such as Aurora kinase A (AURKA), CDC25B, CDK1, G2 checkpoint kinase 

WEE2, chromatin remodeler chromobox homolog 4 (CBX4) and topoisomerase 2A (TOP2A) in 

ER-negative breast cancer (Figure S9A). This in general suggests enhanced cell proliferative 

activity. However, in the control case the function of CSNK2A1 is coordinated with centrosomal 

protein CEP57 that is not captured in ER-negative breast cancer (Figure S9A), implicating 

deregulation of the chromosomal segregation process in cancer. In dyslipidemia homozygote, 

CSNK2A1 in general shows positive functional correlations with elongation factors in protein 

synthesis such as EIF2S2, EIF3J, EIF5B and heat shock protein HSP90B1 (Figure S9B). In 

incipient AD, CSNK2A1 shows functional coordination with heat shock protein HSP90AB1 and 

complement component C1R (Figure S9C). Our results suggest CSNK2A1 acts as cell cycle 

regulator in breast cancer, but its function is redirected to the modulation of protein fidelity in 

dyslipidemia and AD. However, the pathological roles of the functional coordination in the 

pathogenesis of dyslipidemia homozygote and AD remain unclear.   

 

Regulation of transcriptional activities 

Regulation of gene expression via transcriptional processes in response to environmental cues 

and cellular stress constantly takes place in all cell types. Altered interactions in transcription 

factors, co-activators, repressors, mediators, and RNA polymerase subunits are key events that 

lead to differential gene expression in cells of different biological contexts. Among transcription 

regulators, nuclear receptors are capable of regulating myriad cellular processes such as sensing 

cellular cues (in the form of steroid hormones), modulating homeostasis, and controlling 

metabolism. Retinoic acid receptor alpha (RARA) is a nuclear receptor that is a high impact gene 

in ER-negative breast cancer and dyslipidemia homozygote (Figure 3) and is a key target in 
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dyslipidemia heterozygote (Figure S3D). As shown in Figure S10 (bar charts), we found an 

increase in the overall edge flow of RARA in ER-negative breast cancer but reduced overall 

edge flows in both types of dyslipidemia. It is interesting to note that the transcription factor 

RUNX1, whose gene expression had been reported to correlate with poor prognosis in triple-

negative breast cancer (1), shows functional coordination with RARA (Figure S10A). Methyl-

CpG-binding protein 1 (MBD1) and Methyl-CpG-binding protein 3 (MBD3) also show positive 

correlation with RARA. How these protein interactions affect the reading of methyl code on 

CpG islands in cancer cells remains to be elucidated. In dyslipidemia homozygote, it seems there 

is increased functional coordination of transcriptional mediator MED25 with RARA due to low 

flow difference value of MED25 but positive correlative flow with RARA (Figure S10B). 

Interestingly, the autophagy receptor sequestosome 1 (SQSTM1), which regulates activity of the 

NFkB pathway shows marked coordinated function with RARA (Figure S10B), implying there is 

altered NFkB pathway activity in dyslipidemia homozygote patients. It is also interesting to note 

that there is a negative correlation between RXRA and RARA in dyslipidemia homozygote 

(Figure S10C). This suggests there is a reduced level of the RXRA-RARA heterodimer that 

associates with a multiprotein complex containing transcription corepressors that induce histone 

acetylation, chromatin condensation and transcriptional suppression. Decreased RXRA-RARA 

heterodimers in dyslipidemia homozygote patients might be involved in promoting expression of 

genes that promote dyslipidemia progression. In the dyslipidemia heterozygote case, the 

transcriptional mediator MED25 shows marked functional coordination with RARA than that of 

the homozygote case (Figure S10C). Unlike the homozygote case, in dyslipidemia heterozygote 

the methyl-CpG-binding protein 3 (MBD3) shows positive correlation with RARA that its role in 

disease etiology remained to be studied. 
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Chromatin remodeling, epigenetic and genome integrity 

Epigenetic regulation can be mediated via methylating chromosomal DNA on the CpG islands or 

acetylating and methylating histones that wrap the chromatin. Epigenetic modifications can alter 

the structure of chromatin organization and change epigenetic states by remodeling chromatin 

structures leading to altered gene expression regulation. Key players in epigenetic regulation are 

DNA methyltransferases (DNMTs), histone acetyltransferases (HATs), and histone deacetylases 

(HDACs). Also, instability of a genome is the hallmark of many human common diseases. For 

instance, DNA damage and repair have been reported in atherosclerosis and metabolic 

syndromes (2, 3). 

HDAC1 is a high impact gene in ER-negative breast cancer (Figure 3A). DNMT3A and 

DNMT3B, which are responsible for unmethylated CpG island methylation, and SMARCA4 and 

SMARCA1, which regulate chromatin remodeling, show negative correlations with HDAC1 in 

ER-negative breast cancer (Figure S11A). Given recent reports that inhibiting HDAC can 

sensitize cancer cells to radiotherapy (4), the fact that DNA topoisomerase II alpha (TOP2A) 

shows uncoordinated function with HDAC1 in ER-negative breast cancer (Figure S11A), might 

shed light on the mechanism behind this recent finding. For dyslipidemia heterozygote, RAP1A, 

a Ras oncogene family protein that regulates blood vessel formation, is found to show 

preferential functional coordination with HDAC1 (Figure S11B).  

Histone acetylation catalyzed by histone acetyltransferases (HATs) on chromatin in the 

hippocampus corresponds with contextual learning (5) and reduced acetylation levels correspond 

with impaired memory (6). HDACs reverse the process of histone acetylation on chromatin and 

inhibiting their activities increases histone acetylation and enhances hippocampal-dependent 
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memory formation (7). Our finding that HDAC1 is a high impact gene in AD severe (Figure 3C) 

is consistent with the above observations. KDM5A, an enzyme that specifically demethylates 

lysine-4 of histone H3, shows positive correlation with HDAC1 in AD severe (Figure S11C). In 

contrast, BRCA1, a regulator of genome integrity, negatively correlates with HDAC1, which 

may lead to reduced DNA repair in AD severe patients. Interestingly, IKZF1, which regulates 

hematopoietic cell differentiation, shows uncoordinated function with HDAC1 (Figure S11C) 

that we suspect might cause deregulated blood supply in the brain of AD severe patients (8). 

Telomeric repeat binding factor 2 (TERF2IP), which is involved in telomere length 

regulation, is a key target for AD moderate and severe states (Figure S6D, S7D). This highlights 

the importance of telomere maintenance in the pathogenesis of AD. On the other hand, our result 

suggests TERF2IP does not play a significant role in the development of incipient AD (Figure 

S12A) but begins to show its contribution as key targets in the moderate and severe stages of 

AD. General reduced overall edge flow and negative correlations of DNA damage response 

genes RAD50 and PML with TERF2IP in AD moderate and severe, respectively, (Figure S12B, 

S12C) suggest enhanced telomere damage in AD patients.  

 

Unfolded protein responses 

Correctly folded protein is essential for cellular function and accumulation of misfolded proteins 

inside a cell can cause cellular toxicity. In response to protein misfolding, a cell evokes unfolded 

protein responses (UPRs) to refold or degrade misfolded proteins. Molecular chaperones such as 

heat shock proteins and components of ubiquitin-proteasome system are keys to regulating the 

fidelity of the protein homeostasis inside a cell.   
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Calreticulin (CALR), a calcium-binding chaperone that promotes folding, is a key target 

for dyslipidemia homozygote (Figure S4D), AD moderate (Figure S6D), and AD severe (Figure 

S7D). This protein shows negative functional correlation with CUL7, a key protein that is 

required to regulate microtubule dynamics and genome integrity in dyslipidemia homozygote 

(Figure S13A), suggesting “disconnected” repairing processes mediated by CALR on 

microtubule and damaged DNA in the pathogenesis of dyslipidemia. HSP90B1 and GANAB, 

which regulate glycogen storage, show positive correlations with CALR in the dyslipidemia 

homozygote control case (Figure S13A) indicating folding and proper functioning of these 

proteins is important to rescue dyslipidemia. In the AD moderate and severe control cases, there 

are positive functional correlations between HSPB1 and ANP32B, which is an anti-apoptotic 

protein with CALR (Figure S13B, C), suggesting the involvement of apoptosis in AD 

pathogenesis. Interestingly, tumor necrosis factor receptor-associated factor-6 (TRAF6), which is 

an E3 ubiquitin ligase, is the top high impact gene for AD severe (Figure 3). TRAF6 had been 

shown to be essential for polyubiquitination of TrkA (a NGF receptor) when the complex 

TRAF6-p75 (NTR) is bound with TrkA-p62 complex upon NGF stimulation, leading to cell 

survival and neuronal differentiation. However, in AD the ubiquitination of TrkA is attenuated 

leading to apoptosis (9). In our study, we found uncoordinated function between TRAF6 with 

CALR in AD severe case (Figure S13C) suggesting increased misfolded states of TRAF6 in AD 

patients.  

 

Regulation of protein synthesis 

The rate of protein synthesis varies greatly among different tissues (10). Differences in the rate 

of protein synthesis are in fact intricate homeostatic regulations corresponding to diverse 
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functional states of a cell (11). Modulation of the assembly of ribosomal subunits contributes to 

differences in protein synthesis (12). Tightly regulated protein synthesis promotes tissue 

homeostasis by preventing uncontrolled cell proliferation. This is evidenced by the fact that 

cancer cells synthesize proteins more rapidly than normal cells (13) and suppressed protein 

synthesis could halt tumorigenesis (14).        

The protein synthesis elongation factor EEF1A1 is a high impact gene in ER-negative 

breast cancer, dyslipidemia homozygote, and AD severe (Figure 3). There is preferential 

functional coordination between heat shock proteins (HSP90AA1) and ribosomal subunits in 

EEF1A1 in the control case of ER-negative breast cancer (Figure S14A), and this is also the 

general cases for dyslipidemia homozygote controls (Figure S14B) and AD severe control 

(Figure S14C) cases implying a more regulated protein synthesis, folding, and degradation in 

normal cases than in disease states. GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and 

ENO3 (enolase 3), which are key metabolic regulators show positive and negative functional 

correlation with EEF1A1, respectively in dyslipidemia homozygote (Figure S14B).  How these 

key metabolic regulators affect protein synthesis in driving pathogenesis of dyslipidemia remain 

to be studied. On the other hand, IMMT, which is an inner mitochondria membrane protein 

shows high values of flow difference in AD severe, suggesting malfunction of mitochondrial-

mediated processes in AD pathogenesis. Interestingly, high values of node flow difference but 

negative functional correlation between IMMT and EEF1A1 shows their dissociated function in 

the AD severe case (Figure S14C). This observation might provide clues on how mitochondrial-

driven bioenergetics processes can affect the progression of AD.     

 

Cell-cell adhesion, integrity of cytoskeletal organization, and intracellular trafficking 
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Cell-cell adhesion provides the necessary avenue to support the cellular microenvironment. 

Deregulation of cytoskeletal organization is known to play a key role in many human diseases 

such as AD with the brain of patients marked by extensive extracellular β-amyloid (Aβ) plaques 

and intracellular neurofibrillary tangles (15, 16). We found amyloid-β precursor protein (APP) 

and heat shock proteins (HSP90AB1, HSP1A1, HSPA8) generally show functional coordination 

with catenin (CTNNB1) in AD control cases (Figure S15A). This suggests these functions are 

deregulated in AD. Interestingly, transcriptional regulator TCF4 plays an important role in 

nervous system development and also shows functional coordination with CTNNB1 in AD 

control cases (Figure S15C), indicating that there is a loss of neuronal function in AD patients’ 

brains. 
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