Supplementary Information

An autism-associated mutation in $Ca_V 1.3$ channels has opposing effects on voltage- and Ca^{2+} - dependent regulation

Worawan B. Limpitikul^{1,‡}, Ivy E. Dick^{1,‡}, Manu Ben-Johny¹, David T. Yue¹

¹Calcium Signals Laboratory Departments of Biomedical Engineering and Neuroscience The Johns Hopkins University School of Medicine Ross Building, Room 713 720 Rutland Avenue Baltimore, MD 21205 voice: (410) 955-0079 fax: (410) 955-0549 email: wlimpit1@jhmi.edu; ied@jhu.edu

[‡]To whom correspondence should be addressed

Table of Contents

Supplementary Information 1	Additional Data
Supplementary Information 2	Supplementary References

1. Additional Data

1.1 The residual inactivation of A760G Ca_V1.3 remains Ca²⁺/CaM dependent

CDI of Ca_V channels is known to be orchestrated by the Ca²⁺ sensor molecule calmodulin $(CaM)^{1-3}$. To ensure that the residual inactivation of Ca²⁺ current observed in Ca_V1.3 channels harboring the A760G mutation remains entirely dependent on Ca²⁺/CaM, we co-expressed the mutant channel with a dominant negative mutant CaM $(CaM_{1234})^4$, incapable of binding Ca²⁺. The A760G Ca_V1.3_{short} channels displayed no CDI (Supplementary Figure 1), confirming that the A760G mutation did not alter the mechanism underlying CDI of these channels. Gratifyingly, this Ca²⁺/CaM dependence is identical to that seen in WT Ca_V1.3 channels co-expressing with CaM₁₂₃₄⁵.

Supplementary Figure 1. Elimination of CDI of A760G Ca_v1.3 upon coexpression of CaM₁₂₃₄. (A) Exemplar Ca²⁺ (red) and Ba²⁺ (black) currents from Ca_v1.3_{short} channels harboring the A760G mutation with CaM₁₂₃₄ overexpressed. Scale bar corresponds to Ca²⁺ trace. Ba²⁺ trace is normalized to Ca²⁺ for comparison. (B) Population data of Ca²⁺ (red) and Ba²⁺ (black) current remaining after 300 ms (r_{300}). Error bars indicate ± SEM.

1.2 A760G decreases CDI_{max} of Ca_V1.3 at multiple voltages

In the main text, we illustrate a reduction in CDI_{max} at a 10-mV test potential (main text Figure 2). To account for the shift in channel activation produced by the A760G mutation, we also quantified CDI_{max} of both WT and A760G Ca_V1.3_{short} at 0-mV and 20-mV test potentials (Supplementary Figure 2). CDI_{max} of the WT channels is significantly higher than that of the A760G channels at each voltage tested, confirming a reduction of CDI_{max} in A760G channels across voltages.

Supplementary Figure 2. Reduction of **CDI**_{max} at various voltages. (A) Ca²⁺ currents of WT Cav1.3_{short} obtained under low Ca²⁺ buffering (0.5 mM EGTA) evoked by a 0-mV test potential. The extent of CDI increases as a function of current density and reaches a maximal value of ~ 0.9 . (B) Ca^{2+} traces from A760G Ca_V1.3_{short} obtained in a similar manner as 2A. The extent of CDI increases as the current density increases and reaches a CDI_{max} of ~ 0.7, significantly lower than that of the WT channel. (C-D) Ca²⁺ currents through WT and A760G Ca_V1.3_{short} channels evoked by a 20-mV test potential under 0.5-mM EGTA buffering. At this test potential, CDImax of the WT channels (~ 0.9) remains consistently higher than that of the A760G channels (~ 0.75).

2. Supplementary References

- 1 Ben-Johny, M. & Yue, D. T. Calmodulin regulation (calmodulation) of voltage-gated calcium channels. *J. Gen. Physiol.* **143**, 679-692, doi:10.1085/jgp.201311153 (2014).
- 2 Halling, D. B., Aracena-Parks, P. & Hamilton, S. L. Regulation of voltage-gated Ca2+ channels by calmodulin. *Sci STKE* **2006**, er1 (2006).
- 3 Christel, C. & Lee, A. Ca2+-dependent modulation of voltage-gated Ca2+ channels. *Biochim. Biophys. Acta* **1820**, 1243-1252, doi:10.1016/j.bbagen.2011.12.012 (2012).
- 4 Xia, X. M. *et al.* Mechanism of calcium gating in small-conductance calcium-activated potassium channels. *Nature* **395**, 503-507, doi:10.1038/26758 (1998).
- 5 Yang, P. S. *et al.* Switching of Ca2+-dependent inactivation of Ca(v)1.3 channels by calcium binding proteins of auditory hair cells. *J. Neurosci.* **26**, 10677-10689, doi:10.1523/JNEUROSCI.3236-06.2006 (2006).