Enhancement of anti-STLV-1/HTLV-1 immune responses through multimodal effects of anti-CCR4 antibody

Kenji Sugata^{1,2}, Jun-ichirou Yasunaga¹, Michi Miura¹, Hirofumi Akari³, Atae Utsunomiya⁴, Kisato Nosaka⁵, Yuko Watanabe⁶, Hitoshi Suzushima⁶, Ki-Ryang Koh⁷, Masanori Nakagawa⁸,Michinori Kohara⁹, Masao Matsuoka¹

¹Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan

²Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo, Japan ³Laboratory of Evolutional Virology, Institute for Virus Research, Kyoto University, Kyoto, Japan

⁴Department of Hematology, Imamura Bun-in Hospital, Kagoshima, Japan ⁵Department of Hematology, Kumamoto University School of Medicine, Kumamoto, Japan

⁶Department of Hematology, Kumamoto Shinto General Hospital, Kumamoto, Japan

⁷Department of Hematology, Osaka General Hospital of West Japan Railway Company, Osaka, Japan

⁸Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan

⁹Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan

Table S1Sequences of sTax overlap peptides used in this study.

Pep No	Name	Start	Fnd	Sequence	Hydro	MWt
1	sTax nen1	1	20	MAHEPGEGOSU YGYPVYVE	0.69	2293.7
2	sTax pep1	7	26	FGOSI LYGYPVYVEGDCVOG	0.00	2212.5
2	sTax pep2	12	20		0.50	2212.5
3	stax peps	10	20		0.01	2200.0
4	stax pep4	19	30		0.55	2014.3
5	slax pep5	25	44	QGDWCPISGGLCSARLHRHA	0.33	2164.5
6	slax pep6	31	50	ISGGLCSARLHRHALLATCP	0.45	2076.5
7	sTax pep7	37	56	SARLHRHALLATCPEHQITW	0.39	2340.7
8	sTax pep8	43	62	HALLATCPEHQITWDPIDGR	0.38	2273.6
9	sTax pep9	49	68	CPEHQITWDPIDGRVIGSAL	0.41	2207.5
10	sTax pep10	55	74	TWDPIDGRVIGSALQFLIPR	0.48	2254.6
11	sTax pep11	61	80	GRVIGSALQFLIPRLPSFPT	0.55	2169.6
12	sTax pep12	67	86	ALQFLIPRLPSFPTQRTSKT	0.38	2301.7
13	sTax pep13	73	92	PRLPSFPTQRTSKTLKVLTP	0.27	2267.7
14	sTax pep14	79	98	PTORTSKTLKVLTPPATHTT	0.18	2178.5
15	sTax pep15	85	104	KTI KVI TPPATHTTPNIPPS	0.34	2113.5
16	sTax pep16	91	110	TPPATHTTPNIPPSFEQAVR	0.38	2179.5
17	sTax pep10	07	116		0.00	2353.7
17	sTax pep 17	103	122		0.34	2333.7
10	STax pep 10	100	122		0.27	2421.0
19	stax pep 19	109	128		0.22	2384.8
20	stax pep20	115	134		0.41	2296.6
21	slax pep21	121	140	EPTLGQQLPTLSFPDPGLRP	0.37	2163.5
22	sTax pep22	127	146	QLPTLSFPDPGLRPQNLYTL	0.46	2270.6
23	sTax pep23	133	152	FPDPGLRPQNLYTLWGNSVV	0.45	2273.6
24	sTax pep24	139	158	RPQNLYTLWGNSVVCMYLYQ	0.54	2448.9
25	sTax pep25	145	164	TLWGNSVVCMYLYQLSPPIT	0.71	2285.7
26	sTax pep26	151	170	VVCMYLYQLSPPITWPLLPH	0.87	2370.9
27	sTax pep27	157	176	YQLSPPITWPLLPHVIFCHP	0.84	2358.8
28	sTax pep28	163	182	ITWPLLPHVIFCHPGQLGAF	0.83	2246.7
29	sTax pep29	169	188	PHVIFCHPGQLGAFLTNVPY	0.64	2210.6
30	sTax pep30	175	194	HPGQLGAFLTNVPYKRMEEL	0.30	2300.7
31	sTax pep31	181	200	AFLTNVPYKRMEELLYKIFL	0.51	2489.0
32	sTax pep32	187	206	PYKRMEEL YKIELNTGATI	0.39	2400.9
33	sTax pep33	193	212		0.57	2266.7
34	sTax pep34	199	218		0.66	2179.6
35	sTax pep35	205	274		0.00	2776.6
36	sTax pep35	203	224		0.54	2220.0
30	stax pepso	211	230		0.51	2203.0
37	stax pepsi	217	230		0.50	2195.0
38	s ax pep38	223	242		0.52	2130.4
39	sTax pep39	229	248		0.66	2243.6
40	sTax pep40	235	254		0.59	2196.5
41	sTax pep41	241	260	LITPGLIWTFTDGTPMVSGP	0.57	2091.4
42	s⊺ax pep42	247	266	IWTFTDGTPMVSGPCPRDGQ	0.37	2165.4
43	sTax pep43	253	272	GTPMVSGPCPRDGQPSLVLQ	0.35	2039.4
44	sTax pep44	259	278	GPCPRDGQPSLVLQSSSFIF	0.43	2135.4
45	sTax pep45	265	284	GQPSLVLQSSSFIFHKFQTK	0.38	2279.6
46	sTax pep46	271	290	LQSSSFIFHKFQTKAYHPSF	0.40	2400.7
47	sTax pep47	277	296	IFHKFQTKAYHPSFLLSHGL	0.49	2371.8
48	sTax pep48	283	302	TKAYHPSFLLSHGLIQYSSF	0.49	2296.6
49	sTax pep49	289	308	SFLLSHGLIQYSSFHNLHLL	0.65	2326.7
50	sTax pep50	295	314	GLIQYSSFHNLHLLFEEYTN	0.46	2425.7
51	sTax pep51	301	320		0.62	2400 8
52	sTax nen52	307	326		0.02	2383 7
52	sTay nen52	312	320		0.77	2300.5
50	sTay non54	310	332		0.11	2200.5
54	aTay noner	205	211		0.12	2290.0
55	a Tax pepso	320	250		0.00	2100.4
00	stax pepso	331	350		0.09	2341.7
5/	slax pep5/	334	353	JQIVILYGGLKYYNEKHFKETDV	0.12	2293.6

Table S2

Sequences of SBZ overlap peptides and vaccinia peptides used in this study.

Pep No	Name	Start	End	Sequence	Hydro	MWt
1	SBZ pep1	1	20	MAASGPFRCLPVPCPEDLLV	0.59	2115.6
2	SBZ pep2	7	26	FRCLPVPCPEDLLVDDLVDG	0.50	2215.6
3	SBZ pep3	13	32	PCPEDLLVDDLVDGLLSLEE	0.40	2184.5
4	SBZ pep4	19	38	LVDDLVDGLLSLEEDLNKQR	0.17	2284.6
5	SBZ pep5	25	44	DGLLSLEEDLNKQRTEEESV	-0.05	2304.5
6	SBZ pep6	31	50	EEDLNKQRTEEESVLDGLLS	-0.05	2304.5
7	SBZ pep7	37	56	QRTEEESVLDGLLSLEEECY	0.14	2342.5
8	SBZ pep8	43	62	SVLDGLLSLEEECYGQQQVP	0.33	2207.5
9	SBZ pep9	49	68	LSLEEECYGQQQVPLREESP	0.16	2334.6
10	SBZ pep10	55	74	CYGQQQVPLREESPPRGETY	0.11	2337.6
11	SBZ pep11	61	80	VPLREESPPRGETYRDRQRR	-0.20	2497.8
12	SBZ pep12	67	86	SPPRGETYRDRQRRAEEKRK	-0.44	2515.8
13	SBZ pep13	73	92	TYRDRQRRAEEKRKRKRERE	-0.67	2747.1
14	SBZ pep14	79	98	RRAEEKRKRKREREKEEEEQ	-0.76	2700.0
15	SBZ pep15	85	104	RKRKREREKEEEEQIAEFLR	-0.40	2660.0
16	SBZ pep16	91	110	REKEEEEQIAEFLRKKEEKK	-0.39	2576.9
17	SBZ pep17	97	116	EQIAEFLRKKEEKKARRRR	-0.39	2628.1
18	SBZ pep18	103	122	LRKKEEKKARRRRREEEKAA	-0.61	2568.0
19	SBZ pep19	109	128	KKARRRRREEEKAAYRARRK	-0.61	2615.1
20	SBZ pep20	115	134	RREEEKAAYRARRKREEEER	-0.61	2647.9
21	SBZ pep21	121	140	AAYRARRKREEEERLERKRR	-0.52	2659.0
22	SBZ pep22	127	146	RKREEEERLERKRRLAEQGA	-0.45	2539.9
23	SBZ pep23	133	152	ERLERKRRLAEQGAKRARQR	-0.40	2507.9
24	SBZ pep24	139	158	RRLAEQGAKRARQRDTRKEK	-0.47	2453.8
25	SBZ pep25	145	164	GAKRARQRDTRKEKIKELGV	-0.29	2339.7
26	SBZ pep26	151	170	QRDTRKEKIKELGVDGYARQ	-0.22	2390.7
27	SBZ pep27	157	176	EKIKELGVDGYARQLESEVD	-0.01	2278.5
28	SBZ pep28	163	182	GVDGYARQLESEVDSLEAER	-0.03	2223.3
29	SBZ pep29	169	188	RQLESEVDSLEAERKRLLQE	-0.09	2428.7
30	SBZ pep30	175	194	VDSLEAERKRLLQEKEDLMG	-0.03	2359.7
31	SBZ pep31	181	200	ERKRLLQEKEDLMGEVNYWQ	0.03	2564.9
32	SBZ pep32	187	206	QEKEDLMGEVNYWQGRLQAM	0.13	2425.7
33	SBZ pep33	190	209	EDLMGEVNYWQGRLQAMWSQ	0.31	2441.7

Pep No	Name	Start	End	Sequence	Hydro	MWt
1	VV B8R	20	27	TSYKFESV	0.08	960.1
2	VV L2R	53	61	VIYIFTVRL	0.73	1123.4
3	VV K3L	6	15	YSLPNAGDVI	0.30	1048.2

Table S3Sequences of Tax overlap peptides used in this study.

Pep No	Name	Start	End	Sequence	Hydro	MWt
1	Tax pep1	1	20	MAHFPGFGQSLLFGYPVYVF	0.73	2277.7
2	Tax pep2	7	26	FGQSLLFGYPVYVFGDCVQG	0.62	2196.5
3	Tax pep3	13	32	FGYPVYVFGDCVQGDWCPIS	0.64	2252.6
4	Tax pep4	19	38	VFGDCVQGDWCPISGGLCSA	0.55	2014.3
5	Tax pep5	25	44	QGDWCPISGGI CSARI HRHA	0.33	2164.5
6	Tax pep6	31	50	ISGGI CSARI HRHALLATCP	0.60	2076.5
7	Tax pep7	37	56	SARI HRHALLATOPEHOITW	0.39	2340.7
8	Tax pep?	43	62		0.00	2273.6
<u> </u>	Tax pep0	40	68		0.00	2207.5
10	Tax pep0	55	74		0.41	2254.6
11	Tax pep10	61	80	GRVIGSALOFLIPRI PSEPT	0.55	2169.6
12	Tax pep11	67	86		0.38	2301.7
13	Tax pep12	73	92		0.00	2267.7
14	Tax pep10	79	92		0.27	22201.1
15	Tax pep14	85	104		0.25	2155.6
16	Tax pep15	00	110		0.40	2133.0
17	Tax pep10	91	116		0.44	2215.0
18		103	122		0.33	2410.8
10	Tax pep 10	100	122		0.20	2415.0
20	Tax pep 19	109	120		0.23	2423.0
20	Tax pep20	10	140		0.43	2303.7
21		121	140		0.30	2172.5
22		127	140		0.47	2279.0
23	Tax pep23	133	152		0.48	2210.5
24	Tax pep24	139	100		0.57	2391.8
25	Tax pep25	140	104		0.74	2228.7
20	Tax pep26	101	170		0.87	2370.9
27	Tax pep27	107	1/0		0.84	2358.8
28	Tax pep28	163	182		0.83	2246.7
29	Tax pep29	169	188		0.64	2210.6
30	Tax pep30	1/5	194		0.33	2282.6
31		181	200		0.45	2410.9
32	Tax pep32	187	206		0.44	2321.8
33	Tax pep33	193	212		0.60	2205.7
34	Tax pep34	199	218		0.68	2118.5
35	Tax pep35	205	224		0.61	2208.7
36	Tax pep36	211	230		0.56	2201.6
37	Tax pep37	217	236		0.54	2193.6
38	Tax pep38	223	242	APVILIAWQNGLLPFHSILI	0.58	2167.5
39	Tax pep39	229	248		0.68	2252.6
40	Tax pep40	235	254		0.60	2205.5
41	Tax pep41	241	260		0.60	2105.4
42	Tax pep42	247	266		0.40	2151.5
43	1 ax pep43	253	272	IGTPMISGPCPKDGQPSLVLQ	0.38	2025.4
44	Tax pep44	259	278	IGPCPKDGQPSLVLQSSSFIF	0.44	2107.4
45	Tax pep45	265	284	GQPSLVLQSSSFIFHKFQTK	0.38	2279.6
46	Tax pep46	271	290	LQSSSFIFHKFQTKAYHPSF	0.40	2400.7
47	Tax pep47	277	296	IFHKFQTKAYHPSFLLSHGL	0.49	2371.8
48	Tax pep48	283	302	TKAYHPSFLLSHGLIQYSSF	0.49	2296.6
49	Tax pep49	289	308	SFLLSHGLIQYSSFHNLHLL	0.65	2326.7
50	Tax pep50	295	314	GLIQYSSFHNLHLLFEEYTN	0.46	2425.7
51	Tax pep51	301	320	SFHNLHLLFEEYTNIPISLL	0.62	2400.8
52	Tax pep52	307	326	LLFEEYTNIPISLLFNEKEA	0.44	2383.7
53	Tax pep53	313	332	TNIPISLLFNEKEADDNDHE	0.06	2314.5
54	Tax pep54	319	338	LLFNEKEADDNDHEPQISPG	0.02	2268.4
55	Tax pep55	325	344	EADDNDHEPQISPGGLEPPS	0.00	2104.1
56	Tax pep56	331	350	HEPQISPGGLEPPSEKHFRE	0.08	2271.5
57	Tax pep57	334	353	QISPGGI EPPSEKHERETEV	0.11	2237.5

Table S4Sequences of HBZ overlap peptides used in this study.

Pep No	Name	Start	End	Sequence	Hydro	MWt
1	HBZ pep1	1	20	MAASGLFRCLPVPCPEDLLV	0.63	2131.6
2	HBZ pep2	7	26	FRCLPVPCPEDLLVEELVDG	0.51	2243.6
3	HBZ pep3	13	32	PCPEDLLVEELVDGLLSLEE	0.29	2128.3
4	HBZ pep4	19	38	LVEELVDGLLSLEEELKDKE	0.03	2216.4
5	HBZ pep5	25	44	DGLLSLEEELKDKEEEEAVL	-0.12	2204.3
6	HBZ pep6	31	50	EEELKDKEEEEAVLDGLLSL	0.01	2288.5
7	HBZ pep7	37	56	KEEEEAVLDGLLSLEEESRG	-0.03	2232.4
8	HBZ pep8	43	62	VLDGLLSLEEESRGRLRRGP	0.09	2252.6
9	HBZ pep9	49	68	SLEEESRGRLRRGPPGEKAP	-0.16	2221.5
10	HBZ pep10	55	74	RGRLRRGPPGEKAPPRGETH	-0.17	2224.5
11	HBZ pep11	61	80	GPPGEKAPPRGETHRDRQRR	-0.30	2297.5
12	HBZ pep12	67	86	APPRGETHRDRQRRAEEKRK	-0.47	2473.8
13	HBZ pep13	73	92	THRDRQRRAEEKRKRKKERE	-0.71	2693.0
14	HBZ pep14	79	98	RRAEEKRKRKKEREKEEEKQ	-0.78	2671.0
15	HBZ pep15	85	104	RKRKKEREKEEEKQIAEYLK	-0.46	2619.0
16	HBZ pep16	91	110	REKEEEKQIAEYLKRKEEEK	-0.42	2592.9
17	HBZ pep17	97	116	KQIAEYLKRKEEEKARRRRR	-0.43	2644.1
18	HBZ pep18	103	122	LKRKEEEKARRRRAEKKAA	-0.56	2510.0
19	HBZ pep19	109	128	EKARRRRRAEKKAADVARRK	-0.55	2451.9
20	HBZ pep20	115	134	RRAEKKAADVARRKQEEQER	-0.50	2454.7
21	HBZ pep21	121	140	AADVARRKQEEQERRERKWR	-0.42	2597.9
22	HBZ pep22	127	146	RKQEEQERRERKWRQGAEKA	-0.49	2598.9
23	HBZ pep23	133	152	ERRERKWRQGAEKAKQHSAR	-0.40	2507.8
24	HBZ pep24	139	158	WRQGAEKAKQHSARKEKMQE	-0.26	2426.8
25	HBZ pep25	145	164	KAKQHSARKEKMQELGIDGY	-0.13	2317.7
26	HBZ pep26	151	170	ARKEKMQELGIDGYTRQLEG	-0.04	2322.6
27	HBZ pep27	157	176	QELGIDGYTRQLEGEVESLE	0.10	2265.4
28	HBZ pep28	163	182	GYTRQLEGEVESLEAERRKL	-0.06	2363.6
29	HBZ pep29	169	188	EGEVESLEAERRKLLQEKED	-0.21	2387.6
30	HBZ pep30	175	194	LEAERRKLLQEKEDLMGEVN	-0.05	2400.7
31	HBZ pep31	181	200	KLLQEKEDLMGEVNYWQGRL	0.18	2449.8
32	HBZ pep32	187	206	EDLMGEVNYWQGRLEAMWLQ	0.37	2468.8

Table S5Clinical information of mogamulizumab-treated ATL patients

Dationt ID	Disease status	Number of Mogamulizumab	Time after Mogamulizumab
Patient ID	at analysis	administration (times)	treatment (weeks)
CR1	CR	5	87
CR2	CR	4	13
CR3	CR	8	44
CR4	CR	6	173
CR5	CR	5	56
SD6	SD	3	11
SD7	SD	3	7
SD8	SD	8	9
PD9	PD	1	3
PD10	PD	1	26

Table S6ELISPOT data in ATL and HAM/TSP patients.

НАМ	IFN-γ spots/10 ⁵ PBMCs			
Pt. No.	Tax-PA	Tax-PB	Total	
HAM#1	4	20	24	
HAM#2	6	10	16	
HAM#3	3	4	7	
HAM#4	9	25	34	
HAM#5	92	3	95	
HAM#6	49	1	50	
HAM#7	1	4	5	
HAM#8	0	28	28	

IFN-γ sp	IFN-γ spots/10 ⁵ PBMCs					
HBZ-PA	HBZ-PB	Total				
1	0	1				
0	0	0				
0	0	0				
0	0	0				
0	0	0				
0	0	0				
0	0	0				
1	0	1				

Mogamulizumab-ATL	IFN-γ spots/10⁵ PBMCs			
Pt. No.	Tax-PA	Tax-PB	Total	
CR#1	5	1	6	
CR#2	9	60	69	
CR#3	32	20	52	
CR#4	2	16	18	
CR#5	0	0	0	
SD#6	0	0	0	
SD#7	0	0	0	
SD#8	2	1	3	
PD#9	0	0	0	
PD#10	0	0	0	

IFN-γ spots/10 ⁵ PBMCs					
HBZ-PA	HBZ-PB	Total			
0	0	0			
1	0	1			
5	1	6			
1	1	2			
0	0	0			
0	0	0			
0	0	0			
0	0	0			
0	0	0			
0	o	0			

Figure S1 Positive and negative controls in IFN- γ ELISPOT assay of monkey PBMCs.

Monkey PBMCs were stimulated with $OVA_{323-339}$ and VV peptides (T cell epitopes in H-2^b (C57BL/6) haplotypes) as negative control. We stimulated T cells by PMA and ionomycin as a positive control.

CD8-depleted

Figure S2 Generation of STLV-1 viral antigen-expressing vaccinia virus LC16m8 strain.

(a, b) Point mutations in HTLV-1 Tax M22 (a) and HBZ LL/AA (b) were inserted into the equivalent sites in sTax and SBZ. 293FT cells were transfected with HA-tagged WT or mutant plasmid. After 48 hours of transfection, expression level was determined by western blot using rabbit polyclonal anti-HA antibody. Full-length data is presented in Supplementary Figure 1a and b. Those constructs expressed mutant viral antigen at a similar level to WT constructs. (c, d) The effect of viral proteins on transcriptional activity was impaired by the point mutations in sTax and SBZ. (c) Vero cells were transfected with kB-Luc and sTax or sTax M22 and the luciferase activity was measured. (d) EL4 cells were transfected with WT-Luc, containing Tax-inducible CREs of HTLV-1 LTR, Tax and SBZ or SBZ LL/AA. The cells were harvested after 48 hours. Relative luciferase activities were calculated as the ratio of firefly to Renilla luciferase activities. The bars represent the mean ± SD of triplicate experiments. (e-i) rVV vaccination induces an antigen-specific T-cell response in mice. sTax (e) and SBZ (h) expression from the generated rVV strains were confirmed by Western blot or RT-PCR in RK13 cells after 48 hours of post-infection, respectively. Expression of sTax or HBZ mutants was detected using anti-Tax antibody (MI73) or SBZ primer set, respectively. Full-length data is presented in Supplementary Figure 1c and d. rVV vaccination and detection of the specific immune response in mice were performed as shown in (f). CD4- or CD8depleted splenocytes were stimulated with pooled overlapped peptides of sTax (f) or SBZ (i) and T-cell responses were measured by ELISPOT. The total numbers of spots from the four pools (P1-P4) are shown. (g, j) The proportion of T-cell responses induced by each of the four pooled-peptides of sTax (g) and SBZ (j) is shown. A representative result is shown from at least two similar experiments. *, P<0.05 by t-test.

Figure S3 Full-length data of Figure S1

Figure S4 STLV-1 infected cells express CADM1.

We detected CADM1 expression using anti-human CADM1 mAb in cell lines. Si1 is a HTLV-1-immortalized monkey lymphocyte cell line. Si2 is a STLV-1-immortalized monkey lymphocyte cell line. Both T-cell lines derived from JMs express like a positive control, MT-2. ED and Molt4 are negative control for CADM1 expression.

Figure S5 sTax expression in CD4+ FOXP3+ cells .

CD8-depleted monkey PBMCs were cultured for 24 hours. sTax expression was measured in CD4⁺ FOXP3⁻ or CD4⁺ FOXP3⁺ cells. Positive cells were gated based on each isotype control (>0.2%).

Supplemental methods

Antibodies and reagents

The following antibodies were purchased from BD bioscience: purified mAbs to mouse IgG3 (R40-82) and CD28 (37.51) and human CD28 (28.2), CCR4 (1G1: recognizes a different epitope than mogamulizumab), IFN-g (4S.B3) and IL-2 (MQ1-17H12). MAbs to human CD4 (OKT-4), CD8a (RTP-T8), CD69 (FN50), and TNF-a (MAB11) were from Biolegend. MAbs to mouse CD11b (M1/70), human CD45RA (GRT22) and FOXP3 (PCH101) were from e-bioscience. Anti human CADM1 (3E1) was from MBL. Fluorescence-labeled anti-CCR4 antibody (clone KM2160, Kyowa Hakko Kirin Co. Ltd.), which is the original clone of mogamulizumab, was used for detection of CCR4⁺ cells in monkey.

The following reagents were used for cell culture: protein transport inhibitor (BD PharMingen), streptavidin-PE (BD PharMingen), OVA₃₂₃₋₃₃₉(Bachem) tracer dye (CellTrace violet: Life Technologies) and human IL-2 (Wako). Mouse splenic T cells or monkey peripheral blood mononuclear cells (PBMCs) were depleted (<5%) or purified (>94%) using anti-mouse or anti-human CD4 or CD8 magnetic particles (BD Biosciences) according to the manufacturer's protocol. Whole overlap peptides (offset by 6 amino acids) were constructed based on the amino acid sequences of Tax, HBZ, sTax and SBZ (KURABO). All sequences of peptide used in this study are summarized in S1-S4 Table.

Cells

Suspension cell lines and primary cells were cultured in RPMI 1640 supplemented with 10% fetal bovine serum (FBS) and antibiotics. Si1 and Si2 cell lines were cultured in RPMI 1640 supplemented with 20% fetal bovine serum (FBS), antibiotics and IL-2. 2-Mercaptoethanol was added for culture of mouse cells. Vero, RK13 and chicken embryonic fibroblasts were cultured in Dulbecco's modified Eagle medium (DMEM) supplemented with 10% newborn calf serum, antibiotics and tryptose phosphate broth. PBMCs were separated from human or monkey whole blood using Ficoll. Flow cytometry was carried out using a FACS Verse with Suite Software or FACS CantoII with FACSDiva software (BD Pharmingen). Data was analyzed by FlowJo software (Treestar).

Promoter assay

The PathDetect pNF-kB-Luc Cis-Reporter Plasmid was purchased from Promega. WT-Luc (containing Tax-inducible CREs from HTLV-1 LTR) was a gift from J. Fujisawa (Kansai medical university). sTax (WT, M22 (T130A and L131S)) and SBZ (WT and LL/AA (L27A and L28A)) constructs were cloned into pCAG-HA. Vero (10⁵) or EL4 (2x10⁵ cells) were transiently co-transfected 24 hours after cell seeding using LipofectamineTM LTX (Invitrogen) with 300 ng of reporter plasmid, 30 ng of *Renilla* luciferase control vector (pRL-TK), and 600 ng of the expression plasmid. Transfected Vero and EL4 were harvested 48 hours after transfection, respectively. Firefly and *Renilla* luciferase activities were then measured using the Pickagene kit (Toyo Inki). Relative luciferase activities were calculated as the ratio of firefly to *Renilla* luciferase activities.