SUPPLEMENTAL DATA

	T 11 01	$\mathbf{\alpha}$	1 . 600111	• • • • • • • • • • • • • • • • • • • •	• • • • •	· ^ ^ 1
Sunnlamontory	I I O DI O SI I I	L'ono orrow	onolveie of I-I HI	ovnroccion with	nroanosis of hroast	concor in Elvtord
Subbicincinal	Table SI.	Utilt allay	analysis of COM	CADI COSIUNI WITH	DI UE HUSIS UI DI CASU	Cancel in Oxidia

Tumor characteristics	Spearman rank test	GCH1 gene expression
Tumor size	Correlation coefficient	0.193
	<i>p</i> value (two-tailed)	0.017
	Number of patients	152
Grade	Correlation coefficient	0.218
	<i>p</i> value (two-tailed)	0.013
	Number of patients	129
Age	Correlation coefficient	0.104
	<i>p</i> value (two-tailed)	0.203
	Number of patients	153

Correlation of *GCH1* expression with tumor size and grade in 153 breast cancer cohort in Oxford and a set of published data (Higgins et al., 2010).

REFERENCE

Higgins GS, Harris AL, Prevo R, Helleday T, McKenna WG, Buffa FM. Overexpression of POLQ confers a poor prognosis in early breast cancer patients. Oncotarget 2010; 1: 175-184.

Correlation of <i>GCH1</i> and clinical covariates with recurrence free survival	<i>p</i> value	Hazard ratio
High GCH1	0.024	3.589
ER positive	0.391	0.664
Menopause	0.894	0.944
Grade	0.638	1.135
Size	0.010	1.301
Node	0.801	1.018

Supplementary Table S2	: Multivariate Co	ox analysis of <i>GCI</i>	41 expression with	patient survival in breast cancer
11 2			1	1

Correlation of *GCH1* expression with recurrent free survival in 153 breast cancer patients as described previously (Higgins et al., 2010). Clinical covariates in breast cancer patients in a set of gene array data.

Dataset name	Dataset size	Analysis of subtype	Comparision (size)	<i>p</i> value	t-Test	Fold of changes	Reporter
Bittner	336	Ductal breast	261 vs. 62	3E-5	4.2	2.8	204224_s_at
TCGA	593	carcinoma vs. others	397 vs. 54	2E-5	4.4	2.6	A_24_P167642
TCGA	593	Invasive breast	76 vs. 61	5E-12	7.4	2.9	
TCGA	593	carcinoma vs. normal	392 vs. 61	7E-19	10.6	3.2	A_24_P167642
Wang	286		209 vs. 77	4E-06	-4.7	0.38	204224_s_at
Desmedt	198	ER positive vs.	102 vs 56	2E-05	-4.3	0.33	204224_s_at
Kao	327	negative	204 vs. 123	4E-12	-7.2	0.37	204224_s_at
Gluck	158		81 vs. 73	1E-07	-5.4	0.36	6502
Hatzi	508		243 vs 258	3E-05	-4.0	0.42	204224_s_at
Kao	327	PR positive vs.	258 vs. 69	4E-06	-4.7	0.39	204224_s_at
Bild	158	negative	101 vs. 57	2E05	-4.2	0.39	37944
Ivshina	289		186 vs 61	5E-06	-4.7	0.41	204224_s_at
Ivshina	289		68/166/55	6E-08			204224_s_at
Yu	96		5/26/63	9E-05			204224_s_at
Gluck	158		19/49/69	6E-07			6502
Desmedt	198	Grade I/II/III	21/67/70	2E-07			204224_s_at
Bittner	336		18/74/126	2E-06			204224_s_at
Schmidt	200		29/135/36	8E-07			204224_s_at
Hatzis	508		132/180/258	4E-06			204224_s_at

Sunnlementary	Table S3.	Oncomine analysis	s of GCH1 d	tene expression in	sets of breast cancer cohort	C
Supplementary	Table 55.	Oncomme analysi,		gene expression m	sets of breast cancer conort	9

Significant results are shown (p < 0.0001) for association of *GCH1* expression with histology, biomarker (ER and PR) expression and histological grade (well differentiated/intermediate/poorly differentiated).

Supplementary Table S4: GTPC cells in cultures	CH expression in murine fibroblasts elevates BH4	levels in breast cancer
Condition	Total biopterin (pmol/mg)	BH4 (pmol/mg)

Condition	Total biopterin (pmol/mg)	BH4 (pmol/mg)	
MDA231-GFP/Tet-off-EV	8.8 ± 3.1	4.1 ± 1.7	
MDA231-GFP/GCHtet-off	62.7 ± 23.2*	$18.6 \pm 8.7*$	
+ DOX	7.5 ± 2.9	4.0 ± 0.8	
+ DAHP	8.5 ± 3.6	6.8 ± 0.9	

MDA231-GFP was cocultured with GCHtet-off or Tet-off-EV control and incubated with Dox (1 μ g/ml), DAHP (5 mM), or DMSO vehicle control for 48 hours. Cell lysates were prepared and biopterin levels were determined by HPLC using both acid-base oxidation with fluorometric detection. Values shown are means of two triplicate determinations ± SEM (*p < 0.05 vs. DMSO vehicle control, Dox or DAHP, n = 6).

Supplementary Table S5: GTPCH expression in tumor stromal fibroblasts increases BH4 synthesis in mouse xenografts

Condition	Total biopterin (pmol/mg)	BH4 (pmol/mg)
MDA231-GFP/Tet-off-EV	29.1 ± 1.2	11.6 ± 2.1
MDA231-GFP/GCHtet-off	$91.8 \pm 24.1*$	$24.0 \pm 2.0*$
+ DOX	37.8 ± 1.8	5.5 ± 1.6
+ DAHP	40.1 ± 2.9	5.6 ± 1.6

MDA231-GFP cells (1 x 10⁶) were coinjected with either GCHtet-off or Tet-off-EV control (2 x 10⁵), respectively, and treated with 2 g/L of Dox or DAHP. Tumor tissues were homogenized and biopterin levels were determined by HPLC using both acid-base oxidation with fluorometric detection. Values shown are means \pm SEM of 5 animals per group (*p < 0.05 vs. Dox or DAHP).

Supplementary Figure S1: GTPCH gene expression in breast tumor stroma and the patient stratification. The *GCH1* gene expression is positively correlated with the Ang-1 (A). Spearman's rho=0.3549, *p*-value<0.05. It expresses significantly high in the ER- breast cancer (B), but not in any other subtypes of the patients (C-E). p < 0.05 vs. DMSO control, Dox or DAHP treated tumors.

Supplementary Figure S2: GTPCH-expressing murine fibroblasts induce tumor Akt and ERK phosphorylation in conjunction with oncogenic Ras activation. As shown in Figure 2-A, cocultures were either pretreated for one hour with GDC0941 $(2 \ \mu M)$, PD98059 $(15 \ \mu M)$, the control (DMSO) (A). or incubated 48 hours with Dox $(1 \ \mu g/ml)$, DAHP (5 mM) or Ftase inhibitor III (15 µM) (B). MDA231-GFP lysates were prepared for SDS-PAGE and immunoblotted with antibodies to p-Akt (Ser473), Akt, p-ERK (Tyr202/204), ERK, pan-Ras, and GAPDH, respectively (representative 3 independent experiments) (A and B). For human phospho-RTK assay, the lysates were incubated on RTK antibody arrays and immunoblotted with RTK phospho-tyrosine-HRP. Each RTK antibody is spotted in duplicate. Dots in green circles indicate positive controls; the corresponding RTK in red circles is also listed (C).

Green rings: positive controls

Α.

Α.

Cell based ELISA assay for pTie2 (Y992)

Supplementary Figure S3: Biological effect of GTPCH-induced Ang-1 secretion on tumour Tie2 phosphorylation. (A). 1 x 10⁴ of HUVEC cells/well was seeded in a 96-well plate. After incubation with positive controls of pervanadate (100 μ M) or recombinant Ang-1 (500 ng/ml), the GCHtet-off or Tet-off-EV media ± the DMSO vehicle control, Dox (1 μ g/ml), DAHP (5 mM), pTie2 was quantified using cell based ELISA assay. (B). GCHtet-off fibroblasts were transfected with *Ang-1siRNA* (10 nM) or *SCRsiRNA* for 72 hours and Ang-1 mRNA were quantified. (C). Cell lysates were prepared for immunoprecipitation of Ang-1. They were immunoblotted with antibody to Ang-1 or GAPDH. All data are shown as mean ± SEM (*p < 0.05 vs. the Tet-off-EV control, Dox or DAHP, or *siRNA* knockdown vs *SCRsiRNA* n = 3).

Supplementary Figure S4: Murine fibroblasts expressing GTPCH stimulates tumor Akt/ERK phosphorylation in mouse xenografts. Xenografts were done and treated as for Figure 5. Tumor tissue lysates were prepared for SDS-PAGE and immunoblotted with antibodies to phospho-Akt, phospho-ERK, and GAPDH (A). Bands of intensity of the phospho-Akt and phospho-ERK were quantified on ImageJ software and normalized to GAPDH (B and C). Data are shown as the mean of 5 animals per group \pm SEM (*p < 0.05 vs. DMSO control, Dox or DAHP treated tumors).